Asano (1937) classified the natural enemies of cockroaches into two types as follows:
Cameron (1955) arranged the associates of cockroaches in two groups as follows:
Asano's arrangement, although essentially true, is limited; Cameron's system is divided into arthropods (group A) and lower forms (group B), but does not include higher animals. Both attempts at classification need amplification; this we have endeavored to do below. In classifying the biotic associates of cockroaches, we were immediately confronted with a problem in semantics. The concepts parasitism, predatism, and symbiosis have all been used with various shades of meaning by different authors. The problem is not solved merely by accepting as authoritative specific definitions, however apt they seem to be, because, unfortunately, these concepts are not mutually exclusive. For example, among the entomophagous insects, as Sweetman (1936) has pointed out, there can be no definite line of separation between parasitism and predatism: the two intergrade, only the extremes being quite distinct. In fact, Andrewartha and Birch (1954) generalized these relationships by calling both categories predatism. These authors divided natural populations of associated organisms into nonpredators and predators. Although this simplifies their presentation of the general principles of ecology, for our purpose more narrowly defined terms have proved useful. In the main we have followed Sweetman (1936) and Allee et al. (1949) in arriving at the following definitions: Symbiosis is the living together in more or less intimate association of organisms of different species; it includes virtually all relationships between cockroaches and other organisms, such as parasitism, predatism, commensalism, and mutualism. Allee et al. (1949) apparently do not include predatism in symbiosis. Mutualism is symbiosis in which both members benefit by the association. The smaller partner has commonly been called a symbiont or symbiote by authors. Commensalism includes associations in which neither party appears to benefit or be harmed. One partner may live on the surplus food or wastes of the other; shelter and transport may be involved. Parasitism is the state of symbiosis in which one of the members feeds upon the other during the whole of either the immature or mature feeding stage; the host is harmed in some way and may be killed. Predatism is an association in which one member attacks and feeds upon, or stores as food for its progeny, one or more other organisms; the predator spends less than the immature or mature feeding period on the prey. This category includes a few invertebrates and all the vertebrates that capture, kill, and feed on cockroaches. This association may be divided into interspecies predatism, in which the predator preys upon a different species, and intraspecies predatism (cannibalism) in which the predator preys upon its own species. Although we have attempted to adhere to these definitions throughout this discussion, we realize that in doing so we may have tended to oversimplify complex relations. Some questionable interpretations stem from insufficient knowledge of the basic relationships between cockroaches and their associates. Only further study will clarify these relationships. Some of the problems are discussed below. Probably many of the so-called parasites (e.g., Protozoa like Nyctotherus, and intestinal nematodes of the family Thelastomatidae), which do not invade the host's tissues and seem to have no effect on the activity and vitality of the host, are commensals. Although we consider these forms to be commensals, we realize that they might actually affect the host in some way even though this has not been shown. It is possible that Rothschild and Clay's (1957) statement about bird parasites may well apply to the apparently harmless organisms found in the cockroach. These authors wrote, "It cannot be too strongly emphasized that the effect of all types of parasites on the host is detrimental. If we find that a bird seems little, if at all, inconvenienced by the presence of Protozoa or worms or lice, or a cuckoo in the nest, we can nevertheless assume that it would be better Certain organisms which live in cockroaches appear to have no effect on the vitality of the host even though the tissues of the host are invaded. Gregarines may penetrate the intestinal wall of the cockroach without seeming to injure the host. Fungi of the genus Herpomyces invade the cuticle of cockroaches producing pathological changes; yet the insects' behavior is apparently unaffected (see p. 129). We consider these organisms to be parasites because the host's tissues are invaded and, as far as we know, no benefit to the host results. In the literature certain insects have been considered to be either parasites or predators or both. Among these are the ensign wasps (Evaniidae), whose larvae feed on the eggs of cockroaches within the oÖtheca, and the ampulicid wasps, which capture, paralyze, and store in their nests (as food for their larvae) nymphs and adults of cockroaches. Clausen (1940) claimed that the evaniid Zeuxevania splendidula is a true egg parasite when it destroys the first egg in a cockroach oÖtheca; but after the wasp larva molts and proceeds to devour the other eggs, he considered it to be a predator. Clausen's definition of an entomophagous parasite is an insect that in its larval stage develops either internally or externally upon a single host which is eventually killed; with few exceptions the adults are free-living and their food is usually different from that of the larvae. A predatory insect, by Clausen's definition, is principally free-living in the larval as well as adult stage, kills the host immediately by direct attack, and requires a number of victims to reach maturity; the predator is It is apparent, as Clausen and other writers have pointed out, that there are instances of a particular species showing characteristics which fit both the definitions for predator and parasite. Thus, among the evaniids one wasp larva destroys all the eggs in an oÖtheca, but in spite of this the larva has more of the characteristics of a parasite than of a predator; the adult wasp does not utilize the same food as the larva (adults have been taken on flowers and on honeydew from scale insects). It is questionable whether the evaniid larva kills the cockroach egg outright. The wasp larva, being restricted to the inside of the oÖtheca, is not free-living. Probably the only criterion by which the evaniid could be judged to be a predator, by Clausen's definition, is that more than a single egg is devoured by the maturing wasp larva. Among the other wasp parasites (Encyrtidae, Eulophidae, Eupelmidae) of cockroach eggs many individuals develop in a single oÖtheca. When a hundred or more wasps emerge from an oÖtheca which contained less than 20 eggs, it is obvious that a single cockroach egg supported more than one wasp, yet it is possible that one particular wasp larva may have fed upon more than one cockroach egg before becoming an adult. We consider all entomophagous wasps that develop in cockroach oÖthecae to be parasites rather than predators. On the other hand, even though Anastatus floridanus, A. tenuipes, and Tetrastichus hagenowii are egg parasites as larvae, the adult females are, in a sense, predators when they sometimes eat part of the cockroach egg that oozes through the oviposition puncture (Roth and Willis, 1954a, 1954b). Williams (1929) has seen the female of Ampulex canaliculata imbibe blood that oozed from the cut ends of the cockroach's antennae after she had clipped them off before leading the prey to her nest. Yet despite this evident predatism on the part of the adult, the larva feeds as a parasite on the stored cockroaches in accordance with Sweetman's (1936) (though not Clausen's 1940) definition of parasitism, which is "that form of symbiosis in which one symbiont lives in or on the host organism and feeds at its expense during the whole of either the immature or mature feeding stage." The ampulicid larva, as the evaniid, is not free-living and does not kill the host immediately by direct attack, even though it may require more than one victim to reach maturity. Thus, within one individual both parasitic and predatory behavior are operant during different stages of its life history. With the above discussion in mind we have summarized below the various biotic associations of cockroaches. Only a few examples are
|