The choice of raw materials for all branches of glass manufacture is a matter of vital importance. As a rule all “fixed” bodies that are once introduced into the glass-melting pot or furnace appear in the finished glass, while volatile or combustible bodies are more or less completely eliminated during the process of fusion. Thus while the chemical manufacturer can purify his products by filtration, crystallisation or some other process of separation, the glass-maker must eliminate all undesirable ingredients before they are permitted to enter the furnace, and the stringency of this condition is increased by the fact that the transparency of glass makes the detection of defects of colour or quality exceedingly easy. For the production of the best varieties of glass, therefore, an exacting standard of purity is applied to the substances used as raw materials. As the quality of the product decreases, so also do the demands upon the purity of raw materials, until finally for the manufacture of common green bottles, even such very heterogeneous substances as basaltic rock and the miscellaneous residues of broken, defective and half-melted glass forming the refuse of other glassworks may be utilised more or less satisfactorily. A further consideration in the choice of raw materials is facility of storage. Thus limestone in the shape of large lumps of stone which are only ground to powder as required, is readily stored, and undergoes no deleterious change even if exposed to the weather; on the other hand, sulphate of soda (salt-cake), if stored even in moderately dry places, rapidly agglomerates into hard masses, at the same time absorbing a certain percentage of moisture. Such properties are not always to be avoided, salt-cake for example being at the present time an indispensable ingredient in many kinds of glass-making, but the value of a substance is in some cases materially lessened by such causes. The raw materials ordinarily employed in glass-making may be grouped into the following classes:— (1) Sources of silica. (1) Sources of Silica.—The principal source of silica is sand. This substance occurs in nature in geological In consequence of this origin, the chemical composition of sand varies very greatly with the nature of the rock whose denudation gave rise to the deposit. Where rocks very rich in silica, or even consisting of nearly pure silica, have been thus denuded, the resulting sand is often very pure, deposits containing up to 99·9 per cent. silica being known. More frequently, however, the sand contains fragments of more or less decomposed felspar, which introduce alumina, iron and alkalies into its composition. Finally, “sands” of all ranges of composition from the pure varieties just referred to down to the clay marls, very rich in iron and alumina, are known. For the best varieties of glass, viz., optical glass, flint glass and the whitest sheet-glass, as well as for the best Bohemian glass, a very pure variety of sand is required, preferably containing less than 0·05 per cent. of iron, and not more than 0·05 per cent. of other impurities such as alumina, lime or alkali. As a matter of fact, sands containing so little iron rarely contain any other impurity except alumina in measurable quantities. The best-known deposit of such sand in Europe is that at Fontainebleau near Paris, but equally good sand is found at Lippe in Next in order of value to these exceedingly pure sands, come the glass-making sands of Belgium, notably of Epinal. These usually contain from 0·2 to 0·3 per cent. of iron and rather more alumina, but they are used very largely for the manufacture of sheet and plate-glass. When the standard of quality is further relaxed, a large number of sand deposits become available, and the manufacturers of each district avail themselves of more or less local supplies; thus in England the sands of Leighton in Bedfordshire and of Lynn on the East Coast, are largely used. Finally, for the manufacture of the cheapest class of bottles, sands containing up to 2 per cent. of iron and a considerable proportion of other substances are employed. Silica, in various states of purity, occurs in nature in a number of other forms than that of sand. By far the commonest of these is that of more or less compact sedimentary rock, known as “sandstone.” As far as chemical composition is concerned, some of these stones are admirably suited for making the best kinds of glass, although as a rule a stone is not so homogeneous as the material of a good sand-bed. The stone has the further disadvantage that it requires to be crushed to powder before it can be used for glass-making, and the crushed product is generally a mixture of grains of all sizes ranging from a fine dust to the largest size of grain passed by the sieves attached to the Minerals of the felspar class, consisting essentially of silicates of alumina and one or more of the alkalies, are extensively used in glass-making and should be mentioned here, since their high silica-content (up to 70 per cent.) constitutes an effective source of silica. As a source of this substance, however, most felspars would be far too expensive, and their use is due to their content of alumina and alkali. (2) Sources of Alkali.—Originally the alkaline constituents of glass were derived from the ashes of plants and of seaweed or “kelp”; in both cases the alkali was obtained in the form of carbonate and was ordinarily used in a very impure form; at the present time, however, the original source of alkali for industrial purposes is found in the natural deposits and other sources of the chlorides of sodium and potassium. Alkalies are, therefore, introduced into the glass mixture in less volatile and more readily attackable forms. Of these the carbonate is historically the earlier, while the sulphate is at the present time industrially by far the more important. The Carbonate of Soda, or soda ash, which is used in the production of some special glasses, and is an ingredient of English flint glasses, is produced by either of two well-known chemical processes. One of these is the “black ash,” or “Le Blanc” process, in which the chloride is first converted into sulphate by the direct action of sulphuric acid, and the sulphate thus formed is converted into the carbonate by calcination with a mixture of calcium carbonate and coal. The sodium carbonate thus formed is separated by solution and subsequent evaporation. A purer form of sodium carbonate can be obtained with great regularity by the “ammonia soda” process, in which a solution of sodium chloride is acted upon by ammonia and carbonic acid under pressure. Soda ash produced by this process is now supplied regularly for glass-making purposes in a state of great purity and constancy of composition. It is upon these qualities that the great advantages of this substance depend, since its relatively high cost precludes For most purposes of glass-making, such as the production of sheet and plate-glass of all kinds, the alkali is introduced in the form of salt-cake—i.e., sulphate of soda. This product is obtained as the result of the first step of the Le Blanc process of alkali manufacture—i.e., by the action of sulphuric acid on sodium chloride; salt-cake is thus a relatively crude product, and its use is due to the fact that it is by far the cheapest source of alkali available for glass-making. There are, however, certain disadvantages connected with its use. The chief of these is the fact that silica cannot decompose salt-cake without the aid of a reducing agent; such a reducing agent is partly supplied by the flame-gases in the atmosphere of the furnace, but in addition to these a certain proportion of carbon, in the form of coke, charcoal or anthracite coal must be added to all glass mixtures containing salt-cake. The use of a slightly incorrect quantity of carbon for this purpose leads to disastrous results, while even under the best conditions it is not easy to remove all traces of sulphur compounds from glass made in this way. A further risk of trouble arises in connection with salt-cake from the fact that it is never entirely free from more or less deleterious impurities. According to the exact manner in which it has been prepared, the substance always contains a small excess either of undecomposed sodium chloride or of free sulphuric acid, or the latter may be present in the form of sulphate of lime. A good salt-cake, however, should contain at least 97 per cent. of anhydrous sodium sulphate, and not more than 1·0 per cent. of either sodium chloride or sulphuric Salt-cake possesses certain other properties that make it somewhat troublesome to deal with as a glass-making material. Thus, on prolonged exposure, particularly to moist air, the powdered salt-cake absorbs moisture from the atmosphere and undergoes partial conversion into the crystalline form of “Glauber’s Salt,” a process which results in the formation of exceedingly hard masses. Ground salt-cake, therefore, cannot be stored for any length of time without incurring the necessity of regrinding, and this accretive action even comes into play when mixtures of glass-making materials, containing salt-cake as one ingredient, are stored. In practice, therefore, salt-cake can only be ground as it is wanted, and its physical properties make it difficult to grind it at all fine, while the dust arising from this process is peculiarly irritating, although not seriously injurious to health. Potash is utilised in glass-making almost entirely in the form of carbonate, generally called “pearl-ash.” Originally derived from the ashes of wood and other land plants, this substance is now manufactured by processes similar to those described in the case of soda, the raw material being potassium chloride derived from natural deposits such as The alkalies are also introduced into glass in the form of nitrates (potassium nitrate, or saltpetre, and sodium nitrate, or nitre); but although these substances act as sources of alkali in the glass, they are employed essentially for the sake of their oxygen contents. Such oxidising agents are not, of course, added to glass mixtures containing sulphates and carbon, but are employed to purify the mixtures containing alkali carbonates, and more especially to oxidise the flint glasses. Since these substances are only introduced into glass in small quantities their extreme purity is not of such great importance to the glass-maker, and the ordinary “refined” qualities of both nitrates are found amply pure enough to answer the highest requirements. A certain number of natural minerals which contain an appreciable quantity of alkali are sometimes utilised as raw materials for glass manufacture. The most important of these are the minerals of the felspar class already referred to. These, however, contain a considerable proportion of alumina, while all but the purest varieties also contain more or less considerable quantities of iron. Some glass-makers regard alumina as an undesirable constituent, while others take the opposite view, and upon this view their use (3) Sources of Bases other than Alkalies.—The most important of these are lime and lead oxide, the former being required for the production of all varieties of plate and sheet-glass, as well as for bottles and a large proportion of pressed and blown glass, while lead is an essential ingredient of all flint glass. The only other base having any considerable commercial importance in connection with glass-making is barium oxide, while oxide of zinc, magnesia, and a few other substances are used in the manufacture of special glasses for scientific, optical or technical purposes, where glass of special properties is required. The metallic oxides which are used for the production of coloured glass are, of course, also basic bodies. These will be treated in connection with coloured glasses, with the exception of manganese dioxide, which is used in large quantities in the manufacture of many ordinary “white” glasses. Calcium Oxide (lime) is generally introduced into glass mixtures in the form of either the carbonate or the hydrated oxide (slaked lime). The carbonate may be derived either from natural sources, or it may be of chemical origin, while the hydrate is always obtained by the calcination of the carbonate, followed by “slaking” the lime thus produced. Slaked lime is sometimes used as the source of lime for special glasses where the process of manufacture renders it desirable to avoid the evolution of carbonic acid gas which takes place when the carbonate is heated and attacked by silica. When slaked lime is used only the water vapour of the hydrate is driven off, and this occurs at a much lower temperature. For the production of slaked lime, an adequately pure form of limestone, preferably in the form of large lumps, is burnt in a kiln until the carbonic acid is entirely driven off; after cooling, the lime so formed is slaked by hand. The product so obtained is, however, apt to vary both as regards contents of moisture and carbonic acid, which latter is readily absorbed from the atmosphere; the use of this material, therefore, requires frequent analytical determinations of the lime contents and corresponding adjustments of the mixture if constant results are required. It is possible to introduce lime into glass mixtures in the form of gypsum or calcium sulphate, but the decomposition of this compound, like that of sodium sulphate, requires the intervention of a reducing agent such as carbon, and the difficulties arising from this source in connection with the use of salt-cake are still further increased in the case of the calcium compound. Since limestones of considerable purity are more or less plentiful in many districts, the commercial value of calcium sulphate for glass-making is probably slight. The Compounds of Barium may best be dealt with at this stage, since they are chemically so closely allied to the Magnesia is another glass-forming base that is closely Zinc oxide lies, chemically, between the bases already discussed on the one hand, and lead oxide on the other. This element is only introduced into special optical glasses, a special “zinc crown” having found some application. Chemically prepared zinc oxide is almost the only form in which the element is used, but the very volatile character of this substance must be borne in mind when it is introduced into glass mixtures. Lead is one of the most widely-used ingredients of glass; the glasses containing this substance in notable quantity are all characterised to a greater or less degree by similar properties, such as considerable density and high refractive power, and are classed together under the name “flint glasses.” Lead is now almost universally introduced into glass mixtures in the form of red lead, although the other oxides of lead might be employed almost equally well. Red A word should perhaps be said here as to methods of handling red lead on account of the injurious effects which the inhalation of lead dust produces upon the workmen exposed to it. For glass-making purposes it is not feasible to adopt the method adopted by potters of first “fritting” the lead and thus rendering it comparatively insoluble and innocuous; even if this were done, the difficulty would only be moved one step further back, and would have to be overcome by those who undertook the preparation of the frit. The proper solution of the problem, in the writer’s opinion, is to be found in properly preventing the formation of lead dust, or at all events in protecting the workmen from the risk of inhaling it. Where only small quantities of lead Aluminium.—There are several varieties of glass into which alumina enters in notable quantities, the principal examples being certain optical and many opal glasses, while most ordinary glasses contain this substance in greater or less degree. In the latter, the alumina is derived by the inevitable processes of solution, from the fire-clay vessels or walls within which the molten glass is contained, while in some cases the element is intentionally introduced in small proportions (about 2 per cent. to 3 per cent. of Al2O3) by the use of felspar as an ingredient of the mixture. Where larger proportions of alumina are required, the substance is introduced in the form of the hydrate, which is obtainable commercially in a state of almost chemical purity, but of course at a correspondingly high cost. In opal glasses Manganese.—Although the oxides of this element really belong to the class of colouring compounds, they are so widely used in the manufacture of ordinary “white” glasses that it is desirable to deal with them here. The element manganese is most usually introduced into glass mixtures in the form of the per-oxide (MnO2), although the lower oxide (Mn3O4) can also be used. The material ordinarily used is the natural manganese ore, mined chiefly in Russia; the purest forms of this ore consist almost entirely of the per-oxide, but “brown” ores, containing more or less of the lower oxide, are also used with success. These ores always contain small amounts of iron and silica, but provided the iron is not present in any considerable quantity, the value of the ore is measured by the percentage of manganese which it contains. The colouring and “decolourising” action of manganese will be discussed in a later chapter. Certain other substances, which have been suggested as either substitutes for, or improvements upon, manganese for this purpose need only be mentioned here, viz., nickel, selenium and gold. Arsenic is another substance frequently introduced into “white” glass mixtures. This element is universally introduced in the form of the white arsenic of commerce Carbon.—As has already been indicated, an admixture of carbon in some suitable form is essential in the case of certain glass mixtures. The carbon for this purpose may be used in the form of either charcoal, coke, or anthracite coal. Of these, charcoal is undoubtedly the purest form of carbon, but it is excessively expensive in this country. Coke varies very much in quality according to the coal from which it has been produced, but it always contains notable proportions of ash rich in iron, and also some sulphur. Anthracite coal can be obtained in a very pure form, containing considerably less ash than that found in most kinds of coke, and this is therefore probably the most convenient form of carbon for this purpose. |