CHAPTER VII. NATURAL RHYTHM.

Previous

It will be convenient here to introduce all the observations that I have been able to make with regard to the natural rhythm of the MedusÆ. As Dr. Eimer has also made some observations in this connection, before proceeding with the fresh points having relation to this subject, I shall consider those to which he alludes.

In Aurelia aurita, as Dr. Eimer noticed, the rate of the rhythm has a tendency to bear an inverse proportion to the size of the individual. Size, however, is far from being the only factor in determining the differences between the rate of the rhythm of different specimens, the individual variations in this respect being very great even among specimens of the same size. What the other factors in question may be, however, I am unable to suggest.

Dr. Eimer also affirms that the duration of the natural pauses, which in Aurelia habitually alternate with bouts of swimming, bears a direct proportion to the number and strength of the contractions that occurred in the previous bout of swimming. I observed that SarsiÆ are much better adapted than AureliÆ for determining whether any such precise relation obtains; for, in the first place, the strength of the contraction is more uniform, and, in the next place, the alternation of pauses with bouts of swimming is of a more decided character in SarsiÆ than in healthy specimens of AureliÆ. I further observed that in Sarsia no such precise relation did obtain, although in a very general way it is true, as might be expected, that unusually prolonged bouts of swimming were sometimes followed by pauses of unusual duration. As all the observations are very much the same, I shall only quote two of them:—

Sarsia. Sarsia (another specimen).,
Number of
pulsations.
Seconds of
rest.
Number of
pulsations.
Seconds of
rest.
54 90 40 60
20 15 29 90
9 92 32 132
51 40 33 92
38 60 18 59
1 43 8 63
63 45 15 35
1 14 2 85
60 15 11 63
6 50 30 33
38 50 17 81
22 32 19 67
25 12 3 65
56 55 19 36
65 20 41 123
42 15 80 23
35 40 61 150
76 43 45 145
40 120
10 97
14 35

These observations may be taken as samples of others which it would be unnecessary to quote, as it will be seen from the above that there is no precise relation between the number of the pulsations and the duration of the pauses. Nevertheless, that there is a general relation may be seen from some cases in which unusually prolonged pauses occur. The following instance will serve to show this:—

Sarsia (another specimen).
Number of pulsations. Seconds of rest.
38 30
22 35
49 40
30 45
46 20
2 15
24 380
112 20
45 185
894 30
6 45
4 140
2 185
30 210
200 60

In this case, the relation between the long pause of 380 seconds and the subsequent prolonged swimming bout of 112 pulsations is obvious; also, as the latter was then followed by a short pause of twenty seconds and another comparatively short bout of forty-five pulsations, the refreshing influence of the previous 380 seconds rest may be supposed to have been not quite neutralized by the exhausting effect of the foregoing 112 pulsations. At any rate, looking to the general nature of the previous proportions (viz. in their sum 185/211), it is certain that 380/112 leaves a large preponderance in favour of nutrition, which preponderance is not much modified by adding the next succeeding proportion, thus, (380 + 20)/(112 + 45) = 400/157. Consequently, the organism may fairly be supposed to have entered upon the next prolonged period of rest (viz. 185 seconds) with a large balance of reserve power; so that when to this large balance there was added the further accumulation due to the further rest of 185 seconds, we are not surprised to find the next succeeding swimming bout comprising the enormous number of 894 pulsations. But this great expenditure of energy seems to have been somewhat in excess of the energy previously accumulated by the prolonged rest, for this unusual expenditure seems next to have entailed an unusually prolonged period of exhaustion. At any rate, it is plainly observable that the next succeeding proportions are greatly in favour of repose; for it is not until 360 seconds have elapsed, with only twelve pulsations in the interval, that energy enough has been accumulated to cause a moderate bout of thirty pulsations. But next another long and sustained pause of 240 seconds supervenes, and, the animal being now fully refreshed with a large surplus of accumulated energy, the next succeeding swimming bout comprises two hundred pulsations. Lastly, there succeeded sixty seconds of rest, and here the observation terminated.[22]

Effects of Segmentation on the Rhythm.

We have next to consider Dr. Eimer's observations concerning the effects on the rhythm of Aurelia which result on cutting the animal into segments; and here, again, I much regret to say that I cannot wholly agree with this author. He says he found evidence of a very remarkable fact, viz. that by first counting the natural rhythm of an unmutilated Aurelia, and then dividing the animal into two halves, one of these halves into two quarters, and one of these quarters into two eighths; the sum of the contractions performed by these four segments in a given time was equal to the number which had previously been performed in a similar time by the unmutilated animal. And not only so, but the number of contractions which each segment contributed to this sum was a number that stood in direct proportion to the size of the segment; so that the half contracted half as many times, the quarter a quarter as many times, and the eighth parts one-eighth part the number of times that the unmutilated Aurelia had previously contracted in a period of equal duration. I am glad to observe that Dr. Eimer does not regard this rule otherwise than as liable to frequent exception; for, as already observed, I cannot say that my experiments have tended to confirm it. I am only able to say that there is general tendency for the smaller segments of an Aurelia divided in this way to contract less frequently than the larger segments.

It would be tedious and unnecessary to quote any observations in this connection; but as these observations brought out very clearly a fact which I had previously suspected, I may detail one experiment to illustrate this point. The fact in question is, that the potency of the lithocysts in any given segment of a divided Aurelia has more to do with the frequency of its pulsations than has the size of the segment. As previously mentioned, one or more lithocysts may often be observed to be permanently prepotent over the others; and I may here observe that the segmentation experiments just described have shown the converse to be true, viz. that one or more lithocysts are often permanently feebler than the others. Well, if a specimen of Aurelia exhibiting decided prepotency in one or more of its lithocysts be watched for a considerable length of time, so as to be sure that the prepotency is not of a merely temporary character, and if the animal be then divided into segments in such a way that the prepotent lithocysts shall occupy the smaller segments, it may be observed, provided time be left for the tissues to recover, that the segments containing the prepotent lithocysts, notwithstanding their smaller size, contract more frequently than do the larger segments. Conversely, if the larger segments happen to contain feeble lithocysts, their contractions will be but few. I have, indeed, seen cases in which the lithocysts appeared to be quite functionless, so far as the origination of stimuli was concerned.

The following observations were made on a healthy specimen of Aurelia having all its lithocysts in good condition, but prepotency being well marked in the case of one of them, and also, though in a lesser degree, in the case of another. I divided the animal so as to leave one of these two prepotent lithocysts in each of the eighth-part segments, and the next most powerful lithocysts in the quadrant segment. In the following description, I shall call the two eighth-part segments A and B, the former letter designating the segment containing the most powerful lithocyst. The Aurelia before being divided manifested for several hours a very regular and sustained rhythm of thirty-two per minute. After its division, the various segments contracted at the following rates, in one-minute intervals:—

Time after
operation.
Segment 1/2. Segment 1/4. Segment 1/8 A. Segment 1/8 B.
1/2 hour. 20 25 27 15
1 " 20 25 27 15
2 hours. 29 25 27 16
4 " 19 16 27 12

Next morning, the water which contained the segments was somewhat foul, and this, as is always the case, gave rise to abnormally long pauses. This effect was much more marked in the case of some of the segments than in that of others. I therefore observed the segments over five-minute intervals, instead of one-minute intervals as on the previous day. The following is a sample of several observations, all yielding the same general result.

Segment 1/2. Segment 1/4. Segment 1/8 A. Segment 1/8 B.
Number of pulsations. Seconds of rest. No motion
during the
hour of
observation.
Continued
persistently to
contract with
a nearly perfect
rhythm of
78 in the 5
minutes during
the hour
of observation.
Rhythm tolerably
perfect at 78 in
the 5 minutes;
but this was
occasionally
interrupted by
long pauses of
4 or 5 minutes'
duration.
12 120
3 10
2 20
44 130
12 20
73 5 min.
Average rate
14-3/5
per minute.
No motion. Continuous
rhythm at the
rate of 15-3/5
per minute.
Interrupted
rhythm at the
rate of 15-3/5
per minute.

I now transferred all the segments to fresh sea-water, with the following results:—

Rhythm during first quarter of an hour immediately after transference, in five-minute intervals.
Time. Segment 1/2. Segment 1/4. Segment 1/8 A. Segment 1/8 B.
First 5 minutes. 139 (irregular). 0 83 (regular). 20 (irregular).
Second 5 minutes. 0 0 68 " 75 (regular).
Third 5 minutes. 100 (regular). 39 (irregular). 70 " 69 "
Rhythm two hours after transference (five-minute intervals).
Segment 1/2. Segment 1/4. Segment 1/8 A. Segment 1/8 B.
82 (regular). 77 (regular). 70 (regular). 62 (regular).
Rhythm next day (five-minute intervals).
Segment 1/2. Segment 1/4. Segment 1/8 A. Segment 1/8 B.
68 55 17 Dead.

Next day all the segments were dead except the largest one, in which a single lithocyst still continued to discharge at the rate of twenty-four in five minutes.

Now, with regard to these tables, it is to be observed that during the first day the prepotent lithocyst in the eighth-part segment A maintained an undoubted supremacy over all the others, and that the same is true of the comparatively potent lithocysts in the quadrant. (This is not the case with segment B; probably the degree of prepotency of the lithocyst in this case was not sufficient to counteract the antagonistic influence of the small size of the segment.) But next day the supremacy of the small segment A was not so marked; for although its rhythm was more regular in the stale water than was that of the largest segment, its actual number of contractions in a given time was just about equal to that of the largest segment. Again, after transference to fresh sea-water, the balance began to fall on the side of the larger segments; for even the quadrant, which in the stale water had ceased its motions altogether, now held a middle position between that of the half-segment and the prepotent eighth-part segment. On the next day, again, the balance fell decidedly in favour of the larger segments, and the weaker eighth-part segment died. Lastly, next day all the smaller segments were dead.

Hence the principal facts to be gathered from these observations are, that as time goes on the rhythm of all the segments progressively decreases, and that the decrease is more marked in the case of the smaller than in that of the larger segments. This lesser endurance of the smaller segments also finds its expression in their earlier death. Now as these smaller segments started with a greater proportional amount of ganglionic power than the larger segments, their lesser amount of endurance can only, I think, be explained by supposing that the process of starvation proceeds at a rate inversely proportional to the size of the segment, a supposition which is rendered probable if we reflect that the smaller the segment the greater is the proportional area of severed nutrient tubes.[23] And in this connection it is interesting to observe that, although the endurance of the smaller segments was less than that of the larger as regards the deprivation of nutriment, it was greater than that of the larger segments as regards the deprivation of oxygen. This is shown by the greater regularity of the rhythm manifested by the smaller than by the larger segments in the stale water, and the fact is presumably to be accounted for by the consideration that the ganglia in the smaller segments were more potent than those in the larger.

With regard, therefore, to the original point under consideration, I conclude that, although the size of the segments is doubtless one factor in determining the relative frequency of contraction, there are at least two other factors quite as important, viz. the relative potency of the lithocysts, and the length of time that elapses between performing the operation and observing the rhythm. Hence it is that in my experience I have found but very few examples of Dr. Eimer's rule.

Effects of Other Forms of Mutilation on the Rhythm.

The next point I have to dwell upon is one of some interest. If the manubrium of Aurelia, or of any other covered-eyed Medusa, be suddenly cut off at its base, the swimming motions of the umbrella immediately become accelerated. This acceleration, however, only lasts for a few minutes, when it gradually begins to decline, the rate of the rhythm becoming slower and slower, until finally it comes to rest at a rate considerably less than was previously manifested by the unmutilated animal. If a circular piece be now cut out from the centre of the umbrella, the rhythm of the latter again becomes temporarily quickened; but, as before, gradual slowing next supervenes. This slowing, however, proceeds further than in the last case, so that the rate at which the rhythm next becomes stationary is even less than before. If, now, another circular ring be cut from the central part of the umbrella—i.e. if the previously open ring into which this organ had been reduced by the former operation be somewhat narrowed from within—the same effects on the rhythm are again observable; and so on with every repetition of the operation, the rate of the rhythm always being quickened in the first instance, but then gradually slowing down to a point somewhat below the rate it manifested before the previous operation. It will here suffice to quote one experiment among many I have made in this connection:—

An Aurelia manifested a regular and sustained rhythm of 26
Immediately after removal of manubrium, rhythm rose to 36
Rate then gradually fell for a quarter of an hour, and became stationary at 20
Circular incision just including ovaries caused rhythm to rise to 26
After gradual fall during quarter of an hour, rhythm became stationary at 17
Another circular incision carried round midway between the former one and the margin caused rhythm to rise to 24
Rate again gradually declined, and in a quarter of an hour was 12
Another circular incision was carried round as close to the margin as was compatible with leaving the physiological continuity of all the lithocysts intact. Rhythm rose to 14
Within a few minutes it fell to 6

Excepting the cases where the effects of shock are apparent, some such series of phenomena as those just recorded are always sure to ensue when a covered-eyed Medusa is mutilated in the way described, and this kind of mutilation, besides producing such marked effects on the rate of the rhythm, also produces an effect in impairing the regularity of the rhythm. In some specimens the latter effect is more marked than it is in others. The following series of observations will serve to give a good idea of this effect:—

An Aurelia manifested a regular and sustained rhythm of 36. Immediately after the removal of the manubrium, the rate of rhythm in successive minutes was as follows: 40, 39, 37, 35, 32, 30, 29, 26, 24, 18, 14 (40 seconds' pause), 16, 15, 14, 15, 16 (40 seconds' pause), 22, 20, 19, 15, 16, 17, 14, 13, 13, 15, 16, 16, 17, 18, 14, 12, 13, 11, 12, 9, 15, 16, 14, 12, 9, etc., the rhythm now continuing very irregular. An hour after the operation, the following were the number of contractions given in one-minute intervals, the observations being taken at intervals of ten minutes: 15, 15, 12, 22, 14, etc.

In this experiment, therefore, as soon as the acceleration and slowing-stages had been passed, viz. about a quarter of an hour after the operation, a great disturbance was observable in regularity of the rhythm; for before the removal of the manubrium, the Medusa had been swimming for hours with perfect regularity.

Before concluding my description of these experiments, it may perhaps be as well to mention one other, which was designed to meet a possible objection to the inferences which, as I shall immediately argue, these experiments seem to sustain. It occurred to me as a remote possibility that the slowing and irregularity of the rhythm, which are observable about a quarter of an hour after the operations described, might be due to the deprivation of adequate nourishment suffered by the ganglia, in consequence of the escape of nutrient matter from the cut ends of the nutrient tubes. Accordingly, instead of cutting off the manubrium, I tried the effect of momentarily immersing it in hot water, and found that the subsequent disturbances of the rhythm were precisely similar to those which result from removal of the manubrium.

Now, to draw any inferences from such meagre facts as the above would be hazardous, unless we recognize that in so doing our inferences are not trustworthy. But, with this recognition, I think there will be no harm in briefly stating the deductions to which the facts, such as they are, would seem to point.

Physiologists are undecided as to the extent in which many apparently automatic actions may not really be actions of a reflex kind. Given any ganglio-muscular tissue which is rhythmically contracting, how are we to know whether the action of the ganglia is truly automatic, or sustained from time to time by stimuli proceeding from other parts of the organism? In most cases experiments cannot be conducted with reference to this question, but in the case of the MedusÆ they may be so, and it was with the view of throwing light on this question that the experiments just described were made. Now in these experiments the fact is sufficiently obvious that mutilations of any part of the organism modify the rhythm of the marginal ganglia most profoundly. That this modification does not proceed from shock, would seem to be indicated by the facts that the first effect of the mutilation is to quicken the rhythm; that there is a sort of general proportion to be observed between the amount of tissue abstracted and the degree of slowing of the rhythm produced; and that the slowing effects continue for so long a time. All these facts seem to show that we have here something other than mere shock to deal with.

A strong suspicion, therefore, arises that the cause of the slowing of the rhythm which results from removing the manubrium, or a part of the general contractile tissue of the bell, consists in the destruction of some influence of an afferent character which had previously emanated from the parts of the organism which have been removed, and that the normal rhythm before the operation was partly due to a continuous reception, on the part of the ganglia, of this afferent or stimulating influence. In support of this view are the facts that the first effect of such an operation as we are considering is greatly to accelerate the rhythm, and that this acceleration then gradually declines through a period of about a quarter of an hour. These facts tend to support this view, because, if it is correct, they are what we might anticipate. If the manubrium, for instance, while in situ is continually supplying a gentle stimulus to the marginal ganglia, when it is suddenly cut off, the nerve-tracts through which this stimulating influence had previously been conveyed must be cut through; and as it is well known how irritable nerve-fibres are at their points of section, it is to be expected that the irritation caused by cutting these nerve-tracts, and probably also by the action of the sea-water on their cut extremities, would cause them to stimulate the ganglia more powerfully than they did before their mutilation. And here I may state that on several occasions, with vigorous specimens, I have observed a sudden removal of the manubrium to be followed, not merely with a quickening of the rhythm on the part of the bell, but with a violent and long-sustained spasm.

Again, as regards the other fact before us, it is obvious that as soon as the cut extremities of the nerves begin to die down, and so gradually to lose their irritability, the effect on the rhythm would be just what we observe it to be, viz. a gradual slowing till the rate falls considerably below that which was exhibited by the unmutilated animal. And even the irregularity which is at this stage so frequently observable is, I think, what we should expect to find if this view as to the essentially reflex character of the natural rhythm is the true one.

If this view is the true one, the question next arises as to the nature of the process which goes on in the excitable tissues, and which afterwards acts as a stimulus on the ganglionic tissues. This question, however, I am quite unable to answer. Whether the process is one of oxygenation, of chemical changes exerted by the sea-water, or a process of any other kind, further experiments may be able to show; but meanwhile I have no suggestion to offer.

The above experiments led me to try the effects of cutting out a single lithocyst of Aurelia, and, after the rhythm of the detached segment had become regular, progressively paring down the contractile tissues around the ganglion. I found that this process had no very marked effect on the rhythm, until the paring reached within an inch or two of the ganglion: then, however, the effect began to show itself, and with every successive paring it became more marked. This effect consisted in slowing the rate of the rhythm, but more especially in giving rise to prolonged pauses: indeed, if only a very little contractile tissue was left adhering to the ganglion, the pauses often became immensely prolonged, so that one might almost suppose the ganglion to have entirely ceased discharging. But if a stimulus of any kind were then applied, the rhythmic discharges at once recommenced. These generally continued for some little time at a slower rate than that which they had manifested before they were affected by the paring down of the contractile tissue.

Effects of Temperature on the Rhythm.

The effects of temperature on the rhythm of MedusÆ are very decided. For instance, a specimen of Sarsia which in successive minutes gave the following number of pulsations, 16, 26, 0, 0, 26, gave sixty pulsations during the next minute, while a spirit-lamp was held under the water in which the Medusa was swimming. If hot water be added to that in which Sarsia are contained until the whole is about milk-warm, their swimming motions become frantic. If the same experiment be performed after the margins of the SarsiÆ have been removed, the paralyzed bells remain quite passive, while the severed margins exhibit the frantic motions just alluded to.

In the case of Aurelia aurita, the characteristic effects of temperature on rhythm may be better studied than in that of Sarsia, from the fact that the natural motions are more rhythmical and sustained in the former than in the latter genus. I have, therefore, in this connection made more observations on Aurelia than on Sarsia. The following may be taken as a typical experiment.

A small and active specimen of Aurelia contracted with the greatest regularity 33 times per minute in water kept at 34°; but on transference to water kept at 49°, the contractions always became irregular, in respect (a) of not having a perfectly constant rhythm, and (b) of exhibiting frequent pauses, which was never the case in colder water. The rate of rhythm in the warmer water varied from 37 to 49; and as in these observations no allowance was made for the occurrence of the pauses, the actual rate of rhythm during the swimming motions was about 60 per minute. The following are some sample observations in the case of this specimen:—

Temperature of water (Fahr.). Number of pulsations. Seconds of rest.
40° 41 5
" 49 4
Transferred to 34° 33 0
" " 33 0
"" 33 0
"" 33 0
Transferred to 49° 45 4
"" 39 10
"" 37 15
Transferred to 34° 20 0
"" 30 0
"" 33 0
"" 33 0
"" 33 0
"" 33 0

This rate continued quite regularly for a quarter of an hour, when the observation terminated.

It might naturally be supposed that when the alterations of temperature between 34° and 49° produce such marked effects on the rhythm, still greater alterations would be attended with still greater effects. Such, however, is not the case. Water at 70° or 80°, for instance, has the effect of permanently diminishing the rate of the rhythm, after having temporarily raised it for a few seconds. The following experiment will serve to convey a just estimation of these facts.

An Aurelia whose rhythm in water at 40° was very regular at eighteen per minute, was suddenly transferred to water at 80°. In the immediately succeeding minutes the rhythm was 22, 20, 14. The latter rate continued for nearly half an hour, when the observation terminated.

The effect of very warm water, therefore, is to slow the rhythm, as well, I may add, as to enfeeble the vigour of the contractions. The case of MedusÆ thus differs, in the former respect, from that of the heart; and I think the reason of the difference is to be found in the following considerations. Even slight elevations of temperature are quickly fatal to the MedusÆ, so it becomes presumable that considerable elevations act very destructively on the neuro-muscular tissues of those animals. This destructive effect of high temperatures may, therefore, very probably counteract the stimulating effect which such temperatures would otherwise exert on the natural rhythm, and hence a point would somewhere be reached at which the destructive effect would so far overcome the stimulating effect as to slow the rhythm. That this is probably the true, as it certainly is the only explanation to be rendered, will, I think, be conceded when I further state that if an Aurelia be left for some little time in water at 80°, and then again transferred to water at 30° or 40°, its original rate of rhythm at the latter temperature does not again return, but the rhythm remains permanently slowed. And, in favour of the explanation just offered, it may be further pointed out that the first effect of sudden immersion in heated water is to quicken the rhythm, it not being for a few seconds, or for even a minute or two after the immersion, that the rhythm becomes slowed. Lastly, the slowing takes place gradually; and this is what we should expect if, as is probable, the destructive effect takes somewhat more time to become fully developed than does the stimulating effect.

Before leaving the subject of temperature in relation to rhythm, I must say a few words on the effects of cold. The following may be regarded as typical experiments.

An Aurelia presenting a regular rhythm of twenty per minute in water at 45° was placed in water at 19°. Soon after the transference the rhythm began to slow, and the strength of the contractions to diminish. Both these phenomena rapidly became more and more pronounced, till the rhythm fell to ten per minute (still quite regular), and the contractions ceased to penetrate the muscular tissue further than an inch or so from the marginal ganglia. Shortly after this stage pauses became frequent, but mechanical or other irritation always originated a fresh swimming bout. Next, only one very feeble contraction was given at long and irregular intervals, a contraction so feeble that it was restricted to the immediate vicinity of the lithocyst in which it originated. Soon after this stage irritability towards all kinds of stimuli entirely ceased, including even strong spirit dropped on the under surface of the animal when taken momentarily out of the water. All these stages thus described were passed through rapidly, the whole series occupying rather less than five minutes. On now leaving the specimen for ten minutes and then restoring it to its original water at 45°, all the above-mentioned stages were passed through in reverse order. The first faint marginal contraction was confined to the immediate vicinity of the prepotent lithocyst, and all subsequent contractions continued to be so for the next three minutes. Rhythm very slow. Contractions now began to penetrate round the margin, and in eight minutes from the restoration had gone all the way round, the rate of their rhythm meanwhile increasing. In two minutes more all the umbrella was contracting at the rate of fifteen per minute.

In another specimen, subjected to the same conditions, the rate of recovery was even more rapid, occupying only two minutes altogether; but in every case the process of recovery is a gradual one, and differs only in the time it occupies in passing through the various stages.

Effects of Freezing MedusÆ.

In conclusion, I will describe some rather interesting experiments that consisted in freezing some specimens of Aurelia into a solid block of ice. Of course, as sea-water had to be employed, the cold required was very considerable; but I succeeded in turning out the MedusÆ encased on all sides in a continuous block of sea-water. By now immersing this block in warm water, I was able to release the contained specimens, which then presented a very extraordinary appearance. The thick and massive gelatinous bell of a Medusa is, as every one knows, chiefly composed of sea-water, which everywhere enters very intimately into the structure of the tissue. Now, all this sea-water was, of course, frozen in situ, so that the animals were everywhere and in all directions pierced through by an innumerable multitude of ice-crystals, which formed a very beautiful meshwork, pervading the whole substance of their transparent tissues.

These experiments were made in order to ascertain whether the MedusÆ, after having been thus completely frozen, would survive on being again thawed out, and, if so, whether the freezing process would exert any permanent influence on the rate of their rhythm. Now in all the cases the MedusÆ, after having been thawed out, presented a ragged appearance, which was due to the disintegrating effect exerted by the ice-crystals while forming in the tissues; yet notwithstanding this mechanical injury superimposed on the physiological effects of such extreme cold, all the MedusÆ recovered on being restored to sea-water of the normal temperature. The time occupied by the process of recovery varied in different individuals from a few minutes to half an hour or more, and it was observable that those specimens which recovered soonest had the rate of their rhythm least affected by the freezing. In no case, however, that I observed did the rate of the rhythm after the freezing return fully to that which had been manifested before the freezing.

Effects of Certain Gases on the Rhythm.

Oxygen.—I will now conclude my remarks on rhythm by very briefly describing the effects of certain gases. Oxygen forced under pressure into sea-water containing SarsiÆ has the effect of greatly accelerating the rate of their rhythm. The following observation on a single specimen will serve to render this apparent.

Number of pulsations given by Sarsia in successive five-minute intervals.

In ordinary sea-water 472, 527, 470
In oxygenated sea-water 800
In ordinary sea-water 268, 350, 430

It will be seen from this observation that the acceleration of the rhythm due to the oxygenation was most marked; indeed, the pulsations followed one another so rapidly that it was no easy matter to count them. It must also be stated that while the animal was under the influence of oxygen, the duration of the natural pauses between the swimming bouts was greatly curtailed, the swimming motions, in fact, being almost quite continuous throughout the five minutes that the Medusa was exposed to such influence. Lastly, it will be observed from the above table that the unnatural amount of activity displayed by the organism while in the oxygenated water entailed on it a considerable degree of exhaustion, as shown by the fact that even a quarter of an hour after its restoration to normal water its original degree of energy had not quite returned.

Carbonic acid.—As might be expected, this gas has the opposite effects to those of oxygen. It is therefore needless to say more about this agent, except that if administered in large doses it destroys both spontaneity and irritability. Nevertheless, if its action is not allowed to last too long, the MedusÆ will fully recover on being again restored to normal sea-water.

Nitrous oxide.—This gas at first accelerates the motions of Sarsia, but eventually retards them. I omitted, however, to push the experiment to the stage of complete anÆsthesia, which would doubtless have supervened had the pressure of the gas been sufficiently great.

Deficient aËration.—It may now be stated that the MedusÆ are exceedingly sensitive to such slight carbonization of the water in which they are contained as results from their being confined in a limited body of it for a few hours. The rhythm becomes slowed and the contractions feeble, while the pauses between the swimming bouts become more frequent and prolonged. If the water is not changed, all these symptoms become more marked, and, in addition, the rhythm becomes very irregular. Eventually the swimming motions entirely cease; but almost immediately after the animals are restored to normal sea-water, they recover themselves completely, the rate and regularity of their rhythm being then quite natural. The suddenness with which this return to the normal state of things is effected cannot but strike the observer as very remarkable, and I may mention that it takes place with equal suddenness at whatever stage in the above-described process of asphyxiation the transference to normal sea-water is accomplished.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page