CHAPTER IV. Embryology.

Previous

We will next consider what of late years has become the most important of the lines of evidence, not only in favour of the general fact of evolution, but also of its history: I mean the evidence which has been yielded by the newest of the sciences, the science of Embryology. But here, as in the analogous case of adult morphology, in order to do justice to the mass of evidence which has now been accumulated, a whole volume would be necessary. As in that previous case, therefore, I must restrict myself to giving an outline sketch of the main facts.

First I will display what in the language of Paley we may call “the state of the argument.”

It is an observable fact that there is often a close correspondence between developmental changes as revealed by any chronological series of fossils which may happen to have been preserved, and developmental changes which may be observed during the life-history of now existing individuals belonging to the same group of animals. For instance, the successive development of prongs in the horns of deer-like animals, which is so clearly shown in the geological history of this tribe, is closely reproduced in the life-history of existing deer. Or, in other words, the antlers of an existing deer furnish in their development a kind of rÉsumÉ, or recapitulation, of the successive phases whereby the primitive horn was gradually superseded by horns presenting a greater and greater number of prongs in successive species of extinct deer (Fig. 26). Now it must be obvious that such a recapitulation in the life-history of an existing animal of developmental changes successively distinctive of sundry allied, though now extinct species, speaks strongly in favour of evolution. For as it is of the essence of this theory that new forms arise from older forms by way of hereditary descent, we should antecedently expect, if the theory is true, that the phases of development presented by the individual organism would follow, in their main outlines, those phases of development through which their long line of ancestors had passed. The only alternative view is that as species of deer, for instance, were separately created, additional prongs were successively added to their antlers; and yet that, in order to be so added to successive species every individual deer belonging to later species was required to repeat in his own lifetime the process of successive additions which had previously taken place in a remote series of extinct species. Now I do not deny that this view is a possible view; but I do deny that it is a probable one. According to the evolutionary interpretation of such facts, we can see a very good reason why the life-history of the individual is thus a condensed rÉsumÉ of the life-history of its ancestral species. But according to the opposite view no reason can be assigned why such should be the case. In a previous chapter—the chapter on Classification—we have seen that if each species were created separately, no reason can be assigned why they should all have been turned out upon structural patterns so strongly suggestive of hereditary descent with gradual modifications, or slow divergence—the result being group subordinated to group, with the most generalized (or least developed) forms at the bottom, and the highest products of organization at the top. And now we see—or shall immediately see—that this consideration admits of being greatly fortified by a study of the developmental history of every individual organism. If it would be an unaccountable fact that every separately created species should have been created with close structural resemblances to a certain limited number of other species, less close resemblances to certain further species, and so backwards; assuredly it would be a still more unaccountable fact that every individual of every species should exhibit in its own person a history of developmental change, every term of which corresponds with the structural peculiarities of its now extinct predecessors—and this in the exact historical order of their succession in geological time. The more that we think about this antithesis between the naturalistic and the non-naturalistic interpretations, the greater must we feel the contrast in respect of rationality to become; and, therefore, I need not spend time by saying anything further upon the antecedent standing of the two theories in this respect. The evidence, then, which I am about to adduce from the study of development in the life-histories of individual organisms, will be regarded by me as so much unquestionable evidence in favour of similar processes of development in the life-histories of their respective species—in so far, I mean, as the two sets of changes admit of being proved parallel.

Antlers of Stag.
Fig. 26.—Antlers of Stag, showing successive addition of branches in successive years. Drawn from nature (Brit. Mus.).

In the only illustration hitherto adduced—viz. that of deers’ horns—the series of changes from a one-pronged horn to a fully developed arborescent antler, is a series which takes place during the adult life of the animal; for it is only when the breeding age has been attained that horns are required to appear. But seeing that every animal passes through most of the phases of its development, not only before the breeding age has been attained, but even before the time of its own birth, clearly the largest field for the study of individual development is furnished by embryology. For instance, there is a salamander which differs from most other salamanders in being exclusively terrestrial in its habits. Now, the young of this salamander before their birth are found to be furnished with gills, which, however, they are never destined to use. Yet these gills are so perfectly formed, that if the young salamanders be removed from the body of their mother shortly before birth, and be then immediately placed in water, the little animals show themselves quite capable of aquatic respiration, and will merrily swim about in a medium which would quickly drown their own parent. Here, then, we have both morphological and physiological evidence pointing to the possession of gills by the ancestors of the land salamander.

It would be easy to devote the whole of the present chapter to an enumeration of special instances of the kinds thus chosen for purposes of illustration; but as it is desirable to take a deeper, and therefore a more general view of the whole subject, I will begin at the foundation, and gradually work up from the earliest stages of development to the latest. Before starting, however, I ask the reader to bear in mind one consideration, which must reasonably prevent our anticipating that in every case the life-history of an individual organism should present a full recapitulation of the life-history of its ancestral line of species. Supposing the theory of evolution to be true, it must follow that in many cases it would have been more or less disadvantageous to a developing type that it should have been obliged to reproduce in its individual representatives all the phases of development previously undergone by its ancestry—even within the limits of the same family. We can easily understand, for example, that the waste of material required for building up the useless gills of the embryonic salamanders is a waste which, sooner or later, is likely to be done away with; so that the fact of its occurring at all is in itself enough to show that the change from aquatic to terrestrial habits on the part of this species must have been one of comparatively recent occurrence. Now, in as far as it is detrimental to a developing type that it should pass through any particular ancestral phases of development, we may be sure that natural selection—or whatever other adjustive causes we may suppose to have been at work in the adaptation of organisms to their surroundings—will constantly seek to get rid of this necessity, with the result, when successful, of dropping out the detrimental phases. Thus the foreshortening of developmental history which takes place in the individual lifetime may be expected often to take place, not only in the way of condensation, but also in the way of excision. Many pages of ancestral history may be recapitulated in the paragraphs of embryonic development, while others may not be so much as mentioned. And that this is the true explanation of what embryologists term “direct” development—or of a more or less sudden leap from one phase to another, without any appearance of intermediate phases—is proved by the fact that in some cases both direct and indirect development occur within the same group of organisms, some genera or families having dropped out the intermediate phases which other genera or families retain.


The argument from embryology must be taken to begin with the first beginning of individual life in the ovum. And, in order to understand the bearings of the argument in this its first stage, we must consider the phenomena of reproduction in the simplest form which these phenomena are known to present.

The whole of the animal kingdom is divided into two great groups, which are called the Protozoa and the Metazoa. Similarly, the whole of the vegetable kingdom is divided into the Protophyta and the Metaphyta. The characteristic feature of all the Protozoa and Protophyta is that the organism consists of a single physiological cell, while the characteristic of all the Metazoa and Metaphyta is that the organism consists of a plurality of physiological cells, variously modified to subserve different functions in the economy of the animal or plant, as the case may be. For the sake of brevity, I shall hereafter deal only with the case of animals (Protozoa and Metazoa); but it may throughout be understood that everything which is said applies also to the case of plants (Protophyta and Metaphyta).

A ProtozoÖn (like a Protophyton) is a solitary cell, or a “unicellular organism,” while a MetazoÖn (like a Metaphyton) is a society of cells, or a “multicellular organism.” Now, it is only in the multicellular organisms that there is any observable distinction of sex. In all the unicellular organisms the phenomena of reproduction appear to be more or less identical with those of growth. Nevertheless, as these phenomena are here in some cases suggestively peculiar, I will consider them more in detail.

A ProtozoÖn is a single corpuscle of protoplasm which in different species of Protozoa varies in size from more than one inch to less than 1/1000 of an inch in diameter. In some species there is an enveloping cortical substance; in other species no such substance can be detected. Again, in most species there is a nucleus, while in other species no such differentiation of structure has hitherto been observed. Nevertheless, from the fact that the nucleus occurs in the majority of Protozoa, coupled with the fact that the demonstration of this body is often a matter of extreme difficulty, not only in some of the Protozoa where it has been but recently detected, but also in the case of certain physiological cells elsewhere,—from these facts it is not unreasonable to suppose that all the Protozoa possess a nucleus, whether or not it admits of being rendered visible by histological methods thus far at our disposal. If this is the case, we should be justified in saying, as I have said, that a ProtozoÖn is an isolated physiological cell, and, like cells in general, multiplies by means of what Spencer and HÄckel have aptly called a process of discontinuous growth. That is to say, when a cell reaches maturity, further growth takes place in the direction of a severance of its substance—the separated portion thus starting anew as a distinct physiological unit. But, notwithstanding the complex changes which have been more recently observed to take place in the nucleus of some Protozoa prior to their division, the process of multiplication by division may still be regarded as a process of growth, which differs from the previous growth of the individual cell in being attended by a severance of continuity. If we take a suspended drop of gum, and gradually add to its size by allowing more and more gum to flow into it, a point will eventually be reached at which the force of gravity will overcome that of cohesion, and a portion of the drop will fall away from the remainder. Here we have a rough physical simile, although of course no true analogy. In virtue of a continuous assimilation of nutriment, the protoplasm of a cell increases in mass, until it reaches the size at which the forces of disruption overcome those of cohesion—or, in other words, the point at which increase of size is no longer compatible with continuity of substance. Nevertheless, it must not be supposed that the process is thus merely a physical one. The phenomena which occur even in the simplest—or so-called “direct"—cell-division, are of themselves enough to prove that the process is vital, or physiological; and this in a high degree of specialization. But so, likewise, are all processes of growth in organic structures; and therefore the simile of the drop of gum is not to be regarded as a true analogy: it serves only to indicate the fact that when cell-growth proceeds beyond a certain point cell-division ensues. The size to which cells may grow before they thus divide is very variable in different kinds of cells; for while some may normally attain a length of ten or twelve inches, others divide before they measure 1/1000 of an inch. This, however, is a matter of detail, and does not affect the general physiological principles on which we are at present engaged.

Now, as we have seen, a ProtozoÖn is a single cell; for even although in some of the higher forms of protozoal life a colony of cells may be bound together in organic connexion, each of these cells is in itself an “individual,” capable of self-nourishment, reproduction, and, generally, of independent existence. Consequently, when the growth of a ProtozoÖn ends in a division of its substance, the two parts wander away from each other as separate organisms. (Fig. 27.)

Fission of a ProtozoÖn.
Fig. 27.—Fission of a ProtozoÖn. In the left-hand drawing the process is represented as having advanced sufficiently far to have caused a division and segregation both of the nucleus and the vesicle. In the right-hand drawing the process is represented as complete. n, N, severed nucleus; vc, severed vesicle; ps, pseudopodia; f, ingested food.

The next point we have to observe is, that in all cases where a cell or a ProtozoÖn multiplies by way of fissiparous division, the process begins in the nucleus. If the nucleus divides into two parts, the whole cell will eventually divide into two parts, each of which retains a portion of the original nucleus, as represented in the above figure. If the nucleus divides into three, four, or even, as happens in the development of some embryonic tissues, into as many as six parts, the cell will subdivide into a corresponding number, each retaining a portion of the nucleus. Therefore, in all cases of fissiparous division, the seat or origin of the process is the nucleus.

Thus far, then, the phenomena of multiplication are identical in all the lowest or unicellular organisms, and in the constituent cells of all the higher or multicellular. And this is the first point which I desire to make apparent. For where the object is to prove a continuity between the phenomena of growth and reproduction, it is of primary importance to show—1st, that there is such a continuity in the case of all the unicellular organisms, and, 2nd, that there are all the above points of resemblance between the multiplication of cells in the unicellular and in the multicellular organisms.

It remains to consider the points of difference, and, if possible, to show that these do not go to disprove the doctrine of continuity which the points of resemblance so forcibly indicate.

The first point of difference obviously is, that in the case of all the multicellular organisms the two or more “daughter-cells,” which are produced by division of the “mother-cell,” do not wander away from one another; but, as a rule, they continue to be held in more or less close apposition by means of other cells and binding membranes,—with the result of giving rise to those various “tissues,” which in turn go to constitute the material of “organs.” I cannot suppose, however, that any advocate of discontinuity will care to take his stand at this point. But, if any one were so foolish as to do so, it would be easy to dislodge him by describing the state of matters in some of the Protozoa where a number of unicellular “individuals” are organically united so as to form a “colony.” These cases serve to bridge this distinction between Protozoa and Metazoa, of which therefore we may now take leave.

In the second place, there is the no less obvious distinction that the result of cell-division in the Metazoa is not merely to multiply cells all of the same kind: on the contrary, the process here gives rise to as many different kinds of cells as there are different kinds of tissue composing the adult organism. But no one, I should think, is likely to oppose the doctrine of continuity on the ground of this distinction. For the distinction is clearly one which must necessarily arise, if the doctrine of continuity between unicellular and multicellular organisms be true. In other words, it is a distinction which the theory of evolution itself must necessarily pre-suppose, and therefore it is no objection to the theory that its pre-supposition is realized. Moreover, as we shall see better presently, there is no difficulty in understanding why this distinction should have arisen, so soon as it became necessary (or desirable) that individual cells, when composing a “colony,” should conform to the economic principle of the division of labour—a principle, indeed, which is already foreshadowed in the constituent parts of a single cell, since the nucleus has one set of functions and its surrounding protoplasm another.

But now, in the third place, we arrive at a more important distinction, and one which lies at the root of the others still remaining to be considered. I refer to sexual propagation. For it is a peculiarity of the multicellular organisms that, although many of them may likewise propagate themselves by other means (Fig. 28), they all propagate themselves by means of sexual congress. Now, in its essence, sexual congress consists in the fusion of two specialized cells (or, as now seems almost certain, of the nuclei thereof), so that it is out of such a combination that the new individual arises by means of successive cell-divisions, which, beginning in the fertilized ovum, eventually build up all the tissues and organs of the body.

Hydra viridis.
Fig. 28.—Hydra viridis, partly in section. M, mouth; O, ovary, or bud containing female reproductive cells; T, testis, or bud containing male reproductive cells. In addition to these buds containing germinal elements alone, there is another which illustrates the process of “gemmation"—i. e. the direct out-growth of a fully formed offspring.

This process clearly indicates very high specialization on the part of germ-cells. For we see by it that although these cells when young resemble all other cells in being capable of self-multiplication by binary division (thus reproducing cells exactly like themselves), when older they lose this power; but, at the same time, they acquire an entirely new and very remarkable power of giving rise to a vast succession of many different kinds of cells, all of which are mutually correlated as to their several functions, so as to constitute a hierarchy of cells—or, to speak literally, a multicellular co-organization. Here it is that we touch the really important distinction between the Protozoa and the Metazoa; for although I have said that some of the higher Protozoa foreshadow this state of matters in forming cell-colonies, it must now be noted that the cells composing such colonies are all of the same kind; and, therefore, that the principle of producing different kinds of cells which, by mutual co-adaptation of functions, shall be capable of constructing a multicellular MetazoÖn,—this great principle of co-organization is but dimly nascent in the cell-colonies of Protozoa. And its marvellous development in the Metazoa appears ultimately to depend upon the highly specialized character of germ-cells. Even in cases where multicellular organisms are capable of reproducing their kind without the need of any preceding process of fertilization (parthenogenesis), and even in the still more numerous cases where complete organisms are budded forth from any part of their parent organism (gemmation, Fig. 28), there is now very good reason to conclude that these powers of a-sexual reproduction on the part of multicellular organisms are all ultimately due to the specialized character of their germ-cells. For in all these cases the tissues of the parent, from which the budding takes place, were ultimately derived from germ-cells—no matter how many generations of budded organisms may have intervened. And that propagation by budding, &c., in multicellular organisms is thus ultimately due to their propagation by sexual methods, seems to be further shown by certain facts which will have to be discussed at some length in my next volume. Here, therefore, I will mention only one of them—and this because it furnishes what appears to be another important distinction between the Protozoa and the Metazoa.

In nearly all cases where a ProtozoÖn multiplies itself by fission, the process begins by a simple division of the nucleus. But when a MetazoÖn is developed from a germ-cell, although the process likewise begins by a division of the nucleus, this division is not a simple or direct one; on the contrary, it is inaugurated by a series of processes going on within the nucleus, which are so enormously complex, and withal so beautifully ordered, that to my mind they constitute the most wonderful—if not also the most suggestive—which have ever been revealed by microscopical research. It is needless to say that I refer to the phenomena of karyokinesis. A few pages further on they will be described more fully. For our present purposes it is sufficient to give merely a pictorial illustration of their successive phases; for a glance at such a representation serves to reveal the only point to which attention has now to be drawn—namely, the immense complexity of the processes in question, and therefore the contrast which they furnish to the simple (or “direct") division of the nucleus preparatory to cell-division in the unicellular organisms. Here, then (Fig. 29), we see the complex processes of karyokinesis in the first two stages of egg-cell division. But similar processes continue to repeat themselves in subsequent stages; and this, there is now good reason to believe, throughout all the stages of cell-division, whereby the original egg-cell eventually constructs an entire organism. In other words, all the cells composing all the tissues of a multicellular organism, at all stages of its development, are probably originated by these complex processes, which differ so much from the simple process of direct division in the unicellular organisms[9]. In this important respect, therefore, it does at first sight appear that we have a distinction between the Protozoa and the Metazoa of so pronounced a character, as fairly to raise the question whether cell-division is fundamentally identical in unicellular and in multicellular organisms.

Stages in the division of the ovum of a worm.
Fig. 29.—Successive stages in the division of the ovum, or egg-cell, of a worm. (After Strasburger.) a to d show the changes taking place in the nucleus and surrounding cell-contents, which result in the first segmentation of the ovum at e; f and g show a repetition of these changes in each of the two resulting cells, leading to the second segmentation stage at h.

Lastly, the only other distinction of a physiologically significant kind between a single cell when it occurs as a ProtozoÖn and when it does so as the unfertilized ovum of a MetazoÖn is, that in the latter case the nucleus discharges from its own substance two minute protoplasmic masses ("polar bodies"), which are then eliminated from the cell altogether. This process, which will be more fully described later on, appears to be of invariable occurrence in the case of all egg-cells, while nothing resembling it has ever been observed in any of the Protozoa.

We must now consider these several points of difference seriatim.

First, with regard to sexual propagation, we have already seen that this is by no means the only method of propagation among the multicellular organisms; and it now remains to add that, on the other hand, there is, to say the least, a suggestive foreshadowing of sexual propagation among the unicellular organisms. For although simple binary fission is here the more usual mode of multiplication, very frequently two (rarely three or more) Protozoa of the same species come together, fuse into a single mass, and thus become very literally “one flesh.” This process of “conjugation” is usually (though by no means invariably) followed by a period of quiescent “encystation"; after which the contents of the cyst escape in the form of a number of minute particles, or “spores,” and these severally develope into the parent type. Obviously this process of conjugation, when it is thus a preliminary to multiplication, appears to be in its essence the same as fertilization. And if it be objected that encystation and spore-formation in the Protozoa are not always preceded by conjugation, the answer would be that neither is oviparous propagation in the Metazoa invariably preceded by fertilization.

Nevertheless, that there are great distinctions between true sexual propagation and this foreshadowing of it in conjugation I do not deny. The question, however, is whether they be so great as to justify any argument against an historical continuity between them. What, then, are these remaining distinctions? Briefly, as we have seen, they are the extrusion from egg-cells of polar bodies, and the occurrence, both in egg-cells and their products (tissue-cells), of the process of karyokinesis. But, as regards the polar bodies, it is surely not difficult to suppose that, whatever their significance may be, it is probably in some way or another connected with the high specialization of the functions which an egg-cell has to discharge. Nor is there any difficulty in further supposing that, whatever purpose is served by getting rid of polar bodies, the process whereby they are got rid of was originally one of utilitarian development—i. e. a process which at its commencement did not betoken any difference of kind, or breach of continuity, between egg-cells and cells of simpler constitution.

Lastly, with respect to karyokinesis, although it is true that the microscope has in comparatively recent years displayed this apparently important distinction between unicellular and multicellular organisms, two considerations have here to be supplied. The first is, that in some of the Protozoa processes very much resembling those of karyokinesis have already been observed taking place in the nucleus preparatory to its division. And although such processes do not present quite the same appearances as are to be met with in egg-cells, neither do the karyokinetic processes in tissue-cells, which in their sundry kinds exhibit great variations in this respect. Moreover, even if such were not the case, the bare fact that nuclear division is not invariably of the simple or direct character in the case of all Protozoa, is sufficient to show that the distinction now before us—like the one last dealt with—is by no means absolute. As in the case of sexual propagation, so in that of karyokinesis, processes which are common to all the Metazoa are not wholly without their foreshadowings in the Protozoa. And seeing how greatly exalted is the office of egg-cells—and even of tissue-cells—as compared with that of their supposed ancestry in protozoal cells, it seems to me scarcely to be wondered at if their specializations of function should be associated with corresponding peculiarities of structure—a general fact which would in no way militate against the doctrine of evolution. Could we know the whole truth, we should probably find that in order to endow the most primitive of egg-cells with its powers of marshalling its products into a living army of cell-battalions, such an egg-cell must have been passed through a course of developmental specialization of so elaborate a kind, that even the complex processes of karyokinesis are but a very inadequate expression thereof.

Probably I have now said enough to show that, remarkable and altogether exceptional as the properties of germ-cells of the multicellular organisms unquestionably show themselves to be, yet when these properties are traced back to their simplest beginnings in the unicellular organisms, they may fairly be regarded as fundamentally identical with the properties of living cells in general. Thus viewed, no line of real demarcation can be drawn between growth and reproduction, even of the sexual kind. The one process is, so to speak, physiologically continuous with the other; and hence, so far as the pre-embryonic stage of life-history is concerned, the facts cannot fairly be regarded as out of keeping with the theory of evolution. I will now pass on to consider the embryogeny of the Metazoa, beginning at its earliest stage in the fertilization of the ovum. And here it is that the constructive argument in favour of evolution which is derived from embryology may be said properly to commence. For it is surely in itself a most suggestive fact that all the Metazoa begin their life in the same way, or under the same form and conditions. Omne vivum ex ovo. This is a formula which has now been found to apply throughout the whole range of the multicellular organisms. And seeing, as we have just seen, that the ovum is everywhere a single cell, the formula amounts to saying that, physiologically speaking, every MetazoÖn begins its life as a ProtozoÖn, and every Metaphyton as a Protophyton[10].

Now, if the theory of evolution is true, what should we expect to happen when these germ-cells are fertilized, and so enter upon their severally distinct processes of development? Assuredly we should expect to find that the higher organisms pass through the same phases of development as the lower organisms, up to the time when their higher characters begin to become apparent. If in the life-history of species these higher characters were gained by gradual improvement upon lower characters, and if the development of the higher individual is now a general recapitulation of that of its ancestral species, in studying this recapitulation we should expect to find the higher organism successively unfolding its higher characters from the lower ones through which its ancestral species had previously passed. And this is just what we do find. Take, for example, the case of the highest organism, Man. Like that of all other organisms, unicellular or multicellular, his development starts from the nucleus of a single cell. Again, like that of all the Metazoa and Metaphyta, his development starts from the specially elaborated nucleus of an egg-cell, or a nucleus which has been formed by the fusion of a male with a female element[11]. When his animality becomes established, he exhibits the fundamental anatomical qualities which characterize such lowly animals as polyps and jelly-fish. And even when he is marked off as a Vertebrate, it cannot be said whether he is to be a fish, a reptile, a bird, or a beast. Later on it becomes evident that he is to be a Mammal; but not till later still can it be said to which order of mammals he belongs.

Here, however, we must guard against an error which is frequently met with in popular expositions of this subject. It is not true that the embryonic phases in the development of a higher form always resemble so many adult stages of lower forms. This may or may not be the case; but what always is the case is, that the embryonic phases of the higher form resemble the corresponding phases of the lower forms. Thus, for example, it would be wrong to suppose that at any stage of his development a man resembles a jelly-fish. What he does resemble at an early stage of his development is the essential or groundplan of the jelly-fish, which that animal presents in its embryonic condition, or before it begins to assume its more specialized characters fitting it for its own particular sphere of life. The similarities, therefore, which it is the function of comparative embryology to reveal are the similarities of type or morphological plan: not similarities of specific detail. Specific details may have been added to this, that, and the other species for their own special requirements, after they had severally branched off from the common ancestral stem; and so could not be expected to recur in the life-history of an independent specific branch. The comparison therefore must be a comparison of embryo with embryo; not of embryos with adult forms.


In order to give a general idea of the results thus far yielded by a study of comparative embryology in the present connexion, I will devote the rest of this chapter to giving an outline sketch of the most important and best established of these results.

Histologically the ovum, or egg-cell, is nearly identical in all animals, whether vertebrate or invertebrate. Considered as a cell it is of large size, but actually it is not more than 1/100, and may be less than 1/200 of an inch in diameter. In man, as in most mammals, it is about 1/120. It is a more or less spherical body, presenting a thin transparent envelope, called the zona pellucida, which contains—first, the protoplasmic cell-substance or “yolk,” within which lies, second, the nucleus or germinal vesicle, within which again lies, third, the nucleolus or germinal spot. This description is true of the egg-cells of all animals, if we add that in the case of the lowest animals—such as sponges, &c.—there is no enveloping membrane: the egg-cell is here a naked cell, and its constituent protoplasm, being thus unconfined, is free to perform protoplasmic movements, which it does after the manner, and with all the activity, of an amoeba. But even with respect to this matter of an enveloping membrane, there is no essential difference between an ovum of the lowest and an ovum of the highest animals. For in their early stages of development within the ovary the ova of the highest animals are likewise in the condition of naked cells, exhibiting amoebiform movements; the enveloping membrane of an ovum being the product of a later development. Moreover this membrane, when present, is usually provided with one or more minute apertures, through which the spermatozoÖn passes when fertilizing the ovum. It is remarkable that the spermatozoa know, so to speak, of the existence of these gate-ways,—their snake-like movements being directed towards them, presumably by a stimulus due to some emanation therefrom[12]. In the mammalian ovum, however, these apertures are exceedingly minute, and distributed all round the circumference of the pellucid envelope, as represented in this illustration (Fig. 32).

In thus saying that the ova of all animals are, so far as microscopes can reveal, substantially similar, I am of course speaking of the egg-cell proper, and not of what is popularly known as the egg. The egg of a bird, for example, is the egg-cell, plus an enormous aggregation of nutritive material, an egg-shell, and sundry other structures suited to the subsequent development of the egg-cell when separated from the parent’s body. But all these accessories are, from our present point of view, accidental or adventitious. What we have now to understand by the ovum, the egg, or the egg-cell, is the microscopical germ which I have just described. So far then as this germ is concerned, we find that all multicellular organisms begin their existence in the same kind of structure, and that this structure is anatomically indistinguishable from that of the permanent form presented by the lowest, or unicellular organisms. But although anatomically indistinguishable, physiologically they present the sundry peculiarities already mentioned.

Now I have endeavoured to show that none of these peculiarities are such as to exclude—or even so much as to invalidate—the supposition of developmental continuity between the lowest egg-cells and the highest protozoal cells. It remains to show in this place, and on the other hand, that there is no breach of continuity between the lowest and the highest egg-cells; but, on the contrary, that the remarkable uniformity of the complex processes whereby their peculiar characters are exhibited to the histologist, is such as of itself to sustain the doctrine of continuity in a singularly forcible manner. On this account, therefore, and also because the facts will again have to be considered in another connexion when we come to deal with Weismann’s theory of heredity, I will here briefly describe the processes in question.

Polar bodies in the ovum of a star-fish.
Fig. 33.—Stages in the formation of the polar bodies in the ovum of a star-fish. (After Hertwig.) g.v., germinal vesicle transformed into a spindle-shaped system of fibres; p.', the first polar body becoming extruded; p., p., both polar bodies fully extruded; f. pn., female pronucleus, or residue of the germinal vesicle.

We have already seen that the young egg-cell multiplies itself by simple binary division, after the manner of unicellular organisms in general—thereby indicating, as also by its amoebiform movements, its fundamental identity with such organisms in kind. But, as we have likewise seen, when the ovum ceases to resemble these organisms, by taking on its higher degree of functional capacity, it is no longer able to multiply itself in this manner. On the contrary, its cell-divisions are now of an endogenous character, and result in the formation of many different kinds of cells, in the order required for constructing the multicellular organism to which the whole series of processes eventually give rise. We have now to consider these processes seriatim.

Fertilization of the ovum of an echinoderm.
Fig. 34.—Fertilization of the ovum of an echinoderm. (From Quain’s Anatomy, after Selenka.) S, spermatozoÖn; m. pr., male pronucleus; f. pr., female pronucleus. 1 to 4 correspond to D to G in the next figure.

First of all the nucleus discharges its polar bodies, as previously mentioned, and in the manner here depicted on the previous page. (Fig. 33.) It will be observed that the nucleus of the ovum, or the germinal vesicle as it is called, gets rid first of one and afterwards of the other polar body by an “indirect,” or karyokinetic, process of division. (Fig. 33.) Extrusion of these bodies from the ovum (or it may be only from the nucleus) having been accomplished, what remains of the nucleus retires from the circumference of the ovum, and is called the female pronucleus. (Fig. 33. f. pn.) The ovum is now ready for fertilization. A similar emission of nuclear substance is said by some good observers to take place also from the male germ-cell, or spermatozoÖn, at or about the close of its development. The theories to which these facts have given rise will be considered in future chapters on Heredity.

Turning now to the mechanism of fertilization, the diagrams (Figs. 34, 35) represent what happens in the case of star-fish.

Fertilization of the ovum of a star-fish.
Fig. 35.—Fertilization of the ovum of a star-fish. (From the Encycl. Brit. after Fol.) A, spermatozoa in the mucilaginous coat of the ovum; a prominence is rising from the surface of the ovum towards a spermatozoÖn; B, they have almost met; C, they have met; D, the spermatozoÖn enters the ovum through a distinct opening; H, the entire ovum, showing extruded polar bodies on its upper surface, and the moving together of the male and female pronuclei; E, F, G, meeting and coalescence of the pronuclei.

The sperm-cell, or spermatozoÖn, is seen in the act of penetrating the ovum. In the first figure it has already pierced the mucilaginous coat of the ovum, the limit of which is represented by a line through which the tail of the spermatozoÖn is passing: the head of the spermatozoÖn is just entering the ovum proper. It may be noted that, in the case of many animals, the general protoplasm of the ovum becomes aware, so to speak, of the approach of a spermatozoÖn, and sends up a process to meet it. (Fig. 35, A, B, C.) Several—or even many—spermatozoa may thus enter the coat of the ovum; but normally only one proceeds further, or right into the substance of the ovum, for the purpose of effecting fertilization. This spermatozoÖn, as soon as it enters the periphery of the yolk, or cell-substance proper, sets up a series of remarkable phenomena. First, its own head rapidly increases in size, and takes on the appearance of a cell-nucleus: this is called the male pronucleus. At the same time its tail begins to disappear, and the enlarged head proceeds to make its way directly towards the nucleus of the ovum which, as before stated, is now called the female pronucleus. The latter in its turn moves towards the former, and when the two meet they fuse into one mass, forming a new nucleus. Before the two actually meet, the spermatozoÖn has lost its tail altogether; and it is noteworthy that during its passage through the protoplasmic cell-contents of the ovum, it appears to exercise upon this protoplasm an attractive influence; for the granules of the latter in its vicinity dispose themselves around it in radiating lines. All these various phenomena are depicted in the above wood-cuts. (Figs. 34, 35.)

Fertilization having been thus effected by fusion of the male and female pronuclei into a single (or new) nucleus, this latter body proceeds to exhibit complicated processes of karyokinesis, which, as before shown, are preliminary to nuclear division in the case of egg-cells. Indeed the karyokinetic process may begin in both the pronuclei before their junction is effected; and, even when their junction is effected, it does not appear that complete fusion of the so-called chromatin elements of the two pronuclei takes place. For the purpose of explaining what this means, and still more for the purpose of giving a general idea of the karyokinetic processes as a whole, I will quote the following description of them, because, for terseness combined with lucidity, it is unsurpassable.

Karyokinesis of a typical tissue-cell (epithelium of Salamander).
Fig. 36.—Karyokinesis of a typical tissue-cell (epithelium of Salamander). (After Flemming and Klein.) The series from A to I represents the successive stages in the movement of the chromatin fibres during division, excepting G, which represents the “nucleus-spindle” of an egg-cell. A, resting nucleus; D, wreath-form; E, single star, the loops of the wreath being broken; F, separation of the star into two groups of U-shaped fibres; H, diaster or double star; I, completion of the cell-division and formation of two resting nuclei. In G the chromatin fibres are marked a, and correspond to the “equatorial plate"; b, achromatin fibres forming the nucleus-spindle; c, granules of the cell-protoplasm forming a “polar star.” Such a polar star is seen at each end of the nucleus-spindle, and is not to be confused with the diaster H, the two ends of which are composed of chromatin.

Researches, chiefly due to Flemming, have shown that the nucleus in very many tissues of higher plants and animals consists of a capsule containing a plasma of “achromatin,” not deeply stained by re-agents, ramifying in which is a reticulum of “chromatin” consisting of fibres which readily take a deep stain. (Fig. 36, A). Further it is demonstrated that, when the cell is about to divide into two, definite and very remarkable movements take place in the nucleus, resulting in the disappearance of the capsule and in the arrangement of its fibres first in the form of a wreath (D), and subsequently (by the breaking of the loops formed by the fibres) in the form of a star (E). A further movement within the nucleus leads to an arrangement of the broken loops in two groups (F), the position of the open ends of the broken loops being reversed as compared with what previously obtained. Now the two groups diverge, and in many cases a striated appearance of the achromatin substance between the two groups of chromatin loops is observable (H). In some cases (especially egg-cells) this striated arrangement of the achromatin is then termed a “nucleus-spindle,” and the group of chromatin loops (G, a) is known as “the equatorial plate.” At each end of the nucleus-spindle in these cases there is often seen a star consisting of granules belonging to the general protoplasm of the cell (G, c). These are known as “polar stars.” After the separation of the two sets of loops (H) the protoplasm of the general substance of the cell becomes constricted, and division occurs, so as to include a group of chromatin loops in each of the two fission products. Each of these then rearranges itself together with the associated chromatin into a nucleus such as was present in the mother cell to commence with (I)[13].

Since the above was published, however, further progress has been made. In particular it has been found that the chromatin fibres pass from phase D to phase F by a process of longitudinal splitting (Fig. 37 g, h; Fig. 38, VI, VII)—which is a point of great importance for Weismann’s theory of heredity,—and that the protoplasm outside the nucleus seems to take as important a part in the karyokinetic process as does the nuclear substance. For the so-called “attraction-spheres” (Fig. 38 II a, III, III a, VIII to XII), which were at first supposed to be of subordinate importance in the process as a whole, are now known to take an exceedingly active part in it (see especially IX to XI). Lastly, it may be added that there is a growing consensus of authoritative opinion, that the chromatin fibres are the seats of the material of heredity, or, in other words, that they contain those essential elements of the cell which endow the daughter-cells with their distinctive characters. Therefore, where the parent-cell is an ovum, it follows from this view that all hereditary qualities of the future organism are potentially present in the ultra-microscopical structure of the chromatin fibres.

Successive changes in the nucleus of an epithelium cell, preparatory to division of the cell.
Fig. 37.—Study of successive changes taking place in the nucleus of an epithelium cell, preparatory to division of the cell. (From Quain’s Anatomy, after Flemming.) a, resting cell, showing the nuclear network; b, first stage of division, the chromatoplasm transformed into a skein of closely contorted filaments; c to f, further stages in the growth and looping arrangement of the filaments; g, stellate phase, or aster; h, completion of the splitting of the filaments, already begun in f and g; i, j, k, successive stages in separation of the filaments into two groups; l, the final result of this (diaster); m to q, stages in the division of the whole cell into two, showing increasing contortion of the filaments, until they reach the resting stage at q.
Formation and conjugation of the pronuclei in Ascaris megalocephala.

Fig. 38.—Formation and conjugation of the pronuclei in Ascaris megalocephala. (From Quain’s Anatomy, after E. von Beneden.) f, female pronucleus; m, male pronucleus; p, one of the polar bodies.

I. The second polar body has just been extruded; both male and female pronuclei contain two chromatin particles; those of the male pronucleus are becoming transformed into a skein. II. The chromatin in both pronuclei now forms into a skein.

II a. The skeins are more distinct. Two attraction (or protoplasmic) spheres, each with a central particle united with a small spindle of achromatic fibres, have made their appearance in the general substance of the egg close to the mutually approaching pronuclei. The male pronucleus has the remains of the body of the spermatozoÖn adhering to it.

III. Only the female pronucleus is shown in this figure. The skein is contracted and thickened. The attraction-spheres are near one side of the ovum, and are connected with its periphery by a cone of fibres forming a polar circle, p.c.; e.c., equatorial circle.

III a. The pronuclei have come into contact, and the spindle-system is now arranged across their common axis.

IV. Contraction of the skein, and formation of two U-or V-shaped chromatin fibres in each pronucleus.

V. The V-shaped chromatin filaments are now quite distinct: the male and female pronuclei are in close contact.

Previous figure continued.

VI., VII. The V-shaped filaments are splitting longitudinally; their structure of fine granules of chromatin is apparent in VII., which is more highly magnified. The conjugation of the pronuclei is apparently complete in VII. The attraction-spheres and achromatic spindle, although present, are not depicted in IV., V., VI., and VII.

VIII. Equatorial arrangement of the four chromatin loops in the middle of the now segmenting ovum: the achromatic substance forming a spindle-shaped system of granules with fibres radiating from the poles of the spindle (attraction-spheres); the chromatin forms an equatorial plate. (Compare Fig. 36 G.)

IX. Shows diagrammatically the commencing separation of the chromatin fibres of the conjugated nuclei, and the system of fibres radiating from the attraction-spheres. (Compare again Fig. 36 G.) p.c., polar circle; e.c., equatorial circle; c.c., central particle.

X. Further separation of the chromatin filaments. Each of the central particles of the attraction-spheres has divided into two.

XI. The chromatin fibres are becoming developed into the skeins of the two daughter-nuclei. These are still united by fibres of achromatin. The general protoplasm of the ovum is becoming divided.

XII. The two daughter-nuclei exhibit a chromatin network. Each of the attraction-spheres has divided into two, which are joined by fibres of achromatin, and connected with the periphery of the cell in the same way as in the original or parent sphere, III.

As I shall have more to say about these processes in the next volume, when we shall see the important part which they bear in Weismann’s theory of heredity, it is with a double purpose that I here introduce these yet further illustrations of them upon a somewhat larger scale. The present purpose is merely that of showing, more clearly than hitherto, the great complexity of these processes on the one hand, and, on the other, the general similarity which they display in egg-cells and in tissue-cells. But as in relation to this purpose the illustrations speak for themselves, I may now pass on at once to the history of embryonic development, which follows fertilization of the ovum.


We have seen that when the new nucleus of the fertilized ovum (which is formed by a coalescence of the male pronucleus with the female) has completed its karyokinetic processes, it is divided into two equal parts; that these are disposed at opposite poles of the ovum; and that the whole contents of the ovum are thereupon likewise divided into two equal parts, with the result that there are now two nucleated cells within the spherical wall of the ovum where before there had only been one. Moreover, we have also seen that a precisely similar series of events repeat themselves in each of these two cells, thus giving rise to four cells (see Fig. 29). It must now be added that such duplication is continued time after time, as shown in the accompanying illustrations (Figs. 39, 40).

Segmentation of ovum.
Fig. 39.—Segmentation of ovum. (After HÄckel.) Successive stages are marked by the letters A, B, C. D represents several stages in advance of C.

All The contents of an ovum in an advanced stage of segmentation. Fig. 40.—The contents of an ovum in an advanced stage of segmentation, drawn in perspective. (After HÄckel.) this, it will be noticed, is a case of cell-multiplication, which differs from that which takes place in the unicellular organisms only in its being invariably preceded (as far as we know) by karyokinesis, and in the resulting cells being all confined within a common envelope, and so in not being free to separate. Nevertheless, from what has already been said, it will also be noticed that this feature makes all the difference between a MetazoÖn and a ProtozoÖn; so that already the ovum presents the distinguishing character of a MetazoÖn. I have dealt thus at considerable length upon the processes whereby the originally unicellular ovum and spermatozoÖn become converted into the multicellular germ, because I do not know of any other exposition of the argument from Embryology where this, the first stage of the argument, has been adequately treated. Yet it is evident that the fact of all the processes above described being so similar in the case of sexual (or metazoal) reproduction among the innumerable organisms where it occurs, constitutes in itself a strong argument in favour of evolution. For the mechanism of fertilization, and all the processes which even thus far we have seen to follow therefrom, are hereby shown to be not only highly complex, but likewise highly specialized. Therefore, the remarkable similarity which they present throughout the whole animal kingdom—not to speak of the vegetable—is expressive of organic continuity, rather than of absolute discontinuity in every case, as the theory of special creation must necessarily suppose. And it is evident that this argument is strong in proportion to the uniformity, the specialization, and the complexity of the processes in question.

Having occupied so much space with supplying what appear to me the deficiencies in previous expositions of the argument from Embryology, I can now afford to take only a very general view of the more important features of this argument as they are successively furnished by all the later stages of individual development. But this is of little consequence, seeing that from the point at which we have now arrived previous expositions of the argument are both good and numerous. The following then is to be regarded as a mere sketch Of the evidences of phyletic (or ancestral) evolution, which are so abundantly furnished by all the subsequent phases of ontogenetic (or individual) evolution.

Formation of the gastrula of Amphioxus.
Fig. 41.—Formation of the gastrula of Amphioxus. (After Kowalevsky.) A, wall of the ovum, composed of a single layer of cells; B, a stage in the process of gastrulation; C, completion of the process; S, original or segmentation cavity of ovum; al, alimentary cavity of gastrula; ect, outer layer of cells; ent, inner layer of cells; b, orifice, constituting the mouth in permanent forms.

The multicellular body which is formed by the series of segmentations above described is at first a sphere of cells (Fig. 40). Soon, however, a watery fluid gathers in the centre, and progressively pushes the cells towards the circumference, until they there constitute a single layer. The ovum, therefore, is now in the form of a hollow sphere containing fluid, confined within a continuous wall of cells (Fig. 41 A). The next thing that happens is a pitting in of one portion of the sphere (B). The pit becomes deeper and deeper, until there is a complete invagination of this part of the sphere—the cells which constitute it being progressively pushed inwards until they come into contact with those at the opposite pole of the ovum. Consequently, instead of a hollow sphere of cells, the ovum now becomes an open sac, the walls of which are composed of a double layer of cells (C). The ovum is now what has been called a gastrula; and it is of importance to observe that probably all the Metazoa pass through this stage. At any rate it has been found to occur in all the main divisions of the animal kingdom, as a glance at the accompanying figures will serve to show (Fig. 42)[14]. Moreover many of the lower kinds of Metazoa never pass beyond it; but are all their lives nothing else than gastrulÆ, wherein the orifice becomes the mouth of the animal, the internal or invaginated layer of cells the stomach, and the outer layer the skin. So that if we take a child’s india-rubber ball, of the hollow kind with a hole in it, and push in one side with our fingers till internal contact is established all round, by then holding the indented side downwards we should get a very fair anatomical model of a gastrÆa form, such as is presented by the adult condition of many of the most primitive Metazoa—especially the lower Coelenterata. The preceding figures represent two other such forms in nature, the first locomotive and transitory, the second fixed and permanent (Figs. 43, 44).

Gastrulation.
Fig. 42.—Gastrulation. A, Gastrula of a Zoophyte (Gastrophysema). (After HÄckel.) B, Gastrula of a Worm (Sagitta). (After Kowalevsky.) C, Gastrula of an Echinoderm (Uraster). (After A. Agassiz.) D, Gastrula of an Arthropod (Nauplius). (After HÄckel.) E, Gastrula of a Mollusk (LimnÆus). (After Rabl.) F, Gastrula of a Vertebrate (Amphioxus). (After Kowalevsky.) In all, d, indicates the intestinal cavity; o, the primitive mouth; s, the cleavage-cavity; i, the endoderm, or intestinal layer; e, the ectoderm or skin-layer.
Gastrula of a Chalk Sponge.
Fig. 43.—Gastrula of a Chalk Sponge. (After HÄckel.) A, External view. B, Longitudinal section. g, digestive cavities; o, mouth; i, endoderm; e, ectoderm.
Prophysema primordiale, an extant gastrÆa-form.
Fig. 44.—Prophysema primordiale, an extant gastrÆa-form. (After HÄckel.) (A). External view of the whole animal, attached by its foot to seaweed. (B). Longitudinal section of the same. The digestive cavity (d) opens at its upper end in the mouth (m). Among the cells of the endoderm (g) lie amoeboid egg-cells of large size (e). The ectoderm (h) is encrusted with grains of sand, above the sponge spicules.

Here, then, we leave the lower forms of Metazoa in their condition of permanent gastrulÆ. They differ from the transitory stage of other Metazoa only in being enormously larger (owing to greatly further growth, without any further development as to matters of fundamental importance), and in having sundry tentacles and other organs added later on to meet their special requirements. The point to remember is, that in all cases a gastrula is an open sac composed of two layers of cells—the outer layer being called the ectoderm, and the inner the endoderm. They have also been called the animal layer and the vegetative layer, because it is the outer layer (ectoderm) that gives rise to all the organs of sensation and movement—viz. the skin, the nervous system, and the muscular system; while it is the inner layer (endoderm) that gives rise to all the organs of nutrition and reproduction. It is desirable only further to explain that gastrulation does not take place in all the Metazoa after exactly the same plan. In different lines of descent various and often considerable modifications of the original and most simple plan have been introduced; but I will not burden the present exposition by describing these modifications[15]. It is enough for us that they always end in the formation of the two primary layers of ectoderm and endoderm.

The next stage of differentiation is common to all the Metazoa, except those lowest forms which, as we Have just seen, remain permanently as large gastrulÆ, with sundry specialized additions in the way of tentacles, &c. This stage of differentiation consists in the formation of either a pouch or an additional layer between the ectoderm and the endoderm, which is called the mesoderm. It is probably in most cases derived from the endoderm, but the exact mode of its derivation is still somewhat obscure. sometimes it has the appearance of itself constituting two layers; but it is needless to go into these details; for in any case the ultimate result is the same—viz. that of converting the metazoÖn into the form of a tube, the walls of which are composed of concentric layers of cells. The outermost layer afterwards gives rise to the epidermis with its various appendages, and also to the central nervous system with its organs of special sense. The median layer gives rise to the voluntary muscles, bones, cartilages, &c., the nutritive systems of the blood, the chyle, the lymph, and the muscular tube of the intestine. lastly, the innermost layer developes into the epithelium lining of the intestine, with its various appendages of liver, lungs, intestinal glands, &c.

I have just said that this three or four layered stage is shared by all the Metazoa, except those very lowest forms—such as sponges and jelly-fish—which do not pass on to it. But from this point the developmental histories of all the main branches of the Metazoa diverge—the Vermes, the Echinodermata, the Mollusca, the Articulata, and the Vertebrata, each taking a different road in their subsequent evolution. I will therefore confine attention to only one of these several roads or methods, namely, that which is followed by the Vertebrata—observing merely that, if space permitted, the same principles of progressive though diverging histories of evolution would equally well admit of being traced in all the other sub-kingdoms which have just been named.

Ideal primitive vertebrate, seen from the left side.
Fig. 45.—Ideal primitive vertebrate, seen from the left side. (After HÄckel.) na, nose; au, eye; g, ear; md, mouth; ks, gill-openings; x, notochord; mr, spinal tube; kg, gill-vessels; k, gill-intestine; hz, heart; ms, muscles; ma, stomach; v, intestinal vein; c, body-cavity; a, aorta; l, liver; d, small intestine; e, ovary; h, testes; n, kidney canal; af, anus; lh, true or leather-skin; oh, outer-skin (epidermis); f, skin-fold, acting as a fin.

In order to trace these principles in the case of the Vertebrata, it is desirable first of all to obtain an idea of the anatomical features which most essentially distinguish the sub-kingdom as a whole. Fig. 46.—The same in transverse section through the ovaries; lettering as in the preceding Fig. Fig. 46.—The same in transverse section through the ovaries; lettering as in the preceding Fig. The following, then, is what may be termed the ideal plan of vertebrate organization, as given by Prof. HÄckel. First, occupying the major axis of body we perceive the primitive vertebral column. The parts lying above this axis are those which have been developed from the ectoderm and mesoderm—viz. voluntary muscles, central nervous system, and organs of special sense. The parts lying below this axis are for the most part those which have been developed from the endoderm—namely, the digestive tract with its glandular appendages, the circulating system and the respiratory system. In transverse section, therefore, the ideal vertebrate consists of a solid axis, with a small tube occupied by the nervous system above, and a large tube, or body-cavity, below. This body-cavity contains the viscera, breathing organs, and heart, with its prolongations into the main blood-vessels of the organism. Lastly, on either side of the central axis are to be found large masses of muscle—two on the dorsal and two on the ventral. As yet, however, there are no limbs, nor even any bony skeleton, for the primitive vertebral column is hitherto unossified cartilage. This ideal animal, therefore, is to all appearance as much like a worm as a fish, and swims by means of a lateral undulation of its whole body, assisted, perhaps, by a dorsal fin formed out of skin.

Amphioxus lanceolatus.
Fig. 47.—Amphioxus lanceolatus. (After HÄckel.) a, anus; au, eye; b, ventral muscles; c, body-cavity; ch, notochord; d, intestine; do and du, dorsal and ventral walls of intestine; f, fin-seam; h, skin; k, gills; ka, gill-artery; lb, liver; lv, liver-vein; m 1, brain-bladder; m 2, spinal marrow; mg, stomach; o, mouth; p, ventral pore; r, dorsal muscle; s, tail-fin; t, aorta; v, intestinal vein; x, boundary between gill-intestine and stomach-intestine; y, hypobranchial groove.

Now I should not have presented this ideal representation of a primitive vertebrate—for I have very little faith in the “scientific use of the imagination” where it aspires to discharge the functions of a Creator in the manufacture of archetypal forms—I say I should not have presented this ideal representative of a primitive vertebrate, were it not that the ideal is actually realized in a still existing animal. For there still survives what must be an immensely archaic form of vertebrate, whose anatomy is almost identical with that of the imaginary type which has just been described. I allude, of course, to Amphioxus, which is by far the most primitive or generalized type of vertebrated animal hitherto discovered. Indeed, we may say that this remarkable creature is almost as nearly allied to a worm as it is to a fish. For it has no specialized head, and therefore no skull, brain, or jaws: it is destitute alike of limbs, of a centralized heart, of developed liver, kidneys, and, in short, of most of the organs which belong to the other Vertebrata. It presents, however, a rudimentary backbone, in the form of what is called a notochord. Now a primitive dorsal axis of this kind occurs at a very early period of embryonic life in all vertebrated animals; but, with the exception of Amphioxus, in all other existing Vertebrata this structure is not itself destined to become the permanent or bony vertebral column. On the contrary, it gives way to, or is replaced by, this permanent bony structure at a later stage of development. Consequently, it is very suggestive that so distinctively embryonic a structure as this temporary cartilaginous axis of all the other known Vertebrata should be found actually persisting to the present day as the permanent axis of Amphioxus. In many other respects, likewise, the early embryonic history of other Vertebrata refers us to the permanent condition of Amphioxus. In particular, we must notice that the wall of the neck is always perforated by what in Amphioxus are the gill-openings, and that the blood-vessels as they proceed from the heart are always distributed in the form of what are called gill-arches, adapted to convey the blood round or through the gills for the purpose of aeration. In all existing fish and other gill-breathing Vertebrata, this arrangement is permanent. It is likewise met with in a peculiar kind of worm, called Balanoglossus—a creature so peculiar, indeed, that it has been constituted by Gegenbaur a class all by itself. We can see by the wood-cuts that it presents a series of gill-slits, like the homologous parts of the fishes with which it is compared—i. e. fishes of a comparatively low type of organization, which dates from a time before the development of external gills. (Figs. 48, 49, 50.) Now, as I have already said, these gill-slits are supported internally by the gill-arches, or the blood-vessels which convey the blood to be oxygenized in the branchial apparatus (see below, Figs. 51, 52, 53); and the whole arrangement is developed from the anterior part of the intestine—as is likewise the respiratory mechanism of all the gill-breathing Vertebrata. That so close a parallel to this peculiar mechanism should be met with in a worm, is a strong additional piece of evidence pointing to the derivation of the Vertebrata from the Vermes.

Balanoglossus. Fig. 48.—Balanoglossus. (After A. Agassiz.) r, proboscis; h, collar; k, gill-slits; d, digestive posterior intestine; v, intestinal vessel; a, anus.
A large Sea-lamprey (Petromyzon marinus) Fig. 49.—A large Sea-lamprey (Petromyzon marinus), much reduced in size. (After Cuvier and HÄckel.) A series of seven gill-slits are visible.
Adult Shark (Carcharias melanopterus). Fig. 50—Adult Shark (Carcharias melanopterus). (After Cuvier and HÄckel.)
Heart and gill-arches of a fish.
Fig. 51.—Diagram of heart and gill-arches of a fish. (After Owen.)
One gill-arch, with branchial fringe attached.
Fig. 52.—One gill-arch, with branchial fringe attached. (After Owen.) H, Heart.
Heart and gill-arches in a lizard.
Fig. 53.—Diagram of heart and gill-arches in a lizard. (After Owen.) The gill-arches, a a' a'', and b b' b'', are called aortic arches in air-breathing vertebrata.

Well, I have just said that in all the gill-breathing Vertebrata, this mechanism of gill-slits and vascular gill-arches in the front part of the intestinal tract is permanent. But in the air-breathing Vertebrata such an arrangement would obviously be of no use. Consequently, the gill-slits in the sides of the neck (see Figs. 16 and 57, 58), and the gill-arches of the large blood-vessels (Figs. 54, 55, 56), are here exhibited only as transitory phases of development. But as such they occur in all air-breathing Vertebrata. And, as if to make the homologies as striking as possible, at the time when the gill-slits and the gill-arches are developed in the embryonic young of air-breathing Vertebrata, the heart is constructed upon the fish-like type. That is to say, it is placed far forwards, and, from having been a simple tube as in Worms, is now divided into two chambers, as in Fish. Later on it becomes progressively pushed further back between the developing lungs, while it progressively acquires the three cavities distinctive of Amphibia, and finally the four cavities belonging only to the complete double circulation of Birds and Mammals. Moreover, it has now been satisfactorily shown that the lungs of air-breathing Vertebrata, which are thus destined to supersede the function of gills, are themselves the modified swim-bladder or float, which belongs to Fish. Consequently, all these progressive modifications in the important organs of circulation and respiration in the air-breathing Vertebrata, together make up as complete a history of their aquatic pedigree as it would be possible for the most exacting critic to require.

Ideal diagram of primitive gill- or aortic-arches.
Fig. 54.—Ideal diagram, of primitive gill- or aortic-arches. (After Rathke.) H, outline of heart. The arrows show the course of the blood.
The same, modified for a bird.
Fig. 55.—The same, modified for a bird. (After Le Conte.) The dark lines show the aortic arches which persist. A, aorta; p, pulmonary arches; SC, S'C', sub-clavian; C, C', carotids.
The same, modified for a mammal.
Fig. 56.—The same, modified for a mammal. (After Le Conte.)
A series of embryos of the classes of vertebrated animals below the Mammalia
Fig. 57.—A series of embryos at three comparable and progressive stages of development (marked I, II, III), representing each of the classes of vertebrated animals below the Mammalia (After HÄckel.)
Another series of embryos representing four different divisions of the class Mammalia.
Fig. 58.—Another series of embryos, also at three comparable and progressive stages of development (marked I, II, III), representing four different divisions of the class Mammalia. (After HÄckel.)

If space permitted, it would be easy to present abundance of additional evidence to the same effect from the development of the skeleton, the skull, the brain, the sense-organs, and, in short, of every constituent part of the vertebrate organization. Even without any anatomical dissection, the similarity of all vertebrated embryos at comparable stages of development admits of being strikingly shown, if we merely place the embryos one beside the other. Here, for instance, are the embryos of a fish, a salamander, a tortoise, a bird, and four different mammals. In each case three comparable stages of development are represented. Now, if we read the series horizontally, we can see that there is very little difference between the eight animals at the earliest of the three stages represented—all having fish-like tails, gill-slits, and so on. In the next stage further differentiation has taken place, but it will be observed that the limbs are still so rudimentary that even in the case of Man they are considerably shorter than the tail. But in the third stage the distinctive characters are well marked.


So much then for an outline sketch of the main features in the embryonic history of the Vertebrata. But it must be remembered that the science of comparative embryology extends to each of the other three great branches of the tree of life, where these take their origin, through the worms, from the still lower, or gastrÆa, forms. And in each of these three great branches—namely, the Echinodermata, the Mollusca, and the Arthropoda—we have a repetition of just the same kind of evidence in favour of continuous descent, with adaptive modification in sundry lines, as that which I have thus briefly sketched in the case of the Vertebrata. The roads are different, but the method of travelling is the same. Moreover, when the embryology of the Worms is closely studied, the origin of these different roads admits of being clearly traced. So that when all this mass of evidence is taken together, we cannot wonder that evolutionists should now regard the science of comparative embryology as the principal witness to their theory.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page