Although bottles are in some respects the cheapest and crudest products that are manufactured of glass, their uses are so innumerable and their numbers so enormous that their production constitutes a most important branch of the industry. In the choice of raw materials for the production of ordinary bottles cheapness is necessarily the first consideration. Natural minerals, bye-products of other industries, and the crudest chemicals are utilised so long as it is possible by compounding these ingredients in suitable proportions to obtain a glass whose composition meets the somewhat crude requirements which bottles are expected to meet. The most essential of these requirements are that the bottles shall be strong enough to resist the internal pressure which may come upon them when used for the storage of fermented or effervescent liquors as well as the shock of ordinary use, while the glass itself must possess sufficient chemical resistance to remain unattacked by the more or less corrosive liquids which it is called upon to contain. Further, from the point of view of the bottle manufacturer it is desirable that the glass shall be readily fusible, easily worked, and easily annealed. In other In the production of ordinary bottles the continuous tank furnace has now entirely superseded the old pot furnaces, the character of the product being in this case particularly suited to this process of production. The modern bottle-glass tank is generally an oblong basin having one semi-circular end. The flame is often of the “horse-shoe” The methods of bottle making are at the present time passing through what is probably a stage of transition. Up to the middle of last century the processes in use were little better than those of the middle ages; the first step of a more modern development of the industry took the direction of improved tools and implements for carrying out the old operations. More recently a whole series of inventions have been put forward with the aim of producing bottles by entirely different and wholly mechanical processes with the object of eliminating the uncertain element of skilled labour entirely. While it must be admitted that some of the earlier of these inventions proved to be brilliantly ingenious failures, there is little doubt that here, as in other manufacturing processes, the machine-made article will ultimately supersede the hand-made product. Even now, mechanical processes are largely in use both in America and Europe, and at some recent exhibitions machine-made bottles have The first stage in the production of bottles by hand, and also for most of the machine processes, is that of gathering the requisite quantity of glass. The bottle-blower’s pipe is between 5 and 6 ft. long, and is provided with a slightly enlarged end or “nose” upon which the glass is gathered. Three gatherings are generally sufficient for the production of ordinary bottles, but for extra large bottles, and especially for carboys, heavier gatherings are necessary, and for these the gatherer must go to the furnace four, five, or even six times. When the requisite quantity of glass has been gathered on the pipe the gathering is worked and rounded by rolling it either on a flat metal plate or “marver,” or in a hollowed block made of wood or more rarely of metal; by this process the glass is formed into a well-rounded, symmetrical pear-shaped body. The blower now distends the mass gradually by the pressure of his breath, at the same time swinging the pipe, the effect of these movements being to draw the bulk of the glass downwards, leaving a thinner and colder portion having the rudimentary shape of the neck of the bottle next to the pipe. In the oldest form of the process the next stage in the production of the bottle is accomplished by the aid of a cylindrical mould of fire-clay, whose diameter is that of the external size of the finished bottle. The pear-shaped bulb of glass is for this purpose re-heated at the melting furnace, and is then placed inside the fire-clay mould. By vigorous blowing, and a rapid rotation of the pipe and glass, the bulb is forced to assume the cylindrical shape of the mould, the glass forming the neck of the bottle being at this stage of the process The process, in the form described above, has been obsolete for many years, improvements, consisting of appliances for facilitating the various operations, having been gradually introduced. The most important of these is the substitution of metal moulds for the fire-clay moulds of earlier times. These metallic moulds are made to open and close at will by the action of a pedal, and are designed to give the Important and valuable as these improvements of the ancient process of bottle-blowing undoubtedly are, they do not touch the main disadvantages of the process—disadvantages that seriously affect the economy of the process and the well-being of the workers employed upon it. It is consequently not surprising that a great number of inventors have laboured at the problem of the purely mechanical production of bottles. A large number of patents have accordingly been taken out in connection with bottle-making machinery. The first of these to attain any favour was that devised by Ashley, but although great claims were made for it, its use has not extended. At the present time, however, there are a number of bottle-works actually at work producing bottles by mechanical means; one of the most successful of these machines is that devised by Boucher, of Cognac. The products of this machine, exhibited in Paris at the exhibition of 1900, were equal, and possibly superior, to the best hand-made bottles. The Boucher machine, although by no means entirely automatic, requires no highly-skilled labour beyond that of a The details of the machine, as set forth in the patents and other published descriptions, are somewhat complicated, and vary somewhat in the different models; the general principle and mode of operation is, however, the same in all varieties of the machine, and we shall therefore give a brief account of it here. In the Boucher process, the glass is first gathered from the furnace, but as no blowing-pipes are required, the gathering is done on a light iron rod, thus saving the gatherer much of the labour of carrying the heavy pipes. The requisite quantity of the glass so gathered is then dropped into the first or “measuring” mould of the machine, the “thread” being cut by hand by the operator. From the measuring mould, the glass is next caused to pass into the “neck” mould; the glass flows into this mould, and is further pressed into it by the aid of compressed air, applied above the free surface of the glass. At this stage the still liquid glass has the external shape of the neck of the bottle, but the mass of glass is solid, i.e., no cavity has yet been produced in it. The formation of the cavity is next begun by the action of a plunger which is driven into the “solid” mass of glass filling the neck mould, this plunger thus punching out the passage through the neck of the bottle. As soon as the plunger is withdrawn, compressed air is admitted into the cavity so formed, and the mass of glass is at the same time inverted, and that part occupying the position of what is to be the shoulder of the bottle is allowed to descend while being blown out by the compressed air. This process of distension is limited, and the desired shape It will be seen that the process adopted in this machine follows as closely as possible the various stages of hand blowing, but that the mechanical movements of the machine replace the laborious and difficult technique of the blower. One such machine is capable of producing as many as 120 bottles, each weighing 1¾ lbs., per hour, but this is accomplished only by having some of the moulds in duplicate and so arranged as to come into use alternately. The machine itself is attended by one “moulder,” who operates the levers, and by a youth, who carries the finished bottles to The annealing of bottles was formerly carried out in large chambers or kilns of very simple construction, in which the bottles were stacked as made, the kiln being previously heated to the requisite temperature: when full, the kiln was closed up in a rough temporary manner and allowed to cool naturally, thus annealing the bottles stacked within it. In this branch of glass-making also, however, the continuous annealing kiln has superseded the older kinds, and continuous kilns are now almost universal in bottle-making. In these kilns, which consist of long tunnels, kept hot at one end and having a gradually decreasing temperature as the other end is approached, the bottles are stacked on trucks which are slowly drawn through the kiln from the hot to the cold end. At the cold end the trucks are unloaded and In the account of bottle manufacture given above we have referred almost exclusively to the mode of production of the ordinary bottles used for the storage of such liquids as wine, beer, spirits, etc., and we will now deal with some other branches of manufacture closely allied to these. An important branch of glass manufacture is the production of vessels of large dimensions. Those most closely allied to ordinary bottles are the vessels known as carboys, used for the storage and transportation in bulk of chemical liquids, and especially of acids. Formerly these were blown by hand in a manner closely resembling that used for ordinary bottles, but the weight of the mass of glass to be handled by gatherer and blower is very great, while the lung-power of a blower is not sufficient to produce the great expansion required. Formerly the only aid available to the blower was the device of injecting into the hot, hollow glass body, at an early stage of the process, a quantity of water or alcohol; this liquid was immediately vapourised by the heat of the glass, and if the blower closed the mouthpiece end of his pipe by placing his thumb over it, the expansive force of the vapour so generated served to blow out the glass to the desired extent. More recently mechanical aids to the production of these large vessels have become A process of producing hollow glass vessels of very large size by purely mechanical means has, however, been introduced during recent years by P. Sievert, of Dresden. By the methods of this inventor, glass vessels of quite unprecedented size—such as bath-tubs freely accommodating full-grown men—can be produced. For this purpose the glass is spread out on the surface of a large cast-iron plate, provided with numerous small holes through which steam or compressed air may be blown when desired. The slab of viscous glass, when properly spread over this plate, is clamped down against it all around the outside edge by means of a suitably-shaped iron collar, which holds the glass in air-tight contact against the plate beneath. The whole iron plate, with the slab of glass clamped to it, is now turned over, so that the glass hangs down under the plate. The glass immediately begins to sag under its own weight, and is assisted in this tendency by a suitable blowing of steam or air into the space between the plate and the glass. In blowing bath-tubs in this way the glass is allowed to distend downwards until the desired depth is attained, when further distension is arrested by bringing a flat supporting plate under the glass, which is pressed against this flat plate by the pressure of the air, thus It is obvious that this process can also be employed for blowing a hollow body into contact with a mould of any desired form and forcing the hot glass to take the exact shape of the mould; for smaller bodies, however, the blowing in of separately generated steam is not required, the heat of the molten glass itself being used to generate the necessary steam. For this purpose the requisite quantity of glass is dropped on the surface of a wet slab of asbestos. On this surface the glass remains floating upon a layer of steam, which is constantly renewed by the intense heating action of the hot glass on the water contained in the asbestos below. The moulds used in this process are provided with a sharp edge or lip, and as soon as the glass has spread into a slab of sufficient size, the inverted mould is brought down upon the glass and pressed against it. The sharp lip or edge of the mould forces the glass into close contact with the asbestos under it all around the edge of the mould, thereby enclosing the space existing between the rest of the glass and the wet asbestos. The heat of the glass continues to generate steam at a rapid rate, but now the steam can no longer escape from under the glass around the edges, and therefore blows the glass upwards into the mould, ultimately forcing the glass into intimate contact with the surface of the mould; when this is accomplished, the pressure of the steam rises rapidly, and ultimately lifts the |