PARIS TO ST. MICHEL—“ABOVE SEA-LEVEL”—THE HOLBORN VIADUCT—THE MONT CENIS RAILWAY. If the reader will refer to page 16 ante, he will see that we left an imaginary travelling companion of ours, to refresh himself at one of the innumerable restaurants of Paris, whilst we were to employ the time in giving some account of the four greatest existing railways in Europe, and of the Pacific Union Railroad, now constructing across the continent of North America. But one thing has led to another, and descriptions which we had originally intended should only occupy some fifty or sixty pages, have grown to more than 200. We now revert to our original plan, which is, to take the reader, in the shape of an imaginary traveller, to the Mont Cenis Railway, and having given the best explanation of it in our power, to impart (apropos of the Tunnel of the Alps) the information we have recently collected about tunnels, ancient and modern, canal and railway, in Great Britain, and in other parts of the world. From the Alps, we shall proceed, by means of the existing railways, to the extreme south-eastern end of Italy, whence we shall cross over to Sicily, the most southern part of Europe to which railways extend. In this manner we propose to bring the present volume to a conclusion. Taking place in the train of the Paris, Lyons and Mediterranean Railway, at the Mazas Station, built nearly opposite to Paris’s great prison of the same name, we travel on the main line, 275 miles, as far as Lamartine’s birthplace, Macon, forty-four miles short of Lyons, and 262 short of At Macon we turn off from the main line of railway to the left, and pass successively Bourg and Culoz, near to which was the boundary between France and Italy, until the “rectification of frontier” in 1859 transferred the line of demarcation to the summit of the Alps, and converted Niceois and Savoyards into Frenchmen. At Culoz there is a further separation of railway—one branch turns north-east to Geneva 45 miles—the other, formerly the Victor Emanuel Railway, but lately swallowed up by the Paris, Lyons and Mediterranean Company, continues direct into the Savoie Propre, and after passing Aix les Bains and Chambery, runs up the Valley of the Arq to St. Michel, at present the terminus of the lines in this direction. When the stupendous At St. Michel, the traveller at the present time has to exchange from the luxurious first-class carriage to the jolting, crowded, slow diligence. But very shortly he will only be called upon to move from the first-class carriage of the Mediterranean Company into the equally comfortable one of the Mont Cenis Railway, a specimen of which was exhibited at the recent Paris Exhibition. In this he will travel from St. Michel to Susa in less than half the time, and at a little more than half the expense of the journey en Diligence. St. Michel is 146 English miles from Macon, 421 from Paris, 717 from London. The traveller who leaves London any morning of the week, at twenty-five minutes past seven, will (with a break of two hours in Paris) find himself at St. Michel at noon the following day, notwithstanding the fact, that the railway from Macon onwards is far from being a first-class one; its gradients are steep, its curves numerous and abrupt. Between Calais and St. Michel, including various ups and downs (for railways are subject to the fluctuations physically that man experiences bodily), the traveller has risen 2,493 English feet, but principally in the seventy-two miles and a-half from Culoz onwards. He has, in fact, completed more than a third of the total elevation he has to conquer, in order to be at the summit of the Mont Cenis Pass. This summit is 6,658 feet above the sea level at Calais and elsewhere. “Above sea level!” What does this mean? We shall endeavour to illustrate; we shall therefore ask our reader to So much for our starting point, and now for the ground to be got over. It has just been stated that the summit of the Mont Cenis Pass is 6,658 feet above sea level. Let us look at “above the level of the sea” in another light. The staircase height of each of the houses we have referred to is about sixty feet, a fatiguing ascension even for the lightest of us. The summit of the Mont Cenis Pass is exactly 111 times 60. The top of St. Paul’s Cathedral is 404 feet from the ground at St. Paul’s Churchyard. The summit of the Mont Cenis Pass is sixteen and a half times higher. Elevation by steps is only available for man, and for man’s ever faithful, as well as for man’s doubtfully faithful, companions, the dog and the cat. They therefore are able to ascend and descend a staircase gradient of 1 in 2; not so all other useful and domestic animals—the horse, the mule, the sheep, and the cow can only go along a continuous roadway; the mountain goat can skip occasionally from rock to rock, but its normal step is that of the other animals we have just enumerated. Were the steps of a staircase covered over, say with boards, and the ascent made uniform, man could not ascend or descend a gradient of 1 in 2, 1 in 3, 1 in 4, and scarcely 1 in 5. He could not, in fact, ascend or descend the last-named gradient without having something beside him to hold on by. But the muscles of man’s legs, and the organisation of his feet, enable him, by one of the innumerable Being anxious to show by an illustration, which would be familiar to most persons, who are either resident in, or have visited London, what is a gradient, we applied for information to Mr. Wm. Haywood, the engineer of the Corporation of London, under whose direction the Holborn Viaduct and Embankment are now in course of construction. He has kindly and courteously furnished a diagram—a copy of which is annexed at the end of the volume, showing in minute detail the variations of gradient, from Staples Inn to opposite the Old Bailey and Giltspur Street. The total length from point to point is 2,202 feet, a little more than two-fifths of a mile. The steepest gradient is 1 in 15 (352 feet in the mile) for 86 feet, the next 1 in 18 (293 feet in the mile) for 257 feet, and 1 in 19 (278 feet in the mile) for 113 feet. These gradients are all on Holborn Hill, between Hatton Garden and Shoe Lane. The steepest on Snow Hill is 1 in 21 (251 feet in the mile) for 87 feet, and 1 in 24 (220 feet in the mile) for 312 feet. All these gradients will, however, in a year or so, be matters of history, for it is hoped that the Holborn Viaduct will be opened for traffic at the beginning of 1869.
It is, however, a misnomer to call it a viaduct. It is true that, by means of a massive construction, the opposite sides The next great work that the Corporation has to take in hand is the widening of the Poultry, infinitely more important, and more absolutely required, in the opinion of all people who frequent the City, than the widening of Newgate Street, upon which the Corporation is now engaged. The expense, of course, will be enormous, but it must be met—somehow: land to be paid for by the square inch; splendid constructions to come down; historic Bucklersbury to disappear; even the Mansion House will stop the way, and His Lordship will have to find residence either at the rear of Guildhall, as was suggested some short time ago, or elsewhere. Metropolitan fellow residents, metropolitan suburbanists, and inhabitants who dwell to the extent of six miles outside the Post-Master General’s twelve mile postal circle, you may all rest assured that the granite pillars you see at the eighteen mile distance post from London, on railway and “Rusticus expectat dum defluit amnis; at ille The tax exists ex necessitate rerum, and must continue notwithstanding fervescence frequent—always at boiling point—in Parochial Parliaments, with echoes occasional in that of St. Stephens. By means of the Viaduct, as already said, the two summits of the valley will be connected together almost on the level. The roadway will be 80 feet wide. Commencing at the western end of Newgate Street, it will be carried in a straight line to Farringdon Street, occupying the whole of the space which recently formed Skinner Street, as well as the sites of At the entrance to St. Sepulchre’s Church a street from Farringdon Road will join the Viaduct on its northern side, and it is at this point that whatever little gradient there is on the Viaduct may be said to commence. From there to Farringdon Street it will be 1 in 153, or at the rate of 34 feet in the mile; from Farringdon Street to Hatton Garden, 1 in 143, or at the rate of 35 feet in the mile. For all purposes of traffic the Viaduct may therefore be said to be level. The Viaduct in its formation will include vaultage beneath each footway for the accommodation of the future houses on either side of the roadway; outside these vaults will be a subway for the gas and water pipes, and between each subway, and forming the centre of the Viaduct, the roadway will be carried on a series of arches. The general height of the subways will be about 11 feet 6 inches and their width 7 feet; they will be of brickwork, excepting where they are carried over the London, Chatham, and Dover Railway; there they will be of iron. In each subway provision is made for water, gas, and telegraph pipes, all of which will be so placed that their joints can be inspected, and repairs made without difficulty. The mode of construction of sewers, drains, and street gullies is such that it will never be necessary to break up the surface of the Viaduct to repair or cleanse them. Farringdon Street will be crossed by a cast-iron bridge of an ornamental character. It will be in three spans, supported by piers, one row being on the outer edge of each footway. These piers, as well as the outer abutment piers, are to be formed of polished granite. The height of the bridge next to the curb stones will be 16 feet, and in the centre the minimum height will be 21 feet, considerably more than sufficient for the traffic. At each corner of this bridge flights of steps will be constructed for pedestrians to pass between the upper and the lower levels. These will be enclosed in stone structures, ample light and ventilation being given to them. Shoe Lane, now at its northern end but 14 feet wide, is to be increased to 30 feet in width, and to be continued northwards, under the Viaduct, to a new street which is to be formed from the corner of Hatton Garden to Farringdon Road. A complete net-work of streets is to extend from the Viaduct to all the existing adjacent streets, and as at the place at which Holborn ends and the Viaduct commences several of these streets concentrate, with the view to remedying the inconvenience which would arise from a too limited area for traffic; and to add to the character of the work in an architectural point of view, Mr. Haywood has formed at this point a large circus 180 feet in diameter. This open space will, in addition to its other advantages, afford an opportunity for architectural display that we are sure will be judiciously availed of. The magnitude of the work may be represented, in one shape, by the number of bricks required for its construction. From seventeen to eighteen millions, of which rather more than two-thirds are in the actual viaduct, and somewhat less than one-third in the constructions connected with the side streets. Of course these amounts are independent of what Of gradients in reference to railways we speak hereafter. The distance from St. Michel to Susa is 78½ kilometres—48¾ English miles. It is divided into two portions nearly equal in distance, but very different as regards gradient. For the first half of the distance the road continues to follow the valley of the Arq for twenty-five miles up to the village of Lanslebourg, which is situated at the foot of the Mont Cenis Pass, and here commences the second portion of the route forming the passage of the mountain. Before proceeding farther we had better state that a French metre is equal to 3 feet 3·371 inches; consequently, 1,000 metres (or a kilometre) are equal to 1093·6389 English yards; an English mile is 1760 yards or 1609·31 French metres; 100 kilometres are 62¼ English miles; but a rough conversion of kilometres into English miles can always be made by multiplying the number of the former by 5 and dividing by 8; vice vers to convert English miles into kilometres—multiply the number of the former by 8 and divide by 5. In the 25 miles, or 40 kilometres, extending from St. Michel to Lanslebourg, there is only a rise of 670 metres, or 1,994 English feet. The steepest gradient is for 2½ kilometres (1½ miles) just beyond Modane at the French entrance of the great Tunnel of the Alps, of which we shall speak presently, the rise is 1 in 19, or 278 feet in the mile; and beyond Bramans, five miles farther, there is a rise of 1 in 20, or 264 feet in the mile, for 2 kilometres. The remaining gradients are as follows—1½ kilometre, 1 in 47; 8½ kilometres (5¼ miles) 1 in 60; 4½ kilometres (nearly 3 miles) 1 in 100; 7½ kilometres (4¾ miles) 1 in 108. In fact, with the exception of 4 kilometres (2½ miles) post-horses Mr. John Fell,
But before we go farther, let us endeavour to settle a question of priority as regards this invention or discovery, and we are able to do so all the more easily through the information furnished by Monsieur P. Desbriere at page 61 of his Etudes sur la Locomotion au Moyen du Rail Central, Contenant la relation des expÉriences entreprises pour la traversÉe du Mont Cenis. Paris 1865. “Claims having been recently started,” says M. Desbriere, “as to the priority of the invention of the centre rail, we present the following historic resumÉ. The first patent taken out for its application was on the 30th of September, 1830, jointly by Messrs. Charles B. Vignoles, the eminent English engineer, and Ericsson, the Swedish engineer, the gentlemen who constructed the first monitors and marine engines to be driven by means of heated air. On the 15th of October, 1840, a patent was taken by Mr. Henry Pinkus, an English gentleman. On the 18th of December, 1843, Baron Seguier addressed a communication to the Academy of Sciences in Paris, in which he proposed, as a means of avoiding getting off the rails, the employment of a centre rail upon all railways, the gradients of which were moderate and the speed upon which was high. On the 5th December, 1846, a patent was taken out by the Baron for this system, of which he described himself the inventor, and of which he was at all events the very active promoter. “On the 20th of January, 1863, Mr. Fell took out his first patent, and on the 16th December, of the same year, his second, under the modest title of ‘improvements in locomotive engines and railway carriages.’ In neither of these patents did Mr. Fell attempt to appropriate to himself the invention of the centre rail, but simply the means, both ingenious and practical, by which he has succeeded in applying the principle of additional adhesion.” “Independent of the energy, perseverance, and straightforward practical sense, of which he has given proof, in his long train of trials and experiments, Mr. Fell’s principal merit, in our opinion, is that he has understood, what theory entirely justifies, that locomotives with additional adhesion are only applicable to steep gradients and slow speed, because such engines are able to develop powerful means of traction, without heavy additions to their weight.” Early in 1863, Mr. Fell instituted experiments on a length of line of 800 yards, laid out on his plan, upon the Cromford and High Peak Railway, near Whaley-Bridge. The gauge was 3 feet 7½ inches, 180 yards of the line were straight with a gradient of 1 in 13 (406 feet in the mile); 150 yards with a gradient of 1 in 12 (440 feet in the mile); with curves of two chains and a-half each. The centre rail was raised seven and a-half inches above the surface of the two ordinary rails, so as to be acted upon by the two horizontal wheels of the engine. During the experiments, the first engine of the kind ever constructed, and necessarily, from want of experience, unsatisfactory in many of its details, working with a pressure of 120 lbs. to the square inch, was always able to convey a load of twenty-four tons up the incline. The maximum it succeeded in taking was thirty tons. Its dimensions were as follows: diameter of cylinder, 12 inches; length of stroke, 18 inches; four wheels coupled, diameter 2 feet 3 inches; axles, 5 feet 3 inches apart. The weight of the engine fully loaded with coke and water was sixteen tons. When the pressure was only brought to bear upon the vertical wheels, the engine could not take more than a weight of seven tons up the incline, but when the horizontal wheels acted combinedly with the perpendicular, she took up twenty-four tons on the same day, and under circumstances precisely similar in every respect, except as regards the action of the horizontal wheels upon the centre rail. These experiments were considered so satisfactory, that it was decided, with the permission of the French Government, and for its information, that they should be repeated upon a more extended scale upon the Mont Cenis, with the condition made by Mr. Fell, that if the system were found to be practicable, the authorities should grant the concession of a portion The experimental line was laid down between Lanslebourg and the summit. It commenced at the height of 5,305 feet above sea level, and terminated at the elevation of 5,820 feet. Its length was two kilometres all but forty-four yards, or an English mile and a quarter. Gauge, 3 feet 7½ inches. Its mean gradient was 1 in 13, the maximum was 1 in 12; it had two curves of 44 yards each, and others, the most favourable of which was 125 yards. It will thus be seen that the line was constructed in a manner, both as regards gradients and curves, to subject the system to the severest tests. The experiments, which were conducted in the presence of commissioners from England, France, Italy, Austria and Russia, lasted from the end of February until the end of May 1865, and it is a remarkable fact that the adhesion was found during the period of snow better than could be expected in summer, for when snow was swept off the rails, it left them dry, and under favourable conditions; whereas, summer dust combined with moisture, would render them comparatively greasy and slippery. Captain Tyler, who was present at all the experiments on the part of the British Government, calls special attention to this curious fact in his report. Two engines were employed in the trials, the first that which had been used on the High-Peak Railway experiments, and the second an engine built specially for the service of the Mont Cenis Railway. This latter was the engine principally employed, No. 1 being chiefly used to supply the place of No. 2, when any trifling derangement in its machinery required attention. It is intended that No. 2 shall be used on the completion of the line over the pass, and it is The results of Captain Tyler’s experiments with No. 2 engine were as follows:—Although at the time that they took place she was not in the best order, she was, nevertheless, able to ascend the incline, with the same load as had been attached to engine No. 1, in 6¼ minutes, or at the rate of 17? kilometres (nearly 11 miles) an hour. This engine besides possessing a greater amount of boiler-power, travelled more steadily than No. 1; its machinery is more easily attended to, and the pressure of the horizontal wheels upon the centre rail can be regulated by the engine driver at pleasure, from the foot plate. The pressure employed during the experiment was 2½ tons on each horizontal wheel, or 10 tons altogether, but the pressure actually provided for, and which may, when necessary, be employed is 6 tons upon each, or 24 tons upon the four horizontal wheels. When this engine had ascended the experimental line in 6¼ minutes, or at the rate of 17? kilometres per hour, the steam pressure in the boiler had fallen from 112 to 102½, and 3 inches of water in the gauge glass. The engine exerted, including the resistance from curves, 195 horses power—nearly 12 horses power to each ton of its own weight, or about 60 horses power in excess of what would be required to take up the load of 16 tons, over the same gradient and curves, at the rate of 12 kilometres per hour. Captain Tyler finally reduced the pressure to 40 lbs. on the square inch, that is to one-third of the maximum pressure, and when he had done this, he found that the engine alone could move on a gradient of 1 in 12; the resistance of waggons and carriages being proportionally A very important, and we believe an unexpected feature of the Fell system was immediately developed in the experiments; M. Desbriere calls special attention to it. The centre rail not only aids the train in going round curves, but also adds largely to its safety. Each vehicle is provided with four horizontal pulleys, each of about eight inches diameter, playing around vertical axes fixed upon the frame of the vehicle, and placed two and two at each of its extremities, and on each side of the centre rail. By the tightening of these pulleys, the flanges of the wheels, instead of gliding along the outer rails, press strongly against them, and thus the train is able to overcome curves unaccomplishable by any other means. This arrangement of parts also renders it impossible for either engine or vehicles to get off the line; all the more important, seeing that by the terms of the concession, the portion of the roadway ceded to Mr. Fell is, for the most part, on the outside, that is, the side nearest to the precipice, the bottom of which is, in many places, eleven or twelve hundred feet deeper than the roadway. Before proceeding to extract from the Reports of the French Commissioners to their government their opinions upon the Fell system, it is desirable to give some general deductions which Captain Tyler makes from what he witnessed, as bearing upon the important general question of railways over mountain passes. Hitherto the immense cost of the construction of such railways, and the immense cost of working them, have proved all but an effective barrier to their adoption. The cost of construction divides itself into two portions, and we will The experience acquired by our engineers tells us that the very maximum gradient an engine on the ordinary principle can climb up is 1 in 25, or 211 feet in a mile, but this can only be for a few yards, and with what is known, in locomotive language, as “a good run at it.” On the Soemmering, as has already been stated, the average gradient on the north side is 1 in 47, or 111 feet in a mile; on the south side 1 in 50, or 105 feet in the mile; yet these gradients, favourable as they are, compared with the gradient of an ordinary roadway over a high mountain pass, could only be obtained at a cost of £98,000 a mile. Equally costly was the Giovi incline, constructed to surmount the Apennines near to Genoa. The worst gradient on it for a short distance is 1 in 29, or 160 feet in a mile; its best 1 in 50, or 106 feet in a mile. The ruling gradient of the beautiful railway over the Apennines between Pistoja and Bologna is 1 in 40, or 132 feet to the mile. The distance from Pistoja at the foot of the mountain on the east to Poretta at the foot of the mountain on the west, by the old road, is 25 “chiliometres” (kilometres), a little more than 15½ English miles, but in order to obtain for the railway the average gradient of 1 in 40 we have just mentioned, it has been necessary to extend the distance from 25 chiliometres to 40, equal to 25 English miles. Each of these 40 chiliometres has cost 1,000,000 francs, or £40,000, making the total cost of the railway independent of the special rolling stock for working it, £1,600,000, or at the rate of £64,000 a mile. If at the time that Mr. Fell was engaged in connection with the construction of this very fine work, he had had his ideas matured respecting the centre-rail system, and that consent Taking the question of working expenses, we know that on the Soemmering, on the Giovi, and on the Pistoja lines, the Captain Tyler, whilst instituting a comparison between the cost of the construction and working of the Mont Cenis Over-ground Railway with these costs upon the railway through the Great Tunnel of the Alps, calls especial attention to the fact that the former is only laid down on a road-bed already in existence, as a temporary (that is if we can accept temporary as an exact translation of provisoire) line, whilst that through the tunnel is permanent. But keeping this point in view, the report of Mr. James Brunlees, C.E., the distinguished engineer of the Mont Cenis Railway Company, shows its cost to be (including the necessary engines and other rolling stock) a little under £8,000 a mile, whilst he asserts that the Tunnel line will probably cost, including interest at 6 per cent, during construction, but not the cost of special engines and other rolling stock, £7,000,000, or £140,000 a mile. As the cost of the tunnel and its accessories is dealt with subsequently at full length, we need only here remark that Captain Tyler considers the cost of an over-ground permanent Fell line, laid down on an already existing Alpine roadway, with the ordinary 4 feet 8½-inch gauge, and with Captain Tyler concludes his report to the Board of Trade as follows:— “As the results of my observations and experiments, I have to report, in conclusion, that this scheme for crossing the Mont Cenis is, in my opinion, practicable, both mechanically and commercially, and that the passage of the mountain may thus be effected, not only with greater speed, certainty, and convenience, but also with greater safety than under the present arrangements. Few would, in the first instance, either contemplate or witness experiments upon such steep gradients and round such sharp curves on the mountain side, without a feeling that much extra risk must be incurred and that the consequences of a fractured coupling or a broken tire, or a vehicle leaving the rails, would on such a line be considerably aggravated. “But there is an element of safety in this system of locomotive working which no other railway possesses. “The middle rail not only enables the engine to surmount, and to draw its train up these gradients, but also affords a means of applying any required amount of extra brake power for checking the speed, or for stopping any detached vehicles during the descent, and it further acts by the use of horizontal guiding wheels on the different vehicles as a most perfect safeguard, to prevent engines, carriages or waggons from leaving the rails, in consequence either of defects in the bearing rails or of failure in any part of the rolling stock. The safest portions of the proposed railway ought indeed, under proper management, to be those on which, the gradients being steeper than 1 in 25, the middle rail will be employed. “There is no difficulty in so applying and securing that middle rail, and making it virtually one continuous bar, as to preclude the possibility of accident from its weakness or from the failure of its fastenings, and the only question The French Imperial Commission ordered to be present at Mr. Fell’s experiments, consisted of M. Conte, ingÉnieur en chef des Ponts et ChaussÉes de France, as President, with MM. Bochet, ingÉnieur en chef des mines, Guinard, ingÉnieur des Ponts et ChaussÉes, and Perrin, ingÉnieur des mines, as his colleagues. These gentlemen completed a voluminous and elaborate report of thirty-one pages of printed matter, accompanied by drawings, with the following “conclusions”:— “From the experiments which have been described, and which the Commission has judged unnecessary to continue any further, and from the different verifications which it has made, the Commission has arrived at the conviction: “First.—That the system of traction proposed by Mr. Fell is applicable for the passage of Mont Cenis, with the engines of the type which worked at the last trials. “Second.—That this system presents no danger as regards the public security on steep inclines and on sharp curves, since, on the contrary, the existence of the centre-rail furnishes a guarantee against getting off the rails, and at the same time a powerful means of stopping the trains. “Third.—That, with the exception of some points of detail, the study of which has not been made, but which present no serious difficulty, this system may from the present time be considered as applicable to the crossing of the mountain. That, with regard especially to the working of the line during the winter season, the covered ways proposed by Mr. Fell will be sufficient to secure the regularity of the service. “Fourth.—That there is no absolute incompatibility, in consequence of the vicinity of the railway and the ordinary road, one to the other, provided that proper protective works be erected to effectually separate them.” We cannot conclude our notice of the part which was taken by France in the trials on the Mont Cenis without On the 4th of November, 1865, “Napoleon, par la Grace de Dieu et la VolontÉ Nationale, Empereur des FranÇaises,” authorised, by Imperial Decree, the construction and working of a locomotive line between St. Michel and the frontier of Italy (the summit of the pass) until “the opening of the tunnel of the Alps” for traffic. Of this very indefinite period and of the tunnel itself we shall have to speak presently. In the meantime, let it be stated that the Emperor’s decree was accompanied by a Cahier des Charges (Table of Conditions), in which, in addition to the usual conditions as affecting railways in France, are contained several specially appropriate to this very special railway. Of these, the only ones that interest the general public set forth the The works of the railway were commenced on the 1st of May, 1866. It was expected that they would be finished in twelve months, but various circumstances have intervened to prevent the realisation of this intention; the chief, the floods of September 1866, on the French side of the mountain, when the waters rising higher than was ever known before, committed wholesale devastation, not only upon the works of the company executed up to that time, but upon the ten miles of the already opened railway between St. Jean de Maurienne and St. Michel, as well. The devastation extended from Termignon within seven miles of Lanslebourg to St. Jean, a distance of twenty-eight miles. The Paris, Lyons and Mediterranean Company has repaired the ten miles of railway between St. Jean de Maurienne and St. Michel. The works of the roadway from St. Michel, eighteen miles, to Termignon have been repaired and their strength added to, by the French Government at an expense of about £80,000. The French Government has also recognised the claim of the Fell Railway Company to consideration, by agreeing to repay two-thirds of the cost of reinstating its works as they were previous to the floods, so that practically the company The railway is laid, not altogether but principally, on the outer side of the roadway. The sleepers are transverse, three feet apart, to which the outer or ordinary rails are fixed by bolts or nails. The line is fenced off from the portion of the roadway to be used for ordinary horse traffic, (the greater portion of which will disappear on the opening of the railway) by means of substantial posts and rails. The railway, in passing from one side of the roadway to the other, crosses it thirty-three times, one more than half the number of these crossings (seventeen) are on the roadway, where it is practically on the level. The crossings are therefore of the ordinary character, such as are seen in England and on the Continent; but inasmuch as the top of the centre rail, which is laid upon and fastened to continuous balks of timber bolted on to the transverse sleepers, is 9 inches higher than the outer or ordinary rails, it has been found necessary to arrange that when the roadway is open as a crossing, at those parts at which the centre rail is in use, it shall be lowered, so that it shall not be higher than the two outer rails. This is effected by a mechanique extremely simple in its action, moved by means of a lever, just as a pointsman moves his points at an everyday railway station. One movement of the lever depresses the centre rail, into a hollow made expressly to receive it, to the level of its confrÈres, and when it is necessary to elevate it again so as to place it in apposition with the centre rails at each side of the crossing, one movement of the lever raises it, and then it forms continuous centre rail just as completely as if there had not been any lever beside it to elevate or to depress it. There has scarcely been a portion of the roadway which has not been widened. In most places it has only been to the extent of a yard or a little more, but the heaviest works in connection with the road it has been found necessary to execute have been at its sharp turns or zig-zags, and in passing along the villages which are studded along the entire length of the pass; for it must not be supposed that it runs through a barren, uncultivated, and unfrequented district, inhabited only by the goatherds, or occasionally dwelt in by the chamois hunter. So far is this from being the case, that there is a well-to-do population of at least 25,000 along the pass, the well-made, robust, and hardy male portion of which has often been the means of saving human life during the snows and storms of winter, with a devotion and an indifference to personal risk or consequences, not exceeded in any other district, along the whole length of the Alpine ranges. As regards deviations, the railway winds to the back of the villages of St. Michel, Modane, Bramans, Termignon and Lanslebourg, on the French side of the mountain, but, on the Italian side, there is only one inhabited place at which it is necessary to keep in the background, and that is at Susa. By means of this deviation the connection with the Alta-Italia Railway is effected. Both lines unite together at the existing Susa station at which there is the mixed gauge of 3 feet 7½ inches, the width of the Mont Cenis Railway, and 4 feet 8½ inches, the width of the Italian railway system, which is also the width of the French railways as well as of our own, with the exception of the Great Western. But even the Great Western, in order to come within the comity of the railway world as established in England, has had to succumb, and by means of a third railway, to become “narrow” as well as “broad” gauge. Owing to the difference of gauge, transhipment both of Of the deviations, or rather the prolongations or extensions of the railway, to avoid sharp turns or zig-zags, there are four between Lanslebourg and the summit. At all these zig-zags, as we know in our experience of turns in hilly or mountain roads, the gradient is always steeper than at other parts; but the deviations of the Cenis, by taking sweeps carried through eight little tunnels in the mountain, the longest of which is 105 metres, the shortest 40, and by increasing the actual distance three to four times what it is by the roadway, curves of larger radius and lighter gradient are obtained. The total length of these tunnels is 505 metres. On the Italian side there are ten deviations, and they would have been nearly double that number, had not the railway, instead of following the existing road at a part called les Echelles, about five miles from the summit, reverted to the old road which had been abandoned in consequence of the prevalence of avalanches along it in winter. Whilst the new road is undoubtedly superior for carriages to the old one, the latter is better suited for a railway, in consequence of their being no zig-zags upon it; but en revanche for this advantage, it has been necessary to cover the line over. 600 metres of this covering are massive and solid masonry, upon which avalanches will impinge, as they are hurled from the rocks above into the abyss beneath. In addition, there will be, hereabouts, 1,200 metres of covered way, of which we shall speak immediately. There are several other places on the Italian side of the mountain at which protection against avalanches must be afforded by means of similar galleries. Their total length will be 1,480 metres, or about 140 yards less than a mile, and with this amount all the Engineers seem to agree (notwithstanding the assertion of Mr. Crawford, M.P., to the contrary) that the The total length during which the trains of the Mont Cenis Railway will not be “en plein air,” will be 11,113 metres, about 6¾ miles, scattered over 18 miles of distance, but in no case will the light of heaven be shut out, as both in the galleries and in the covered ways there will be openings for its admission, as well as for that of air, which openings can, however, be closed if the direction of drifting snow be towards them. As the average length of the eight tunnels is only 70 yards, it is obvious that the maximum of darkness in them, while the sun is above the horizon, will be twilight. There will be four intermediate passenger stations—one only first class—at Lanslebourg, the half-way house, and as already mentioned, the place at which the ascent of the Having constructed our line, or rather we should say, having done our possible to make our readers understand how it is constructed, the next obvious proposition is how to work it. Previous to the experiments of 1865, Mr. Fell gave a programme to both the French and Italian Governments of the manner in which he proposed to carry the traffic on the line when opened. Considering that three trains per day in each direction would be sufficient, at all events for the existing traffic, he divided his service into two for passengers, one of which should also carry goods, and one for goods only. The train conveying passengers without goods, should also be the mail train, and he proposed that its weight, exclusive of engine, should not exceed 16 tons. The speed of this train to be about 11½ miles an hour including stoppages; the mixed train to weigh 40 tons, but its speed not to exceed 7 to 8 miles an hour; the goods train to weigh 48 tons, and its speed to be 6 miles an hour. When Mr. Fell submitted these proposals, he estimated a certain weight for each of his engines, and each of his carriages and waggons, but unfortunately the weight of all three has been much exceeded in the construction of the rolling stock. The engines instead of weighing about 17 tons each, as expected, will weigh upwards of 21 tons, and there is a corresponding increase in the weight of the vehicles. The consequence is that although these additional weights do not affect the question as to the power of trains to cross the mountain, it very materially affects a most important point—that of proportion between dead, and paying and productive weight. It is obvious that the problem of adhesion being solved by |