IV. CLASSIFICATION OF THE ASSOCIATIONS

Previous

Asano (1937) classified the natural enemies of cockroaches into two types as follows:

1. Enemies that feed mainly on cockroaches (certain ripiphorid beetles and certain chalcid, evaniid, and ampulicid wasps).

2. Organisms which, in their search for food, devour cockroaches that may be encountered (certain species of scorpions, spiders, ticks, centipedes, Strepsiptera, ants, birds, rats, and "parasitic bacteria").

Cameron (1955) arranged the associates of cockroaches in two groups as follows:

Group A. Parasites and predators.

1. Parasites: Hymenoptera (Evaniidae, Eulophidae, Eupelmidae, Encyrtidae, Pteromalidae, Cleonymidae) and Coleoptera (Ripiphoridae).

2. Predators: Hymenoptera (Ampulicidae), Hemiptera (Reduviidae), Coleoptera (Dermestidae), Arachnida (Araneae, Acarina).

Group B. Parasites and symbionts.

1. Protozoa (including examples of both parasites and commensals).

2. Nematoda (including both primary "parasites" and secondary parasites).

3. Bacteria (including the mutualistic bacteroids).

4. Algae [Arthromitis (= Hygrocrocis) intestinalis; see p. 124].

Asano's arrangement, although essentially true, is limited; Cameron's system is divided into arthropods (group A) and lower forms (group B), but does not include higher animals. Both attempts at classification need amplification; this we have endeavored to do below.

In classifying the biotic associates of cockroaches, we were immediately confronted with a problem in semantics. The concepts parasitism, predatism, and symbiosis have all been used with various shades of meaning by different authors. The problem is not solved merely by accepting as authoritative specific definitions, however apt they seem to be, because, unfortunately, these concepts are not mutually exclusive. For example, among the entomophagous insects, as Sweetman (1936) has pointed out, there can be no definite line of separation between parasitism and predatism: the two intergrade, only the extremes being quite distinct. In fact, Andrewartha and Birch (1954) generalized these relationships by calling both categories predatism. These authors divided natural populations of associated organisms into nonpredators and predators. Although this simplifies their presentation of the general principles of ecology, for our purpose more narrowly defined terms have proved useful.

In the main we have followed Sweetman (1936) and Allee et al. (1949) in arriving at the following definitions:

Symbiosis is the living together in more or less intimate association of organisms of different species; it includes virtually all relationships between cockroaches and other organisms, such as parasitism, predatism, commensalism, and mutualism. Allee et al. (1949) apparently do not include predatism in symbiosis.

Mutualism is symbiosis in which both members benefit by the association. The smaller partner has commonly been called a symbiont or symbiote by authors.

Commensalism includes associations in which neither party appears to benefit or be harmed. One partner may live on the surplus food or wastes of the other; shelter and transport may be involved.

Parasitism is the state of symbiosis in which one of the members feeds upon the other during the whole of either the immature or mature feeding stage; the host is harmed in some way and may be killed.

Predatism is an association in which one member attacks and feeds upon, or stores as food for its progeny, one or more other organisms; the predator spends less than the immature or mature feeding period on the prey. This category includes a few invertebrates and all the vertebrates that capture, kill, and feed on cockroaches. This association may be divided into interspecies predatism, in which the predator preys upon a different species, and intraspecies predatism (cannibalism) in which the predator preys upon its own species.

Although we have attempted to adhere to these definitions throughout this discussion, we realize that in doing so we may have tended to oversimplify complex relations. Some questionable interpretations stem from insufficient knowledge of the basic relationships between cockroaches and their associates. Only further study will clarify these relationships. Some of the problems are discussed below.

Probably many of the so-called parasites (e.g., Protozoa like Nyctotherus, and intestinal nematodes of the family Thelastomatidae), which do not invade the host's tissues and seem to have no effect on the activity and vitality of the host, are commensals. Although we consider these forms to be commensals, we realize that they might actually affect the host in some way even though this has not been shown. It is possible that Rothschild and Clay's (1957) statement about bird parasites may well apply to the apparently harmless organisms found in the cockroach. These authors wrote, "It cannot be too strongly emphasized that the effect of all types of parasites on the host is detrimental. If we find that a bird seems little, if at all, inconvenienced by the presence of Protozoa or worms or lice, or a cuckoo in the nest, we can nevertheless assume that it would be better off without them.... Small effects such as lack of vitality, loss of voice, excessive blinking, or perverted habits like dirt eating are extremely difficult to gauge. Nevertheless, it is only a question of degree. Potentially all parasites are harmful." It should also be pointed out that some workers would consider certain of our commensals of cockroaches to be parasites. Thus Faust (1955) stated that "A truly successful parasite is one which has developed a state of equilibrium with its host, so that no detectable damage is produced which endangers the health or life of the host. In a suitable host the parasite may obtain food and shelter without any evidence of trauma or toxicity. The damage produced may be so slight that repair and functional readjustment keep pace with the injury." Faust's successful parasite would be indistinguishable from a commensal, but there is undeniably a difference between an organism causing slight, and undetectable, damage to a host and one causing none. Certain of the organisms we list as commensals may eventually be shown to be parasites.

Certain organisms which live in cockroaches appear to have no effect on the vitality of the host even though the tissues of the host are invaded. Gregarines may penetrate the intestinal wall of the cockroach without seeming to injure the host. Fungi of the genus Herpomyces invade the cuticle of cockroaches producing pathological changes; yet the insects' behavior is apparently unaffected (see p. 129). We consider these organisms to be parasites because the host's tissues are invaded and, as far as we know, no benefit to the host results.

In the literature certain insects have been considered to be either parasites or predators or both. Among these are the ensign wasps (Evaniidae), whose larvae feed on the eggs of cockroaches within the oÖtheca, and the ampulicid wasps, which capture, paralyze, and store in their nests (as food for their larvae) nymphs and adults of cockroaches. Clausen (1940) claimed that the evaniid Zeuxevania splendidula is a true egg parasite when it destroys the first egg in a cockroach oÖtheca; but after the wasp larva molts and proceeds to devour the other eggs, he considered it to be a predator. Clausen's definition of an entomophagous parasite is an insect that in its larval stage develops either internally or externally upon a single host which is eventually killed; with few exceptions the adults are free-living and their food is usually different from that of the larvae. A predatory insect, by Clausen's definition, is principally free-living in the larval as well as adult stage, kills the host immediately by direct attack, and requires a number of victims to reach maturity; the predator is of greater size than the prey, and the food sources of the adults and immature stages are frequently the same.

It is apparent, as Clausen and other writers have pointed out, that there are instances of a particular species showing characteristics which fit both the definitions for predator and parasite. Thus, among the evaniids one wasp larva destroys all the eggs in an oÖtheca, but in spite of this the larva has more of the characteristics of a parasite than of a predator; the adult wasp does not utilize the same food as the larva (adults have been taken on flowers and on honeydew from scale insects). It is questionable whether the evaniid larva kills the cockroach egg outright. The wasp larva, being restricted to the inside of the oÖtheca, is not free-living. Probably the only criterion by which the evaniid could be judged to be a predator, by Clausen's definition, is that more than a single egg is devoured by the maturing wasp larva.

Among the other wasp parasites (Encyrtidae, Eulophidae, Eupelmidae) of cockroach eggs many individuals develop in a single oÖtheca. When a hundred or more wasps emerge from an oÖtheca which contained less than 20 eggs, it is obvious that a single cockroach egg supported more than one wasp, yet it is possible that one particular wasp larva may have fed upon more than one cockroach egg before becoming an adult. We consider all entomophagous wasps that develop in cockroach oÖthecae to be parasites rather than predators.

On the other hand, even though Anastatus floridanus, A. tenuipes, and Tetrastichus hagenowii are egg parasites as larvae, the adult females are, in a sense, predators when they sometimes eat part of the cockroach egg that oozes through the oviposition puncture (Roth and Willis, 1954a, 1954b). Williams (1929) has seen the female of Ampulex canaliculata imbibe blood that oozed from the cut ends of the cockroach's antennae after she had clipped them off before leading the prey to her nest. Yet despite this evident predatism on the part of the adult, the larva feeds as a parasite on the stored cockroaches in accordance with Sweetman's (1936) (though not Clausen's 1940) definition of parasitism, which is "that form of symbiosis in which one symbiont lives in or on the host organism and feeds at its expense during the whole of either the immature or mature feeding stage." The ampulicid larva, as the evaniid, is not free-living and does not kill the host immediately by direct attack, even though it may require more than one victim to reach maturity. Thus, within one individual both parasitic and predatory behavior are operant during different stages of its life history.

With the above discussion in mind we have summarized below the various biotic associations of cockroaches. Only a few examples are given for each section, but all organisms with similar habits presumably would be classified in the same categories.

Class A. Associations in which cockroaches serve as hosts, vectors, or prey for other organisms.

Type I. Obligate associates. Animals and plants that normally develop only on or in the cockroach; in general, these organisms depend entirely upon the cockroach for survival.

Group 1. Mutuals (symbiotes or symbionts of authors).

(a) Bacteria-like organisms (bacteroids which are found in the fat body of all cockroaches that have been examined; p. 96).

(b) Bacteria (wood-digesting forms in Panesthia, and possibly certain bacteria in the intestines, of other cockroaches; p. 100).

(c) Protozoa (several genera and species found in Cryptocercus; p. 101).

Group 2. Commensals.

(a) Protozoa (Nyctotherus, Herpetomonas, Lophomonas, etc.; p. 172).

(b) Nematodes (Thelastomatidae; p. 193).

Group 3. Parasites.

(a) Fungi (Laboulbeniales; p. 134).

(b) Protozoa (gregarines, Plistophora, etc.; p. 181).

(c) Helminths.

(1) Primary parasites (mermithids and gordian worms; p. 201).

(2) Secondary parasites (Gongylonema neoplasticum, Oxyuris mansoni, Moniliformis spp.; p. 206).

(d) Arthropods.

(1) Mites (Pimeliaphilus podapolipophagus; p. 219).

(2) Insects (larvae of ripiphorids, evaniids, and ampulicids; p. 231).

Type II. Facultative associates. Animals and plants that prey on cockroaches or are incidentally or accidentally picked up by the cockroach, but which can survive or propagate readily on some other host or prey. Steinhaus (1946) emphasized the importance of the environment in determining the type of microbial flora associated with the cockroach which may carry one type of flora in an area which is exposed to filth and a different type in other areas. Because many of these organisms survive passage through or on the cockroach, the blattid may act as a vector of these animals and plants.

Group 1. Commensals.

(a) Viruses (strains of poliomyelitis virus; p. 103).

(b) Bacteria (Enterobacteriaceae, Pseudomonadaceae, Micrococcaceae, etc.; p. 111).

(c) Fungi (Aspergillus; p. 130).

(d) Protozoa (Iodamoeba, Dobellina, and cysts of Entamoeba coli and Entamoeba histolytica; p. 179).

(e) Helminths (cysts of various helminths parasitic in vertebrates; p. 208).

(f) Arthropods.

(1) Mites (Tyrophagus lintneri; p. 218).

Group 2. Parasites.

(a) Bacteria (Serratia marcescens; p. 117).

(b) Helminths (Protospirura spp.; p. 206).

(c) Arthropods.

(1) Mites (Locustacarus sp.; p. 219).

(2) Insects (Melittobia chalybii; p. 248).

Group 3. Predators, active.

(a) Arthropods.

(1) Spiders (p. 214).

(2) Scorpions (p. 212).

(3) Centipedes (p. 222).

(4) Mites (Rhizoglyphus tarsalus; p. 218).

(5) Insects (dermestids, reduviids, and on occasion adult females of Tetrastichus, Anastatus, Ampulex; p. 234).

(b) Vertebrates.

(1) Amphibia (p. 269).

(2) Reptilia (p. 272).

(3) Aves (p. 276).

(4) Mammalia (p. 283).

Group 4. Predators, passive: Pitcher plants (p. 154).

Class B. Associations in which cockroaches serve as commensals or predators.

Group 1. Commensal cockroaches.

(a) Associates of social insects (Attaphila spp., etc.; p. 315).

(b) Obscure associates (p. 316).

Group 2. Predatory cockroaches.

(a) Interspecies predators (p. 319).

(b) Intraspecies predators (p. 322).

Class C. Associations of cockroaches with other cockroaches.

Group 1. Intraspecies associations.

(a) Familial associations (p. 325).

(b) Other conspecific associations (aggregations and fighting) (p. 336).

Group 2. Interspecies associations.

(a) Compatible associations (p. 337).

(b) Antagonistic associations (p. 329).

Class D. Ecological associations of cockroaches with higher plants.

Group 1. Benign associations (p. 139).

Group 2. Associations detrimental to plants (p. 162).


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page