Although the term “glass” denotes a group of bodies which possess in common a number of well-defined and characteristic properties, it is difficult to frame a satisfactory definition of the term itself. Thus while the property of transparency is at once suggested by the word “glass,” there are a number of true glasses which are not transparent, and some of which are not even translucent. Hardness and brittleness also are properties more or less characteristic of glasses, yet very wide differences are to be found in this respect also, and bodies, both harder and more fragile than glass, are to be found among minerals and metals. Perhaps the only really universal property of glasses is that of possessing an amorphous structure, so that vitreous bodies as a whole may be regarded as typical of “structureless” solids. All bodies, whether liquid or solid, must possess an ultimate structure, be it atomic, molecular or electronic in character, but the structure here referred to is not that of In the great majority of mineral or inorganic bodies the molecules in the solid phase are arranged in a definite grouping and the body is said to have a crystalline structure; evidences of this structure are generally visible to the unaided eye or can be revealed by the microscope. Vitreous bodies on the other hand are characterised by the entire absence of such a structure, and the mechanical, optical and chemical behaviour of such bodies is consistent only with the assumption that their molecules possess the same arrangement, or rather lack of arrangement, that is found in liquids. The intimate resemblance between vitreous bodies and true liquids is further emphasised when it is realised that true liquids can in many instances pass into the vitreous state without undergoing any critical change or exhibiting any discontinuity of behaviour, such as is exhibited during the freezing of a crystalline body. In the latter class of substances the passage from the liquid to the crystalline state takes place at one definite temperature, and the change is accompanied by a considerable evolution of heat, so that the cooling of the mass is temporarily arrested. In the case of glasses, on the other hand, the passage from the liquid to the apparently solid condition is gradual and perfectly continuous, no evolution of heat or retardation of cooling being observed even by the aid of the most delicate instruments. We are thus justified in speaking of glasses as “congealed liquids,” the process of congealing in this case involving no change of structure, no re-arrangement of the molecules, but simply implies a gradual stiffening of Molten glass may be regarded as a mutual solution of a number of chemical substances—usually silicates and borates. When cooled in the ordinary way these bodies remain mutually dissolved, and ordinary glass is thus simply a congealed solution. The dissolved substances have, however, natural freezing-points of their own, and if the molten mass be kept for any length of time at a temperature a little below one of these freezing-points, that particular substance will begin to solidify separately in the form of crystals. The facility with which this will occur depends upon the properties of the ingredients and upon the proportions in which they are present in the glass. In some cases this devitrification sets in so readily that it can scarcely be prevented at all, while in other cases the glass must be maintained at the proper temperature for hours before crystallisation can be induced to set in. In either of these cases, provided that the glass is cooled sufficiently rapidly to prevent crystallisation, the sequence of events during the subsequent cooling of the mass is this: as the temperature falls further and further below the natural freezing-point of one or other of the dissolved bodies, the tendency of that body to crystallise out at first rapidly The phenomena just described in reality constitute the natural limit to the range of bodies which can be obtained in the vitreous state: as we approach this limit the glass requires more and more rapid cooling through the critical range of temperature, and is thus more and more liable to devitrify during the manufacturing processes, until finally the limit is set when no industrially feasible rapidity of cooling suffices to retain the mass in the vitreous state. While the range of bodies that can be obtained in the vitreous state is very large, only a comparatively small number of substances are ordinarily incorporated in industrial glasses. With the exception of certain special glasses used for scientific purposes, such as the construction of optical lenses, thermometers and vessels intended to resist unusual treatment, all industrial glasses are of the nature of mixed silicates of a few bases, viz., the alkalies, sodium and One of the factors that limit the range of possible compositions of glasses has already been indicated, and two others must now be discussed. For industrial purposes, the cost and rarity of the ingredients becomes a vital bar at a certain stage; thus the use of such elements as lithium, thallium, etc., is prohibitively costly. In another direction the glass-maker is very effectively restrained by the limitations of his furnaces as regards temperature. The presence of excessive proportions of silica, lime, alumina, etc., tends to raise the temperature required for the free fusion of the glass, and when this temperature seriously exceeds 1600° C., the manufacture of the glass in ordinary furnaces becomes impossible. Thus pure silica can be converted into a glass possessing very valuable properties, but the requisite temperature cannot be attained in regenerative gas-fired furnaces such as are ordinarily used by glass manufacturers. The production of this glass has accordingly been carried on upon a small scale only by means of A further limitation in the choice of chemical components is placed upon the manufacturer by the actual chemical behaviour of the glass both during manufacture and in use. As regards chemical behaviour during manufacture, it must be borne in mind that, although glasses are of the nature of solutions rather than of compounds, yet these solutions tend towards a state of saturation; thus a glass rich in silica and deficient in bases will readily dissolve any basic materials with which it may come in contact, while, on the other hand, a glass rich in bases and poor in acid constituents such as silica, boric acid or alumina, will readily absorb acid bodies from its surroundings. During the process of melting, glass is universally contained in fire-clay vessels. These are chosen, as regards their own chemical composition, so as to offer to the molten glass a few of those materials in which the glass itself is deficient; yet a limit arises in this respect also, since glasses very rich in bases, such as the very dense lead and barium glass made for optical purposes, rapidly attack any fire-clay with which they may come in contact. The finished glass also betrays its chemical composition by its chemical behaviour towards the atmospheric agents, such as moisture and carbonic acid, with which it comes in contact; glasses containing an excessive proportion of alkali, for example, are found to be seriously hygroscopic and to undergo rapid decomposition, especially in a damp atmosphere. Taking our next example at almost the opposite extreme, the hardest “combustion tubing,” which is intended to resist a red heat without appreciable softening, is manufactured by reducing the basic contents of the glass to the lowest possible degree, especially minimising the alkali content, and using the most refractory bases available, such as lime, magnesia, and alumina in the highest possible proportions. Such glass is, of course, difficult to melt, and special furnaces are required for its production, but on the other hand this material meets requirements which ordinary soda-lime or flint glass tubing could never approach. Another instance of these refractory glasses is to be found in the Jena special thermometer glasses and in the French (Tonnelot) “Verre dur”; the best of these glasses show little or no plasticity at temperatures approaching 500° C., The chemical behaviour of glass surfaces, to which we have already referred, is of the utmost importance to all users of glass. The relatively neutral chemical behaviour of glass is, in fact, one of its most useful properties, and, next to its transparency, most frequently the governing factor in its employment for various purposes. Thus the entire use of glass for table-ware depends primarily upon the fact that it does not appreciably affect the composition This subject of the chemical stability of glass surfaces attracted much attention during the later part of last Leaving aside the inferior glasses, containing, generally, more than 15 per cent. of alkali, the behaviour of glass surfaces to the principal chemical agents may be summed up in the following statements. Pure water attacks all glass to a greater or lesser extent; in the best glasses the prolonged action of cold water merely extracts a minute trace of alkalies, but in less perfect kinds the extraction of alkali is considerable on prolonged exposure even in the cold, and becomes rapidly more serious if the temperature is raised. Superheated water, i.e., water under steam pressure, becomes an active corroding agent, and the best glasses can only resist its action for a limited time. For the gauge-glass tubes of steam boilers working at the high pressures, which are customary at the present time, specially durable glasses are required and can be obtained, although many of the gauge-tubes ordinarily sold are quite unfit for the purpose, both from the present point of view and from that of strength and “thermal endurance.” In certain classes of glass, the action of water, especially when hot, is not entirely confined to the surface, some water penetrating into the mass of the glass to an appreciable depth. The exact mechanism of this action is not known, but the writer inclines to the view that it arises In connection with the action of acids upon glass, mention should be made of certain special actions that are of practical importance. The dissolving action of hydrofluoric acid upon glass is, of course, well known. It is used in practice both in the liquid and gaseous form, and also in that of compounds from which it is readily liberated (such as ammonium or sodium fluoride), for the purpose of “etching” glass, and also in decomposing glass for purposes of chemical analysis. Next in importance ranks the action of carbonic acid gas upon glass, especially in the presence of moisture. The action in question is probably indirect in character; the moisture of the air, condensing upon the surface of the glass, first exerts its dissolving action, and thus draws from the glass a certain quantity of alkali, which almost certainly at first goes into solution as alkali hydrate (potassium or sodium hydroxide); this alkaline solution, however, rapidly absorbs carbonic acid from the air, and the carbonate of the alkali is formed. If the glass dries, this carbonate forms a coating of minute crystals on the surface of the glass, giving it a dull, dimmed appearance; this, however, only occurs ordinarily with soda glasses, since the carbonate of potassium is too hygroscopic to remain in the dry solid state in any ordinary atmosphere. Potash glasses are, as such, no more stable chemically than soda glasses, but they are for the reason just given less liable to exhibit a dim surface. If the dimming process, in the case of a soda glass, has not gone too far, the brightness of the surface of the glass may be practically The dimming process in the case of the less resistant glasses is not only confined to the formation of alkaline carbonates; the films of alkaline solution which are formed on the surface of glass form a ready breeding-ground for certain forms of bacteria and fungi, whose growth occurs partly at the expense of the glass itself; the precise nature of these actions has not been fully studied, but there can be little doubt that silicate minerals—and glass is to be reckoned among these—are subject to bacterial decomposition, a well-known example in another direction being the “maturing” of clays by storage in the dark, the change in the clay being accompanied by an evolution of ammonia gas. In the case of glass it has been shown that specks of organic dust falling upon a surface give rise to local decomposition. In this connection it is interesting to note the effect of the presence of a small proportion of boric acid in some glasses. The presence of this ingredient in small proportions is known to render the glass more resistant to atmospheric agencies, and more especially to render it less sensitive to the effects of organic dust particles lying upon the surface. It has been suggested—probably rightly—that the boric acid, entering into solution in the film of surface moisture, exerts its well-known antiseptic properties, The durability of glass under the action of atmospheric agents is a matter of such importance that numerous efforts have been made to establish a satisfactory test whereby this property of a given glass may be ascertained without actually awaiting the results of experience obtained by actual use under unfavourable conditions. One of the earliest of the tests proposed consisted in exposing surfaces of the glass to the vapour of hydrochloric acid. For this purpose some strong hydrochloric acid is placed in a glass or porcelain basin, and strips of the glass to be tested are placed across the top of the basin, the whole being covered with a bell-jar. After several days the glass is examined, and as a rule the less stable glasses show a dull, dimmed surface as compared with the more stable ones. A more satisfactory form of test depends upon the fact that aqueous ether solutions react readily with the less stable kinds of glass; if a suitable dye, such as iod-eosin, be dissolved in the water-ether solution, then the effect upon the less stable glasses when immersed in the solution is the formation of a strongly adherent pink film. The density or depth of colour of this film may be regarded as measuring the stability of the glass; the best kinds of glass remain practically free from coloured film even on prolonged exposure. A test of a somewhat different kind is one devised in its original form by Dr. Zschimmer, of the Jena glass works; this depends upon the fact that the disintegrating action of moist air can be very much accelerated if both the moisture and the temperature of the air surrounding the glass be considerably increased. For this Before leaving the subject of the chemical behaviour of glass, a reference should be made to the changes which glass undergoes when acted upon by light and other radiations. Under the influence of prolonged exposure to strong light, particularly to sunlight, and still more so to ultra-violet light, or the light of the sun at high altitudes, practically all kinds of glass undergo changes which generally take the form of changes of colour. Glasses containing manganese especially are apt to assume a purple or brown tinge under such circumstances, although the powerful action of radium radiations is capable of producing similar discoloration in glasses free from manganese. Apart from these latter |