THE GREAT TUNNEL OF THE ALPS—TUNNEL VENTILATION—VENTILATION IN THE METROPOLITAN RAILWAY. By some authorities, the great tunnel of the Alps is called the “Mont Cenis Tunnel.” But this appellation is a misnomer, as the tunnel is as far as 15 miles distant from the Cenis Mountain. It is in reality carried through the Great Vallon Mountain, the narrowest of the Alpine range which separates France from Italy. Nevertheless, between the spot where the tunnel enters the mountain at Modane, on the French side, and makes its exit at Bardoneche on the Italian, there is an intervening distance of more than 7½ miles. It is opposite to Fourneaux, a village 1½ mile from the village of Modane, that the Modane entrance of the tunnel commences. It is 3,709 feet above the level of the sea, and it is at an elevation of about 150 feet over the roadway of the Mont Cenis Pass, between St. Michel and Lanslebourg. It is visible on the right hand side as a traveller is going from France towards Italy. The Bardoneche entrance is not visible, as it is in the midst of the mountains, far away from any roadway, and 426 feet higher above the level of the sea than the Modane entrance. At Lanslebourg, the road which has, for all the distance from St. Michel, run nearly due east, makes a sudden turn to south-west and continues in this direction to Susa. The course of the tunnel is south-west throughout its entire length. It is consequently parallel or nearly parallel to the Mont Cenis Road, between Lanslebourg and Susa; although, as just stated, they are about 15 miles apart. The following little outline will convey to the reader an idea of the relative positions of tunnel and railway. We have drawn a straight line between Lanslebourg and Susa, solely for representing the general direction of the road; but in reality the road is a cork-screw with fully as constant deviation from the straight line as is exhibited by that useful article of domestic economy, and perhaps we could not find a better manner of illustrating the difference between an ordinary road on the level, and one on or through a mountain passway. If the iron of a cork-screw went straight from where it is fastened to the handle, to its point or extremity, it would measure about three inches, but its convolutions extend it to ten. It is precisely the same with the road between Lanslebourg and Susa. If it were on the plain it would measure about seven miles; but its convolutions, its twists and its turns, its zig-zags, and its lacets convert seven into twenty-five. The length of the tunnel when completed will be 12,220 metres, or 7½ English miles and 242 yards. It consequently exceeds by about 4½ miles, the next longest railway tunnel on the continent of Europe, The Tunnel of the Alps has a double nationality, it is half, exactly half, French, and exactly half Italian. By the convention of 1856, between the Governments of Sardinia and France, 6,110 metres of perforation and of lining were to be made at the expense of each country, but the whole of the works were to be done by Italy exclusively. They were commenced on each side of the mountain in 1857. For the first 3½ years, that is, until the end of 1860, the process of perforation was performed by manual labour only; in 1861 and 1862 it was partly by manual labour and partly by machinery; since 1862, machinery has been exclusively adopted. The following Table sets forth the progress made on each side since the commencement of the work. THE TUNNEL OF THE ALPS.
The rate of progress given in the foregoing Table is very different from what was expected previous to the commencement of the works. It was then anticipated that the tunnel would be excavated from end to end before the close of 1864, but it was not until the 15th of October, 1866, or 9¼ years after operations had been begun, that exactly one-half was perforated. On the 1st November, 1867, the half had been exceeded by 1,958 metres, still leaving 4,152 metres to be excavated. The amount of perforation accomplished on the two sides of the mountain has always been unequal, for of the 4,152 metres yet to be excavated, 2,905, equal to about 1? mile, have to be accomplished on the French side, whilst on the Italian there are two-thirds of a mile. This will be understood by an explanation of the strata through which the tunnel is to be carried. Commencing at Modane, there are 2,140 metres of schist, then 363 of quartz, followed by 2,706 of compact limestone, and finally 901 of schist. This completes one half; the other, or Italian half, is all schist. The only rock comparatively easy in working is the schist, but from the commencement the schist on the French side was of a more resisting character than that on the Italian. The miners came upon the quartz exactly where they expected to find it, but instead of its being a stratum 400 metres thick, as was anticipated, it turned out to be only 363 metres; nevertheless, it required two years, less two months, to bring it into subjection, that is, from the 15th of June, 1865, until the 20th of April, 1867,—the progress forward during all that time, not much exceeding half a metre (about 20 inches) a-day. The compact limestone nearest to the quartz having been partly decomposed by the action of this latter, was very workable. Hence, during May and part of June 1867, the advance was very considerable, but since June the compact limestone has proved to be harder but not so difficult to work upon as the quartz. For six But the perforation of the rock is not the only serious impediment to progress. All things that live and breathe, miners among the number, require air for their sustenance; and, in order to supply it in sufficient quantities for the support of the human moles within the interior of the tunnel, it has been necessary to resort to special appliances for this purpose. Immense machinery, moved by water-power of an aggregate force for each end of about 400 horses, erected at both entrances of the tunnel, works not only the boring machines, but, at the same time, furnishes the miners with the necessary ventilation. The air is compressed to five atmospheres by means of the water-power just referred to; and the double application of the air is the ingenious contrivance of Messrs. Someilier, Grandis and Grattoni, the distinguished Italian engineers, under whom the works are conducted. Until recently the ventilation, although indifferent except at the site of the boring machines, was excellent in their vicinity; but with each metre that the works progress farther into the mountain, the difficulties of ventilation are added to; especially so on the French side, and for a reason that will at once, on a moment’s explanation, be evident to the reader. When the boring machines have made the usual holes in the rock about three feet deep, they are filled with gunpowder, and exploded. Now, if the excavation of the mountain had been What might have proved a source of great trouble and expense—water—has fortunately not as yet on any one occasion presented itself in a manner to cause alarm or even uneasiness. We need not therefore refer to this subject in Captain Tyler in his report of 1866, sets down the total cost of the tunnel and its 34½ miles of approaches at £5,400,000, or £128,500 per mile. Now we know that up to the present time each metre of tunnel excavated and lined (for it is to be lined throughout from stone quarried near to each entrance, with an occasional introduction of brickwork) costs 7,000 francs, or £280. This would bring its total cost exclusive of permanent way, which would be, say £30,000, to £3,421,600, but we believe that the farther the tunnel is penetrated, the expenses will increase rather in geometrical than arithmetical proportion, and that the average cost of the tunnel will not be 7,000 francs or £280 “per metre courant,” but 10,000 francs or £400. If this be so, the cost of the tunnel, without permanent way, would be £5,188,000. To this sum has to be added the cost of the 34½ miles of approaches. The nature and the probable cost of the works can be appreciated from the fact that they are now about to be let, and the contract time for their completion is to be four years and a-half from the date of their commencement. These 34½ miles of double railway cannot be estimated at less than £60,000 a mile or £2,070,000, making the total cost of the tunnel and of the railways which connect it with the railways of France to the north, and with those of Italy to the south, £7,258,000, or at the rate of £172,800 per mile. Possibly, if the construction were in the hands of a railway company instead of those of two governments, a saving of a million or so might be effected, but in any case the cost would be upwards of £6,000,000, or nearly £142,850 a mile. In connection with the subject of cost, a calculation of Captain Tyler’s gives the following results. The difference, says the Captain, of elevation between the outer summit of the Mont Cenis Pass and the summit of the railway through the tunnel is 2,520 feet. The excess of working expenses in consequence of this difference of height, estimated on a traffic ten times as great as that which passed over the Mont Cenis in 1865, and the cost of traction per horse power and per hour being taken at 2¼d. (the cost on the Soemmering and the Giovi), an additional capital of £650,000, or £13,000 a mile, with interest taken at 6 per cent., is represented. If then £13,000 a mile be added to the £21,000 actual cost per mile of a permanent Alpine railway, the total cost of a railway on the mountain becomes, for the purposes of comparison, £34,000 a mile, as against whatever may be the cost per mile for the Tunnel Railway and its approaches. If they cost £142,850 a mile, the comparison will be as 31 to 142; but, if, as we believe, the cost will be £172,800, then the proportion will be at 31 to 172. A few years ago people could think or speak of nothing else for the Alps but tunnels; there was to be a tunnel railway through the Simplon, one through the St. Gothard, and as immediately to the eastward of the Great St. Gothard range, there is a rapid diminution of elevation of the Alpine mountain, no less than three passes were named as suitable for tunnels, the special advantage of each being that they could be constructed by means both of shaft and of adit. These three passes commencing near Dissentis, run from north to south, and each, as it were, starting from one root, branches off and follows its own course through its own system of valleys, but the three unite in a common pass about two miles to the south of Olivione. They are called respectively the Cristillina (the easternmost), the Greina (the centre), and the Lukmanier At a very early period in the history of English Railways, the ventilation of tunnels came to be considered a very important question, and as usual on such occasions, ignorance furnished an immense number of facts and realities which experience showed to be nothing but fictions. It was in deference to the highly wrought popular feeling on the subject, when every manner of evil was prognosticated for travellers going through tunnels, that the late Mr. R. Stephenson was induced to construct the large ventilating shafts on both the Kilsby and the Watford tunnels of the London and North-Western Railway. There are two shafts in each of these tunnels, the diameter of each of the four being sixty feet. They may be said to divide the tunnels into three distinct parts, the periods of going along each space of sixty feet being perfectly appreciable by the traveller. The ventilation is no doubt better in consequence of the execution of these gigantic shafts; but experience has long since shown We are indebted to Mr. Charles S. Storrow, an American engineer of reputation, for a great deal of very interesting information upon the subject of the ventilation of tunnels, and the state of the atmosphere in them during and subsequent to the passage of trains. Mr. Storrow was sent to Europe in 1862, by the commissioners of the State of Massachusetts, which had been appointed by legislative action, in relation to the construction of the Great Hoosac tunnel already referred to. The tunnel first visited by Mr. Storrow, in England, was the Box Tunnel, of which in his report he furnishes a section. Its length is 3,227 yards; its gradient throughout is 1 in 100. It has five shafts, each being twenty-five feet in internal diameter. But this diameter is, as just stated, now considered to be unnecessary. The deepest shaft is 300 feet. “Its most dangerous enemy is frost. In winter enormous icicles are sometimes formed by the gradual accretion, and if not removed would be very dangerous.” Of the Sapperton tunnel on the Birmingham and Gloucester section of the Midland railway, 1,760 yards long, “The inspector of the road, who accompanied me, thought the opening in the shaft of some use, and said the men wanted it. The superintendent thought it of no use whatever, and that it was something of a nuisance from the water which dripped from it. He was of opinion that after a tunnel was constructed, it would he better to close all shafts, and to trust to quick trains for ventilation. As the tunnel now is, the men continue in it all day, whenever necessary, though they do not like it, but if two freight trains should follow each other without the smoke being cleared away, it would be very difficult for them to work, and if four trains followed each other, it would be impossible.” In confirmation of the view that tunnels are better for ventilation without shafts, than with them, Mr. Storrow gives the particulars of interesting conversations he had with Mr. Brotherhood and Mr. Brassey upon the subject. Both say that numerous shafts are unnecessary for ventilation. They make eddies and currents, and interfere with each other. Mr. Brassey particularly says, that the passage of a train at quick speed is the best ventilator. On the whole, although opinions are divided in England, as to the use of shafts for ventilation after a tunnel is completed, it leans rather to the side, that unless in very long ones, shafts are of no use and had better be closed, as they are rather an interference with the natural current which difference of temperature, or prevailing winds, generally The Hauenstein Tunnel (already mentioned in our list of tunnels) is 2,731 yards long; it is straight throughout, and has a uniform gradient of 1 in 139. Three shafts were commenced in the construction of the tunnel—two only were completed, of which one, by a fearful accident through fire, that caused the death of between fifty and sixty persons, became irremediably choked up. The third shaft was used until the completion of the works, but it was closed immediately afterwards, and has not since been opened; the tunnel, therefore, is without ventilating shaft. We have, in the last three years, passed through this tunnel eight or nine times, and, notwithstanding the slowness of the pace, never experienced any inconvenience from want of effective ventilation. Mr. Storrow, who rode on the outside platform of the carriages (they are on the American plan), expresses the same opinion. The conductors of both the trains informed him that there is usually a current of air through the tunnels, and that the smoke disappeared in from fifteen to twenty minutes. Both complained of its being very wet from the dripping of water—a fact that we can fully confirm from personal experience. Even with goods trains, drawn by two heavy locomotives, which burned coals, although the tunnel was filled with smoke, Mr. Storrow did not find respiration so difficult as what he had often experienced when sitting in a room with a smoky chimney; and he remarked on several subsequent trips the same day, how quickly the tunnel became free of smoke. The greatest danger to travelling in the Hauenstein, is the falling down, either of portions of the rock, through which the tunnel is pierced, or the giving way of portions of its lining, owing to the water, which is constantly falling, forming into ice. To exclude the cold, as far as possible, a wooden screen, during winter, covers the upper part of the arch at each entrance, descending as far as possible, but allowing sufficient room for the funnel of the locomotive; there are also canvas curtains which may be drawn across the entrance at pleasure, and they are invariably so drawn in winter, except at the very moment of the passage of trains. The chief engineer of the line is doubtful as to whether there ought not to be a shaft. At times the current of cold air through the tunnel is so strong, that it would be an inconvenience to the trains if not checked by the curtains. They also have the effect of keeping up a temperature in the tunnel sufficient to prevent the water that drips on to the rails becoming frozen in winter. Great trouble and inconvenience were experienced from this cause in the first instance. The freezing of water, lodged on the rails, has scarcely ever happened during the last few years. The time that a train will take to pass through the tunnel of the Alps must now be considered. If it had been constructed throughout on the level, or with every favourable gradients, and that a train would be permitted to run throughout at express speed, it might be conveyed from entrance to exit in about twelve minutes. This gives a speed of say thirty-eight miles an hour. But with a gradient, the average of which is 1 in 45, anything approaching this rate of speed would be simply impossible. Length, however, is not the only element that has to be taken into account. M. Auguste Perdonnet, in his “TraitÉ ElÉmentaire des We have had no less than three very recent illustrations of death from such a cause, no later in fact than in August 1867; for during that month three inquests were held on three persons who had been taken out in a dying state from the London Metropolitan Railway. In each case the suspension of animation took place between Lisson Grove and King’s Cross Stations, yet the distance (all in tunnel) between them only slightly exceeds two miles, and there are abundant means of ventilation at the three intermediate points, Baker Street, Portland Road, and Gower Street Stations. The verdict in the first case was “accidental death The third case, happening almost immediately afterwards, excited a good deal of alarm in the public mind; and the alarm was not lessened in consequence of the publication of several sensational articles in two or three London newspapers. Therefore, at the opening of the inquest held upon Elizabeth Stainsley, on the 28th of August, Mr. Myles Fenton, the General Manager of the company, requested an adjournment until time had been afforded to obtain analyses of the atmosphere of the tunnels. Professor Julian Rodgers, of the London Medical School, was engaged by the Coroner; Drs. Bachhoffner, Letheby and Whitmore by the company. At the adjourned inquest, held on the 30th of October, Professor Rodgers submitted his report, in which he stated that he had analysed and tested the air contained in the tunnels of the railway between Bishop’s Road and King’s Cross Stations, and he had made comparative experiments in other tunnels. “The atmosphere in a pure condition,” continued Professor Rodgers, “consisted of a volume of 79·19 measures of nitrogen, and 20·81 of oxygen; and every 10,000 measures of air contained from 3·7 to 6·2 measures of carbonic acid. On the 4th of September he found that, in 17 cubic inches of air taken from each of the tunnels between the hours of 3 and 5 p.m., tested for carbonic acid, with the exception of the air from the Gower Street and King’s Cross tunnel (which contained a more notable quantity), only a Replying to the Coroner, Professor Rodgers said he did not think the deficiency of oxygen would act injuriously upon a delicate person passing through the tunnels; and he considered that the amount of carbonic and sulphurous gases in the tunnels could not have been injurious to the woman. There was not a sufficient accumulation of these gases to be of injury to the public health. The woman had eaten heartily, was laced tightly, and had a diseased heart; he, therefore, did not think the deficiency of oxygen could have hastened her death. The joint report of Drs. Bachhoffner, Letheby, and Whitmore Mr. Fenton, general manager, and Mr. Driscoll, an inspector of the company, having been examined as to the improvements made in the ventilation of the tunnels, and the absence of complaint from employÉs of the company, or from passengers with respect to the atmosphere, the jury, almost without hesitation, returned a verdict of “Death from natural causes.” The singular fact was elicited at the inquest that the peculiarly “pungent smell” of the tunnel is due rather to the friction of the brakes, than to any other cause. The partial combustion of the wood produces a pyroligneous carbo-hydrogen, as Dr. Letheby styled it, together with a small amount of sulphurous acid gas. These the nose and lungs will detect sooner than the most delicate chemical tests, and they are the real producers of the coughing and unpleasant feeling experienced by some passengers. Such vapours, however, only affect delicate people. This will account for the fact that people, travelling through ordinary tunnels, are free from irritation and coughing. The Metropolitan The efforts made by the company to ensure the best ventilation and purest atmosphere possible, are unremitting. Before the opening of the line an extended series of experiments was made with various specimens of coke supplied by all the leading coke manufacturers in the kingdom. That which best bore the crucial tests, to which the specimens were submitted, is the coke supplied by Messrs. Straker and Lowe from their Brancepeth Collieries near Durham. Coke for locomotives, and other purposes, is usually burned seventy-two hours. When coke of a very superior quality is required (so that all sulphurous and noxious vapours may, as far as possible, be consumed) it is burned ninety-six hours, but all coke used on the Metropolitan Railway is burned twenty-four hours more—that is 120 hours. Special ovens have been built for burning it, and when the process of combustion is completed, the coke is, what is well known in railway locomotive phraseology, “hand picked.” Thus, only the bright coke of each burning is allowed to be sent to London; any outside or dirty coke, however good it may be in reality, being kept back. It is, therefore, impossible to procure, in the whole range of fuel, any more free from ingredients likely to produce unpleasant smell, or to affect respiration. A few words must be said with respect to the peculiar construction of the engines. In the first place the parts are so arranged that no steam whatever escapes into the tunnel. This is accomplished by having a large tank on each side of the engine. These tanks together contain about 1,000 gallons of water. The exhaust steam is turned into them, instead of through the funnel in the ordinary way. The Recently, the directors of the company, with the view to satisfying public feeling in every possible way, forwarded to the Vestries of St. Marylebone and St. Pancras, applications for permission to effect openings to the external air at several points of the Marylebone and Euston Roads—where important roads cross this thoroughfare—by means of handsome and ornamental hollow columns, which should be connected with the railway, and would support street lamps similar to those now placed at frequented crossings in various parts of the town. It is a fact beyond all question that, unvaryingly, there are fewer persons belonging to the staff of the Metropolitan Railway, in proportion to their numbers, absent from duty on account of illness, than on other railways. We have seen returns, fully confirming the statement to this effect. We believe they were published by Mr. Myles Fenton, in the newspapers a few months ago. During the year ending the 30th of June, 1867, the enormous number of 22,458,067 passengers There is a source of danger in connection with travelling through a long tunnel with a bad gradient, that a recent occurrence in the Dove Hole tunnel of the Midland Railway (a tunnel to which special reference is made at page 372), suggests. The accident is so extraordinary in its character that a brief account of it at present will not he out of place. It appears that on the 9th of September last, a ballast train had gone into the tunnel with the intention of the permanent way men supplying it with ballast. Whilst it was at a stand-still and the men were at work, a cattle train, consisting of twenty-seven trucks, and drawn by two powerful goods’ engines, was permitted to enter the tunnel. This cattle train came into collision with the ballast train, when, among other results, one was that the coupling chain which connected the cattle trucks to the engines broke. The trucks thus freed began to descend the incline, which, as already stated, is 1 in 90; their impetus increased each moment, and by the time they emerged from the tunnel, on the wrong line, they were travelling at express speed. Notwithstanding a slight change in the gradient, they went on at that rate for eight miles, continuing always, of course, on the wrong line. At that point the trucks came in collision with the engine of an express train from Manchester, which had been standing on its own proper line waiting for the signal it should receive before proceeding onwards. The driver of the express train engine perceiving in a moment what was occurring, reversed his engine, put on full steam, and then jumped off, very unfortunately for himself. But the engine had not sufficient speed upon her to prevent a collision with the cattle trucks. The greater part of these latter were literally crushed to atoms; and, perhaps, fortunately, the cylinders of the [For minute details relating to the construction of the Tunnel of the Alps, up to 1862, and to the means of supplying ventilation during its progress, the reader is referred to the interesting report of Mr. Storrow, embodied in that of the Commissioners of the State of Massachusetts on the Troy and Grenfield Railroad, and of the Hoosac Tunnel, dated the 12th of March, 1863; also, to an article on the Tunnel, in the Edinburgh Review for July 1865, No. 249.] |