CHAPTER VII.

Previous

HORSES AND ENGINES—CREWE.

The locomotive is like the horse. The latter, with long thin legs and slight frame—at least made so by training—is the race horse. His pace for a length of not more than a mile and a half is at the rate of 25 to 31 miles an hour. The Derby race of 1867 was run by Hermit, the winner, at the rate of 31·4 miles an hour. It was won in three seconds less time, or at the rate of nearly thirty-two miles an hour, in 1866. Since the Derby, Hermit has been “nowhere” in all his races. A first-class hunter will go cross country occasionally at the rate of about twenty miles an hour. A first-class “roadster,” with a weight suitable for his strength, will do fifteen miles, and maintain the pace for an hour. In the latter days of the old mail coach, the four horses galloped nearly the whole of seven miles in about thirty-two minutes, but, as contractors used to say, ” the pace was killing.” On one occasion there was a race between two coaches from Maidstone to London; the distance—from Maidstone to the Bricklayers’ Arms, Dover Road, thirty-six miles—was accomplished by the winner in two hours and three-quarters. Perhaps there is no better road in all England to run a coach race upon—it is undulating slightly all the way; whereas a completely level road is fatiguing to horses. A fast gig-horse, with light weight behind him, will go twelve miles in an hour, and can maintain that pace for at least an hour; but there are many horses in England that, having only to draw “a sulky”—that is, a vehicle for but one person—would easily accomplish fourteen and a half miles in an hour, and some are able to go fifteen. The old posters of former days could go eleven miles at the ordinary scale of pay for the post-boy. Properly “tipped,” he would get over the ground at the rate of twelve, or even thirteen, miles an hour. The Gretna Green pace was fifteen, and sometimes, for the last mile or two, nearly twenty; the object being to distance an enraged father, and to get within the toll-bar, closed against the pursuer at the instant the pursued had passed it. Put at this pace there was ever a risk of converting a marriage-feast into what Mr. Punch tells us all Scotchmen, with eye to main chance, prefer to all other meals—“a gude, mautter-of-fact funeral brickfeast, wie plenty of the whisky aut it.”

An ordinary gig horse will go at the rate of ten miles an hour, and maintain the speed for an hour and a half. Butcher-boys’ horses are wonderful at a spurt; but they could not maintain the pace for any distance. The stately carriage-horses—too highly fed, dressed, and cared for, to go at very high speed—can get over the ground at the rate of ten miles an hour; but they could not continue for any time at that speed. The ordinary carriage-horse, of less breed and mettle, will draw a heavier load, and can get over his nine miles an hour without distress. The large horses in the “unicorns”—the vans of Pickford’s and the other great establishments of the same character—being a cross between the cart and the carriage horse, can draw a less load than a cart horse, but at a speed that averages fully five miles an hour; whereas the cart horse, whilst easily drawing a load of upwards of a ton in weight, could not go any distance, without breaking down, at a higher rate than from three and a half to four miles an hour.

From the foregoing, it will be seen that there is a difference between the ordinary pace of the cart horse and the pace that the race horse can go for a short distance, of twenty-seven miles an hour—that is, the latter can go nearly eight times as fast as the former; but the difference of weight is more striking. A completely exact comparison is not possible, because in one case it is weight carried, in the other weight drawn—say eight stone against one ton and a quarter; one to twenty-five. We believe that the highest speed at which an English horse can draw a vehicle—but then it must be feather-weight and very high wheels—is at the rate of about seventeen miles an hour. The late Mr. Osbaldiston, of sporting memory, had a horse that slightly exceeded it. The American trotting horses of greatest celebrity trot nearly eighteen miles in an hour, and they never break into a gallop. “They are,” said a sporting friend of ours, “taught only to trot; they don’t know how to gallop.”

The difference between the extremes of engines in different classes is not so great as it is with horses; it is, nevertheless, considerable. The express engine, with its driving-wheel of diameter varying from six feet and a half to eight feet, can carry a light load of seventy to ninety tons on a good—that is, a comparatively level—roadway, at the rate of fully fifty miles an hour, and can maintain this pace with perfect safety for a length of 90 to 100 miles, provided she can be supplied with water, as can now be done by means of the trough. Were she with a load behind her, not exceeding three or four carriages, she could, as a matter of performance, and without reference to the question of safety, maintain, without difficulty, a rate of sixty miles an hour. A four-wheeled coupled engine, each of the four wheels being of six feet diameter, and with appropriate dimensions of heating-surface, draws easily 120 to 150 tons, at a running speed of forty miles an hour. An engine, similar in other respects, but with wheels of five and a half feet diameter, could run thirty-five miles an hour with an increase of load of from thirty to fifty tons. “Goods engines” of the most powerful class—that is, six wheels coupled—diameter of wheel four feet, can draw from 300 to 350 tons. This is also the diameter—in some instances it is even smaller—for the heavy engines used to ascend severe gradients.

In England we have no heavier goods engines on the narrow gauge than six-wheeled coupled. Their weight is about thirty-five tons. On the London and North-Western they are only thirty-one tons. Abroad, however, there are some few engines of much greater power. Thus, on the Orleans Railway, there is a ten-wheeled coupled tank locomotive with 19¾-inch cylinders, and 24 inches stroke. It is used principally to overcome a long and heavy gradient near Auvergne. The diameter of its wheels is three feet six inches. The “Steyerdorf,” an Austrian tank engine, which has run about 20,000 miles in the last four years, has ten wheels, six of which are coupled in one coupling, four others, being “bogie” wheels, are coupled together separately. There is also an extremely ingenious intermediate shaft by which the two separate couplings are connected together. All the wheels are of the same diameter—3 feet 3½ inches. The other principal dimensions are, cylinder 18¼ inches, length of stroke 25 inches. This locomotive is principally employed upon a line with very stiff gradients and sharp curves. Its maximum running speed does not exceed thirteen miles an hour.

The Northern of France Company has a few engines of immense power. Passengers between Calais and Paris may have observed them occasionally at stations. Their funnels lay horizontally on the upper surface of the boilers until near their extremities, when they bend upwards; their mouths are thus perpendicular, like the funnels of ordinary engines. The weight of each of these locomotives is nearly forty-five tons, and it is said that they can easily draw loads of 600 tons; but their adoption is not likely to he general. They must be very injurious to the road and very destructive of couplings, &c.

Not content with this weight, the Northern of France Company exhibited in the Paris Exhibition a four-cylinder twelve-wheel tank engine, made by Messrs. Gouin & Co., the weight of which, fully loaded with fuel and water, is 58½ tons. It has 1,920 feet of heating surface.

In 1863, M. Thouvenot, a French engineer, proposed, in a pamphlet published at Lausanne, the construction of a colossal locomotive, the weight of which was to be 82 tons, horse power 582, heating surface 5,512 square feet, estimated consumption of fuel 250 lbs. per mile. This engine was proposed principally with the view to the ascent of mountains by railway; yet the weight of the train was to be less than the weight of the engine—only seventy-four tons. The speed estimated was twelve miles an hour. No such engine has as yet been, or is ever likely to be, constructed.

The earliest passenger locomotive engines were all made with “inside cylinders,” that is engines, the cylinders of which were within the framework. The late Mr. Joseph Locke we believe first introduced “outside” cylinder engines, that is, cylinders outside the framework, and at once visible to the eye. The “Crampton” engines—a great favourite in various parts of the continent, especially on the Northern of France Railway, but never in England—all have outside cylinders. The outside cylinder engine was very popular some twenty years ago, but the tendency of engineers, especially since the introduction of steel-cranks, is to revert to inside cylinders. Even at the Crewe manufacturing shops, where formerly none but outside cylinder engines were built, engines with inside cylinders are now constructed. The same on the Great Eastern, and one or two other lines where outside cylinders were at one time exclusively adopted.

As regards locomotive makers—thirty-six years ago the trade did not exist in Great Britain. The following list comprises the names of about thirty firms and establishments, all actively engaged in the production of railway engines. Some can construct as many as 110 a year (Messrs. Sharp, Brothers, and Messrs. R. Stephenson & Co.), and there is none that cannot produce from twenty-five to thirty; their total capacity is about 1,500 engines per annum. Messrs. Sharp, Stewart & Co., and Beyer, Peacock & Co., of Manchester; Messrs. Robert Stephenson & Co., and R. & W. Hawthorn, at Newcastle; Messrs. Kitson & Co., Manning, Wardle & Co., Hudswell & Clarke, and the Hunslet Engine Company, Leeds; the Avonside Engine Company, at Bristol; Messrs. Hopkins, Gilkes & Co., Middlesboro’; the Canada Works, Birkenhead, now the property of Mr. Thomas Brassey; the Vulcan Foundry, Warrington; Messrs. George England & Co., New Cross, London; Messrs. James Cross & Co., St. Helen’s; Mr. R. Brotherhood, Chippenham; Messrs. Fletcher, Jennings & Co., Whitehaven; Messrs. Hughes & Co., Loughborough; the Yorkshire Engine Company, near Sheffield; the Worcester Engine Company, Worcester. The Steam-Plough Works at Leeds have recently commenced locomotive building, and have already despatched engines for Mexico. The Bridgewater Foundry, near Manchester, has resumed this class of work, and is now making engines for the Brighton Railway. Messrs. Ruston, Proctor & Co., of Lincoln, are now locomotive builders; also the Lilleshall Company. Besides these makers, the railway companies are themselves large constructors of locomotives. The Crewe Works turns out 120 new engines yearly. The Great Western Company make large numbers of engines, both at Swindon and at Wolverhampton; the Midland Company produce many engines at Derby; the Brighton Company make locomotives at Brighton, as do also the South-Eastern at Ashford, the South-Western at Nine Elms, London, and the London, Chatham, and Dover at the Longhedge Works, Battersea. So also do the Caledonian Company at Glasgow, the North-London at Bow, and the Great Southern and Western Company at Inchicore, near Dublin.

The largest locomotive works in Scotland are those of Messrs. Neilson & Co., of Glasgow, and we know, from personal knowledge and experience, that they produce excellent work. The Glasgow Locomotive Works, Glasgow, is also a large establishment, with capacity for very extensive business.

There are no locomotive building firms in Ireland.

The money value of the new locomotives only, turned out each year by these establishments is close upon £4,000,000 sterling. Nearly a third of the locomotives built are sent abroad.

In 1864, the number of locomotives on the German railways was 4,768,574 of which were manufactured abroad; Germany now not only builds her own locomotives, but she sent 1,000 last year to other countries, such as Switzerland, Italy, France, and Russia. The number of engines now used on the railways of Germany is 5,250, of which 340 have to be replaced every year, it being calculated that a locomotive seldom lasts longer than fifteen or sixteen years. The largest of the German factories is that of Borsig, of Berlin, which has built more than 2,000 engines since it was first established in 1841; the two-thousandth engine being the one that was sent to the Paris Exhibition of 1867. As the one-thousandth locomotive of this establishment was completed in 1859, it follows that its producing capacity is about 125 engines a year. Of the others, the principal are that of Maffei, in Bavaria; that of the Austrian railway companies at Vienna; Egerstorff’s, at Hanover; Henschl’s, at Cassel; and the Carlsruhe Factory, which sent its four hundred and fifty-ninth locomotive to the Paris Exhibition.

The great locomotive establishments of France are not more than six in number; those of Messrs. Schneider & Co., at the Creusot Iron Works, of Messrs. Cail & Co., Messrs. Gouin & Co., Messrs. Koechlin & Co., of Mulhouse, the establishments at Five-Lilles, Graffenstadt, and Commentry. Each of the great French railway companies make locomotives. The capacity of construction of all the establishments in France does not exceed 450 engines per annum. Although France is very proud of having exported a dozen engines to England, she is herself a large importer of them, principally from Belgium; and she requires an expansion of at least 50 per cent. of her present locomotive production before she can be independent, for them, of other nations.

The largest locomotive constructing and engineering factory in Belgium is that of the “SocietÉ, John Cockerill,” at Seraing, established in 1834, by our countryman of that name. Mr. Cockerill did not live to see the complete success of the establishment. The other leading locomotive constructing firms in Belgium are those of Messrs. Nicaise & Deleuwe, of LouviÈre; G. Raghens & Sons, of Malines; Messrs. Charles L. Cavels, of Ghent; “Compagnie Belge du Materiel des Chemins de Fer,” at Molenbeek Saint Jean; Thivenet, of Marchienne; Hanrez & Co., of Monceau-upon-Sambre; and A. Detombay & Co., of Marcinelle. The locomotive producing capacity of Belgium is about 600 engines per annum, and it can be easily extended.

Switzerland has one locomotive building factory, which was recently opened at Zurich. Italy, Spain, Russia, and Holland are not locomotive producing countries. About 4,500 engines per annum are now constructed in Europe, but in case of demand at least 2,000 a year more could be produced. Canada and Australia are the only British colonies in which they are made; in the former their first manufacture dates back about twelve years, but it is only in the present year that a commencement has been made of building them in Australia. The first Australian engine was made at Sydney, and others are now in process of construction there.

There are, according to the last Post Office returns, 814 head postal towns in Great Britain, besides at least 4,000 sub-postal towns, boroughs, and villages, scattered all over the kingdom. There are in France no less than 4,361 “Bureaux de Poste et de Distribution,” both major and minor, and, as we have already said at page 144, Monsieur Vandal, in his Annuaire des Postes for 1866, enumerates about 19,000 postal towns in Europe and North America, exclusive of Schindermanderscheid, Oberschindermanderscheid, and Nederschindermanderscheid, which he has omitted to mention. With all these the French Post Office has correspondence more or less direct; so also has that of England. What the number of cities, towns, and villages, may be in the other parts of the world it is impossible to say; but this, at all events, is certain, that there is only one town, one great town, that has been conceived for the locomotive, born for the locomotive, wet-nursed for the locomotive, weaned for the locomotive, breeched for the locomotive, birched for the locomotive, apprenticed for the locomotive; its prima lanugo was for the locomotive; and, finally, prima lanugo has since grown to manhood, and, by the usual metamorphosis, has been converted into bristles, through the locomotive.

Just thirty-three years ago, at the original planning of the Grand Junction Railway, Crewe, which otherwise might have never been more than a road-side station, was fixed upon as the site for the company’s locomotive and carriage establishments. Its locality was convenient, being 42½ miles from Liverpool, and 54½ from Birmingham. Besides, it was at a comparatively poor and unfrequented part of the railway, where land could be—and actually, in the first purchases, was—obtained cheaply. Well, the line was built, the station was opened, and the repairing shops were erected. They were (in the plural number) “parra metu primo,” for it was always the late Mr. Joseph Locke’s habit to build with as much cheapness and economy as were consistent with efficiency and good working. The locomotive and carriage requirements for 97½ miles of railway, with six trains a day in each direction on week days and four on Sundays, added to which were a couple or three goods trains each way on week days, were not great. Therefore, the first erections at Crewe were modest and unpretending.

In process of time Crewe grew, for not only was the Grand Junction married with the London and Birmingham, neither bride nor bridegroom, however, retaining its former name, but each becoming “London and North-Western.” A year or so after celebration of the marriage, Crewe became the junction point of the railway to Manchester; thence afterwards extended in a mystifying net-work of lines over all the manufacturing towns of Cheshire, Lancashire, and Yorkshire. On the left there was the line to Chester, one of the railways constructed by George Stephenson, which, in 1849, was extended, by his son Robert, to Holyhead. The main arterial railway did not, in the first instance, extend farther north from London, than the point where the Liverpool and Manchester Railway bisected it at Newton Junction; but, by degrees, it stretched out to Preston, then to Lancaster, then to Carlisle, and therefrom all over western Scotland. So that the insignificant, almost unknown, Crewe of 1837 had not only become, in 1849, a great centre of traffic of every description, but it was also the workshop, the family residence, when in health, of upwards of 220 engines and tenders, as well as the hospital and place of receptacle for such of them as became sick, halt, or maimed, while working the traffic of what became, at the time of the amalgamation, the northern division of the London and North-Western Railway. The extreme southern point of this division was, and we believe still is, Stafford; at the commencement of the railway—very much like Crewe—an insignificant and unimportant road-side station. In the north, Crewe engines worked as far as Carlisle, westward to Holyhead, and eastward along the mystifying net-work of lines which fertilise Cheshire and its two adjacent manufacturing counties. Upwards of one hundred engines were at work every day; and besides keeping them all in perfect order, the establishment turned out a new engine and tender every Monday morning, commencing on the 1st of January, 1848.

In 1849 the number of men and boys employed in all the shops devoted to engines was 1,600; the weekly wages of each averaged just a pound a week—£1,600. “Close to the entrance of the locomotive department,” says Sir Francis Head, in his “Stokers and Pokers,” “stands, as its primum mobile, the tall chimney of a steam-pump, which, besides supplying the engine that propels the machinery of the workshops, gives an abundance of water to the locomotives, and also to the new railway town of Crewe, containing at present about 8,000 inhabitants. This pump raises about eighty or ninety thousand gallons of water per day from a brook below into filtering-beds, whence it is again raised about forty feet into a large cistern, where it is a second time filtered through charcoal for the supply of the town.”

“After passing through a workshop,” continues Sir Francis, “containing thirty-four planing and slotting machines, in busy but almost silent operation, we entered a smiths’ shop, 260 feet long, containing forty forges all at work. At several of the anvils there were three, and sometimes four strikers, and the quantity of sparks that more or less were exploding from each, the number of sledge-hammers revolving in the air, with the sinewy frames, bare throats and arms of the fine hale men who wielded them, formed altogether a scene well worthy of a few moments’ contemplation. As the heavy work of the department is principally executed in this shop, in which iron is first enlisted and then rather roughly drilled into the service of the company, it might be conceived that the music of the forty anvils at work would altogether be rather noisy in concert. The grave itself, however, could scarcely be more silent than this workshop, in comparison with the one that adjoins it, in which the boilers of the locomotives are constructed. As for asking questions of, or receiving explanations from, the guide who, with motionless lips, conducts the stranger through this chamber, such an effort would be utterly hopeless; for the deafening noise proceeding from the riveting of the bolts and plates of so many boilers is distracting beyond description. We almost fancied that the workmen must be aware of this effect upon a stranger, and that on seeing us enter they welcomed our visit by a special charivari sufficient to awaken the dead. As we hurried through the din, we could not, however, help pausing for a moment before a boiler of copper inside and iron outside, within which there sat crouched up, like a negro between the decks of a slave-ship, an intelligent-looking workman, holding with both hands a hammer against a bolt, on the upper end of which, within a few inches of his ears, two lusty comrades on the outside were hammering with surprising strength and quickness. The noise which reverberated within this boiler, in addition to that which was resounding without, formed altogether a dose which it is astonishing the tympanum of the human ear can receive uninjured; at all events we could not help thinking that if there should happen to exist on earth any man ungallant enough to complain of the occasional admonition of a female tongue, if he will only go by rail to Crewe, and sit in that boiler for half-an-hour, he will most surely never again complain of the chirping of that ‘cricket on his hearth,’ the whispering curtain lectures of his dulce domum.”

It is impossible to follow and narrate, in a work of this description, all the details of manufacture by which the rough masses of iron, steel, copper, and brass become converted into the perfect locomotive. We therefore close these extracts from Sir Francis’ pleasant book, by what he says of the erecting-shop at Crewe, it being remembered that production being now more than double what it was in 1849, the delivery of an engine every three days is its usual amount, and sixteen or eighteen times a-year there is an interval of only two working days between the births of two engines:—

“At the farther end of the line of rails close to the north wall, there appeared a long, low, tortuous mass of black iron-work, without superstructure or wheels, in which the form of an engine-bed in embryo could but very faintly be traced. A little nearer was a similar mass, in which the outline appeared, from some cause or other, to be more distinctly marked; nearer still, the same outline appeared upon wheels. To the next there had been added a boiler and a fire-box, without dome, steam escape, or funnel-pipe. Nearer still, the locomotive engine, in its naked state, appeared in point of form complete, and workmen were here busily engaged in covering the boiler with a garment about half an-inch thick of hair-felt, upon which others were affixing a covering of inch deep plank, over which was to be tightly bound a tarpaulin, the whole to be secured by iron hoops. In the next case the dome of the engine was undergoing a similar toilette, excepting that, instead of a wooden upper garment, it was receiving one of copper. Lastly (it was on a Saturday that we chanced to visit the establishment), there stood, at the head of this list of recruits, a splendid bran-new locomotive engine, completely finished, painted bright green (the varnish was scarcely dry), and in every respect perfectly ready to be delivered over on Monday morning to run its gigantic course. On other rails within the building were tenders in similar states of progress; and, as the eye rapidly glanced down these iron rails, the finished engine and tender immediately before it seemed gradually and almost imperceptibly to dissolve in proportion to its distance, until nothing was left of each but an indistinct and almost unintelligible dreamy vision of black iron-work.”

In 1849 the coach repairing business of the northern division of the company, as well as the locomotive establishments, were at Crewe, but by a recent arrangement all the locomotive staff and material which existed at Wolverton (for it was, until the transfer, both the engine and the carriage repairing establishment of the southern division of the London and North-Western Company) have been removed to Crewe. Wolverton has received the carriage repairing establishment of Crewe, and henceforward its duties will be limited to this service. As regards waggons and all the rolling stock relating to the goods department, a separate establishment has been formed at Earlestown, near the junction station of that name, 187 miles from London. By this arrangement Crewe will shortly be able to turn out some thirty or forty more engines a year, bringing the regular number of engines manufactured up to three a week,—of the money value of fully £7,000.

Let us now give some details of the growth of Crewe in the last nineteen years. In 1849, as has just been stated, 1,600 men and boys were employed there, averaging £1 a week each in wages. At present the number of workmen of all kinds employed, including the locomotive works, the steel works (of which anon), rail making, and “the steam shed,” is about 4,350. It is never at present under 4,300. The wages due to “the hands” each week is £5,050, so that the average per person employed has increased from £1 a week in 1849, to £1. 3s. 3d. at present. In 1849 there were 360 miles “worked” by Crewe. Now the number is 1,328. In 1849 there were about 100 “Crewe engines” in steam daily; now there are from 800 to 850, varying according to the amount of work that has to be gone through.

Among the additional buildings which have very recently been erected is a new repairing shop, capable of accommodating thirty-two engines. It is fitted up with travelling cranes, worked by cord, on the principle invented and employed by Mr. Ramsbottom. Full and interesting particulars of this, and the other machinery now adopted at Crewe, will be found in the Engineer newspaper of February 9th and 16th, 1866, and in Engineering of the 25th of October, 1867.

In addition to the cranes just referred to, one has recently been supplied to the new iron foundry, in which are placed two very large cupolas required for the heaviest castings. This crane is capable of sustaining a weight of thirty tons; a smaller one lifts ten tons. There are also two hydraulic cranes, similar to those invented by Bessemer, for hoisting ingots out of the converting pit at the steel works; also a hoist worked by hydraulic machinery for lifting metal, coke, &c., from the ground floor to the firing stage of the cupolas. In the same range are a brass foundry, millwrights’ shop, carpenters’ shop and saw-mill, the whole covering an area of about 112,000 superficial feet.

Before quitting the subject of locomotive repairs, it must be stated that there are—what on other railways would be called large shops—minor establishments at Carlisle, at Camden, at Edge Hill, near Liverpool, at Longsight, near Manchester, and at Preston. The very heavy repairs, however, which all engines require from time to time are done exclusively at Crewe.

But, besides locomotive work at Crewe on the foregoing gigantic scale, and in all its infinities, the London and North-Western Company decided in 1863 to commence the manufacture not only of rails on the ordinary system, but also upon the new and marvellous process known as the “Bessemer Process,” so called after the name of the distinguished gentleman who is its inventor. Thanks to this process, of which, owing to the scope and character of our work, we can only say a few words, a most important saving in the items of maintenance and renewals, is about to be effected on railways. The Bessemer works at Crewe were opened in September, 1864. The number of men exclusively employed at them is 378, and their wages are £444 a week. In the article of steel rails alone, the works turn out at the rate of 6,000 tons a year, and this is exclusive of the number of steel tires, axles, &c., also manufactured there. This number is increasing daily, owing to the increased economy effected by their introduction.[70] The amount of iron rails also manufactured is about 14,000 tons a year. As renewals of rails are required on those parts of the system where the traffic is heavy and the trains are frequent, iron will be superseded by steel rails. It is probable that, eventually, the latter only will be found on the London and North-Western system. This, however, is not likely to be the case for some years to come. In the meantime, the iron rails constructed at Crewe, being so much superior in quality to those manufactured by the iron masters, will carry the traffic on the less frequented portions of the line, and will cost less for maintenance and renewal than steel rails at their present prices. The cost of their production will, however, no doubt, he greatly diminished in the course of the next three or four years. Mr. Bessemer’s royalties, unless he obtain renewal of his patents, will cease about that period.

But how are the 14,000 men, women, and children, who now constitute the population of modern Crewe, lodged and otherwise provided for? When, in 1849, they numbered 8,000 they were lodged in 514 houses, a number which we expect the Registrar-General would have put his finger upon and objected to—nearly 16 persons in each small habitation. Now, the number of houses is about 2,000, of which 720 belong to the company. They are built along commodious and pleasant streets; well lighted with gas; well Macadamised or paved. As signs of civilisation, there are gay and lively shops, brightly lighted up on winter evenings, replete with modern fashions for the ladies, and, for the rougher sex, there is everything at hand for everyday work, and for Sundays. All the usual signs of civilisation prevail within town boundaries. There are dancing masters and dancing mistresses, music masters, and music teachers of the gentler sex, barrel organs and German bands, occasional theatrical performances by the artistes of the “circuit,” balls, dances, flirtations, marriages and their usual consequences, and, to wind up, there are four lawyers, seven policemen, a weekly newspaper called the Crewe and Nantwich Guardian, and two undertakers! The gentleman who has so kindly furnished us with most of the information herein given respecting modern Crewe, wishes it specially to be noted, that “the undertakers do not make this their sole business, but are also drapers,” a request that we have great pleasure in complying with, adding thereto a hope on our own parts, that the worthy drapers may long find it more profitable to wait upon Crewe living, than to follow it, when dead, to its last resting-place.

In a work published at the commencement of this year by Messrs. Tinsley Brothers, entitled “Some Habits and Customs of the Working Classes, written by a Journeyman Engineer,” the writer alleges that working men cannot write letters for the reason that “they were very good scholars once, only they have forgotten all their education,”—hence it is, continues the author, “they usually regard letter writing as a soul-depressing business fit only for the gloom and involuntary confinement of a wet Sunday.” But this is not the case at Crewe, for we find, by a postal return presented to Parliament in August last, that the Post Office distributes 6,350 letters every week. Of course this number is exclusive of the legion beyond number that the locomotive department receives and sends out “on company’s service.” The service correspondence of the traffic and of the stores departments must also be very considerable. All these letters are conveyed solely by the company’s trains.

Crewe is now even better off, as regards its water supply, than it was in 1849. The whole of it comes, at present, from Whitmore, close by the station of that name, eleven miles from Crewe, where it is pumped out of the red sand-stone into a reservoir. Now, it happens, fortunately, that Whitmore is 580 feet higher than Crewe, so that the water gravitates in pipes laid along the railway, and it is so pure at its journey’s end that it requires no filtering whatever. The consequence is, that not only is there an abundant supply for Crewe Works, but every house in the town is also well furnished. Recently, considerable additional demand has been made on the water supply of the town, owing to the opening of some large and convenient modern baths. These consist of a capacious swimming bath, the cost for which is 2d. each bather. A first-class warm bath at these baths costs sixpence, a second fourpence; but at the baths inferior in point of style and elegance, the price is only 1½d.

Formerly a medical man was appointed to attend the workmen and their families in sickness, or when accidents occurred. Of late years the doctor is no longer provided by the company, as far as sickness is concerned, as the system was found to cause much dissatisfaction, many of the workmen being connected with societies which provided special medical attendance for the members. For accidents, however, an hospital has been erected, the expenses of which are partly defrayed by the railway company, and the medical man appointed by the company still attends to the surgical cases of the men themselves, for which each man pays one half-penny a-week.

The town was governed in 1849 by a council of fifteen members, two-thirds of whom were nominated by the workmen, and one-third by the directors. Now the government is vested in a Local Board of Health consisting, as in the previous arrangement, of fifteen members, who are elected altogether by the ratepayers. The time has not yet arrived, in the opinion of the leading persons in the town, for applying for a Charter of Incorporation; at all events, nothing is thought about it at present.

We have left to the last a brief description of the arrangements which have been made for Divine service, religious instruction, and for moral cultivation and improvement. In 1849 there was only one church at Crewe. It was capable of accommodating about 800 persons. In 1867 the original church had been enlarged, and had become capable of receiving 1,200. In 1865 Mr. George Duncombe, of London, presented an iron church for the use of the inhabitants—a noble act, for which God will for ever bless him and his. But the Parish Church and the iron church having proved inadequate for the number of members of the Established Church who present themselves to hear God’s word, the site for the construction of another church has been secured, and the work will be commenced before the close of the present year.

Besides the Episcopalian churches, there are fourteen places of worship for other denominations—equal to the accommodation of over 4,000 persons. The Town Hall and Mechanics’ Institution is supported by about 400 members. It contains a large reading room, a gymnasium, and a library, which now numbers upwards of 3,000 volumes. In addition, there are several commodious and well lighted class-rooms in which evening classes are held for the higher education of those pupils who are unable to attend the ordinary schools in the day time. The number of such pupils exceeds 150. The drawing class is a branch of the Chester School of Art. The pupils are examined annually by the Government Examiners. There is also a science and art class, a tributary of the South Kensington system.

The Mechanics’ Institution receives a free grant of patent specifications from Government. These are greatly esteemed by the pupils, who have made much use of them during the last few years.

The ordinary schools established by the company, and attached to the Episcopalian Church, have recently been enlarged. The daily attendance of children at them is about 700. The schools belonging to the other denominations of worship are attended daily by over a thousand children.

Crewe boasts of a handsome and substantial market hall, which covers an area of 14,000 superficial feet. Saturday is market day. There was no private manufactory of any description in the town until 1865, when Mr. Compton, of London, established a factory for making up the clothing worn by the company’s servants. Upwards of 250 persons are now employed in it.

At the head of the mighty establishments at Crewe—establishments in which, including men and materials, there is a weekly expenditure of about £20,000—over a million a year—is one man who, if he had been in Egypt, with works not a quarter the size and not half so ably carried out, would have been at least a Bey, more probably a Pacha, in Austria a Count of the Holy Empire; in any other country in the world, except England, with crosses and decorations, the ribbons of which would easily make a charming bonnet of existing dimensions. But in England the earnest, persevering, never-tiring John Ramsbottom is John Ramsbottom—no more. It is true that he has European and Transatlantic reputation, and that he is Fellow and Honorary Fellow of innumerable societies, thus abnegating in his person the latter half of the aphorism that says:—

“Worth makes the man, the want of it the fellow.”

For without the worth he never would have been the fellow. Probably had Mr. Ramsbottom been a Member of Parliament, he might have hereditary honours by this time. But ere long there will be fresh agitation for distribution of seats, notwithstanding the anger of the Quarterly Review of October, 1867, at the “Conservative Surrender.” Then will be the time for Crewe to put forward its claims to have its bone, its sinew, its muscle, its manly vigour, and Titanic power represented. Who more worthy to represent it than the present semi-sovereign prince who sways, with nearly omnipotent power, 157½ miles from the supreme and sovereign authority at Euston? Add Barrow-in-Furness, and then “King Iron” would make his thunder heard in St. Stephens!

Crewe, although pre-eminently the great locomotive city of the empire, is far from being the only one. Next in importance to it is Swindon, at which are located all the great engineering works of the Great Western Company; it is seventy-eight miles from London, on the main line, which leads on the left to Bristol, Exeter, Plymouth, and the whole extreme South-Western parts of England; on the right to Gloucester, and thence to South Wales. The Great Eastern locomotive works are at Stratford, four miles from London; those of the Great Northern at Doncaster, 157 miles. The Midland, the latest addition to the number of railways having their termini in London, have their shops at Derby, 120 miles from London. Crossing the Thames, we find the South-Western locomotive shops at Nine Elms, within half-a-mile of those of the London, Chatham and Dover, at Long Hedge, Battersea. The London, Brighton and South Coast works are at Brighton, fifty-two miles from London. Finally, those of the South-Eastern are at Ashford, the junction point whence, besides the main line to Folkstone and Dover, one branch runs to the left to accommodate Canterbury, Deal, Margate, and Ramsgate, another to the right extends to St. Leonards and Hastings; Ashford is sixty-seven miles from London. The largest railway company in England, the terminus of which is not in London, is the North-Eastern; in mileage it ranks third, being only exceeded by the London and North-Western and the Great Western. Its locomotive shops are at York; those of the Caledonian Company are near Glasgow. The two railway companies of longest dimensions in Ireland, the Great Southern and Western and the Midland Great Western, have their workshops respectively at Inchicore and at Broadstone; both these places are suburbs of Dublin. There are more than 20,000 skilled workmen and their apprentices employed in the engine repairing and constructing factories belonging to the railway companies of the United Kingdom.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page