CHAPTER III. Morphology.

Previous

The theory of evolution supposes that hereditary characters admit of being slowly modified wherever their modification will render an organism better suited to a change in its conditions of life. Let us, then, observe the evidence which we have of such adaptive modifications of structure, in cases where the need of such modification is apparent. We may begin by again taking the case of the whales and porpoises. The theory of evolution infers, from the whole structure of these animals, that their progenitors must have been terrestrial quadrupeds of some kind, which gradually became more and more aquatic in their habits. Now the change in the conditions of their life thus brought about would have rendered desirable great modifications of structure. These changes would have begun by affecting the least typical—that is, the least strongly inherited—structures, such as the skin, claws, and teeth. But, as time went on, the adaptation would have extended to more typical structures, until the shape of the body would have become affected by the bones and muscles required for terrestrial locomotion becoming better adapted for aquatic locomotion, and the whole outline of the animal more fish-like in shape. This is the stage which we actually observe in the seals, where the hind legs, although retaining all their typical bones, have become shortened up almost to rudiments, and directed backwards, so as to be of no use for walking, while serving to complete the fish-like taper of the body. (Fig. 2.) But in the whales the modification has gone further than this so that the hind legs have ceased to be apparent externally, and are only represented internally—and even this only in some species—by remnants so rudimentary that it is difficult to make out with certainty the homologies of the bones; moreover, the head and the whole body have become completely fish-like in shape. (Fig. 3.) But profound as are these alterations, they affect only those parts of the organism which it was for the benefit of the organism to have altered, so that it might be adapted to an aquatic mode of existence. Thus the arm, which is used as a fin, still retains the bones of the shoulder, fore-arm, wrist, and fingers, although they are all enclosed in a fin-shaped sack, so as to render them useless for any purpose other than swimming (Fig. 4.) Similarly, the head, although it so closely resembles the head of a fish in shape, still retains the bones of the mammalian skull in their proper anatomical relations to one another; but modified in form so as to offer the least possible resistance to the water. In short, it may be said that all the modifications have been effected with the least possible divergence from the typical mammalian type, which is compatible with securing so perfect an adaptation to a purely aquatic mode of life.

Now I have chosen the case of the whale and porpoise group, because they offer so extreme an example of profound modification of structure in adaptation to changed conditions of life. But the same thing may be seen in hundreds and hundreds of other cases. For instance, to confine our attention to the arm, not only is the limb modified in the whale for swimming, but in another mammal—the bat—it is modified for flying, by having the fingers enormously elongated and overspread with a membranous web.

Paddle of Whale compared with Hand of Man.
Fig. 4.—Paddle of Whale compared with Hand of Man. Drawn from nature (R. Coll. Surg. Mus.).

In birds, again, the arm is modified for flight in a wholly different way—the fingers here being very Short and all run together, while the chief expanse of the wing is composed of the shoulder and fore-arm. In frogs and lizards, again, we find hands more like our own; but in an extinct species of flying reptile the modification was extreme, the wing having been formed by a prodigious elongation of the fifth finger, and a membrane spread over it and the rest of the hand. (Fig. 5.) lastly, in serpents the hand and arm have disappeared altogether.

Wing of Reptile, Mammal, and Bird.
Fig. 5.—Wing of Reptile, Mammal, and Bird. Drawn from nature (Brit. Mus.).

Thus, even if we confine our attention to a single organ, how wonderful are the modifications which it is seen to undergo, although never losing its typical character. Everywhere we find the distinction between homology and analogy which was explained in the last chapter—the distinction, that is, between correspondence of structure and correspondence of function. On the one hand, we meet with structures which are perfectly homologous and yet in no way analogous: the structural elements remain, but are profoundly modified so as to perform wholly different functions. On the other hand, we meet with structures which are perfectly analogous, and yet in no way homologous: totally different structures are modified to perform the same functions. How, then, are we to explain these things? By design manifested in special creation, or by descent with adaptive modification? If it is said by design manifested in special creation, we must suppose that the Deity formed an archetypal plan of certain structures, and that he determined to adhere to this plan through all the modifications which those structures exhibit. But, if so, why is it that some structures are selected as typical and not others? Why should the vertebral skeleton, for instance, be tortured into every conceivable variety of modification in order to subserve as great a variety of functions; while another structure, such as the eye, is made in different sub-kingdoms on fundamentally different plans, notwithstanding that it has throughout to perform the same function? Will any one have the hardihood to assert that in the case of the skeleton the Deity has endeavoured to show his ingenuity, by the manifold functions to which he has made the same structure subservient; while in the case of the eye he has endeavoured to show his resources, by the manifold structures which he has adapted to serve the same function? If so, it becomes a most unfortunate circumstance that, throughout both the vegetable and animal kingdoms, all cases which can be pointed to as showing ingenious adaptation of the same typical structure to the performance of widely different functions—or cases of homology without analogy,—are cases which come within the limits of the same natural group of plants and animals, and therefore admit of being equally well explained by descent from a common ancestry; while all cases of widely different structures performing the same function—or cases of analogy without homology,—are to be found in different groups of plants or animals, and are therefore suggestive of independent variations arising in the different lines of hereditary descent.

To take a specific illustration. The octopus, or devil-fish, belongs to a widely different class of animals from a true fish; and yet its eye, in general appearance, looks wonderfully like the eye of a true fish. Now, Mr. Mivart pointed to this fact as a great difficulty in the way of the theory of evolution by natural selection, because it must clearly be a most improbable thing that so complicated a structure as the eye of a fish should happen to be arrived at through each of two totally different lines of descent. And this difficulty would, indeed, be a formidable one to the theory of evolution, if the similarity were not only analogical but homological. Unfortunately for the objection, however, Darwin clearly showed in his reply that in no one anatomical or homologous feature do the two structures resemble one another; so that, in point of fact, the two organs do not resemble one another in any particular further than it is necessary that they should, if both are to be analogous, or to serve the same function as organs of sight. But now, suppose that this had not been the case, and that the two structures, besides presenting the necessary superficial or analogical resemblance, had also presented an anatomical or homologous resemblance, with what force might it have then been urged,—Your hypothesis of hereditary descent with progressive modification being here excluded by the fact that the animals compared belong to two widely different branches of the tree of life, how are we to explain the identity of type manifested by these two complicated organs of vision? The only hypothesis open to us is intelligent adherence to an ideal plan or mechanism. But as this cannot now be urged in any comparable case throughout the whole organic world, we may on the other hand present it as a most significant fact, that while within the limits of the same large branch of the tree of life we constantly find the same typical structures modified so as to perform very different functions, we never find any of these particular types of structure in other large branches of the tree. That is to say, we never find typical structures appearing except in cases where their presence may be explained by the hypothesis of hereditary descent; while in thousands of such cases we find these structures undergoing every conceivable variety of adaptive modification.

Consequently, special creationists must fall back upon another position and say,—Well, but it may have pleased the Deity to form a certain number of ideal types, and never to have allowed the structures occurring in one type to appear in any of the others. We answer,—Undoubtedly such may have been the case; but, if so, it is a most unfortunate thing for your theory, because the fact implies that the Deity has planned his types in such a way as to suggest the counter-theory of descent. For instance, it would seem most capricious on the part of the Deity to have made the eyes of an innumerable number of fish on exactly the same ideal type, and then to have made the eye of the octopus so exactly like these other eyes in superficial appearance as to deceive so accomplished a naturalist as Mr. Mivart, and yet to have taken scrupulous care that in no one ideal particular should the one type resemble the other. However, adopting for the sake of argument this great assumption, let us suppose that God did lay down these arbitrary rules for his own guidance in creation, and then let us see to what the assumption leads. If the Deity formed a certain number of ideal types, and determined that on no account should he allow any part of one type to appear in any part of another, surely we should expect that within the limits of the same type the same typical structures should always be present. Thus, remember what efforts, so to speak, have been made to maintain the uniformity of type in the case of the fore-limb as previously explained, and should we not expect that in other and similar cases a similar method should have been followed? Yet we repeatedly find that this is not the case. Even in the whale, as we have seen, the hind-limbs are either altogether absent or dwindled almost to nothing; and it is impossible to see in what respect the hind-limbs are of any less ideal value than the fore-limbs—which are carefully preserved in all vertebrated animals except the snakes, and the extinct Dinornis, where again we meet in this particular with a sudden and sublime indifference to the maintenance of a typical structure. (Fig. 6.)[4] Now I say that if the theory of ideal types is true, we have in these facts evidence of a most unreasonable inconsistency. But the theory of descent with continued adaptive modification fully explains all the known cases; for in every case the degree of divergence from the typical structure which an organism presents corresponds, in a general way, with the length of time during which the divergence has been going on. Thus we scarcely ever meet with any great departure from the typical form with respect to one of the organs, without some of the other organs being so far modified as of themselves to indicate, on the supposition of descent with modification, that the animal or plant must have been subject to the modifying influences for an enormously long series of generations. And this combined testimony of a number of organs in the same organism is what the theory of descent would lead us to expect, while the rival theory of design can offer no explanation of the fact, that when one organ shows a conspicuous departure from the supposed ideal type, some of the other organs in the same organism should tend to keep it company by doing likewise.

Skeleton of Dinornis gravis.
Fig. 6.—Skeleton of Dinornis gravis, 1/16 nat. size. Drawn from nature (Brit. Mus.). As separate cuts on a larger scale are shown, 1st, the sternum, as this appears in mounted skeletons, and, 2nd, the same in profile, with its (hypothetical) scapulo-coracoid attached.

As an illustration both of this and of other points which have been mentioned, I may draw attention to what seems to me a particularly suggestive case. So-called soldier-or hermit-crabs, are crabs which have adopted the habit of appropriating the empty shells of mollusks. In association with this peculiar habit, the structure of these animals differs very greatly from that of all other crabs. In particular, the hinder part of the body, which occupies the mollusk-shell, and which therefore has ceased to require any hard covering of its own, has been suffered to lose its calcareous integument, and presents a soft fleshy character, quite unlike that of the more exposed parts of the animal. Moreover, this soft fleshy part of the creature is specially adapted to the particular requirements of the creature by having its lateral appendages—i. e. appendages which in other crustacea perform the function of legs—modified so as to act as claspers to the inside of the mollusk-shell; while the tail-end of the part in question is twisted into the form of a spiral, which fits into the spiral of the mollusk-shell. Now, in Keeling Island there is a large kind of crab called Birgus latro, which lives upon land and there feeds upon cocoa-nuts. The whole structure of this crab, it seems to me, unmistakeably resembles the structure of a hermit-crab (see drawings on the next page, Fig. 7). Yet this crab neither lives in the shell of a mollusk, nor is the hinder part of its body in the soft and fleshy condition just described: on the contrary, it is covered with a hard integument like all the other parts of the animal. Consequently, I think we may infer that the ancestors of Birgus were hermit-crabs living in mollusk-shells; but that their descendants gradually relinquished this habit as they gradually became more and more terrestrial, while, concurrently with these changes in habit, the originally soft posterior parts acquired a hard protective covering to take the place of that which was formerly supplied by the mollusk-shell. So that, if so, we now have, within the limits of a single organism, evidence of a whole series of morphological changes in the past history of its species. First, there must have been the great change from an ordinary crab to a hermit-crab in all the respects previously pointed out. Next, there must have been the change back again from a hermit-crab to an ordinary crab, so far as living without the necessity of a mollusk-shell is concerned. From an evolutionary point of view, therefore, we appear to have in the existing structure of Birgus a morphological record of all these changes, and one which gives us a reasonable explanation of why the animal presents the extraordinary appearance which it does. But, on the theory of special creation, it is inexplicable why this land-crab should have been formed on the pattern of a hermit-crab, when it never has need to enter the shell of a mollusk. In other words, its peculiar structure is not specially in keeping with its present habits, although so curiously allied to the similar structure of certain other crabs of totally different habits, in relation to which the peculiarities are of plain and obvious significance.

Hermit-crabs compared with the cocoa-nut crab.
Fig. 7.—Hermit-crabs compared with the cocoa-nut crab. On the left of the illustration one hermit-crab is represented as occupying a mollusk-shell, and another (larger specimen) as it appears when withdrawn from such a shell. On the right of the illustration the cocoa-nut crab is represented in its natural habitat on land. When full-grown, however, it is much larger than our hermit-crabs. The latter are drawn from life, natural size, the former from a specimen in the British Museum, 1/6 natural size.

I will devote the remainder of this chapter to considering another branch of the argument from morphology, to which the case of Birgus serves as a suitable introduction: I mean the argument from rudimentary structures.

Throughout both the animal and vegetable kingdoms we constantly meet with dwarfed and useless representatives of organs, which in other and allied kinds of animals and plants are of large size and functional utility. Thus, for instance, the unborn whale has rudimentary teeth, which are never destined to cut the gums; and throughout its life this animal retains, in a similarly rudimentary condition, a number of organs which never could have been of use to any kind of creature save a terrestrial quadruped. The whole anatomy of its internal ear, for example, has reference to hearing in air—or, as Hunter long ago remarked, “is constructed upon the same principle as in the quadruped"; yet, as Owen says, “the outer opening and passage leading therefrom to the tympanum can rarely be affected by sonorous vibrations of the atmosphere, and indeed they are reduced, or have degenerated, to a degree which makes it difficult to conceive how such vibrations can be propagated to the ear-drum during the brief moments in which the opening may be raised above the water.”

Rudimentary or vestigial hind-limbs of Python.
Fig. 8.—Rudimentary or vestigial hind-limbs of Python, as exhibited in the skeleton and on the external surface of the animal. Drawn from nature, ¼ nat. size (Zoological Gardens).

Now, rudimentary organs of this kind are of such frequent occurrence, that almost every species presents one or more of them—usually, indeed, a considerable number. How, then, are they to be accounted for? Of course the theory of descent with adaptive modification has a simple answer to supply—namely, that when, from changed conditions of life, an organ which was previously useful becomes useless, it will be suffered to dwindle away in successive generations, under the influence of certain natural causes which we shall have to consider in future chapters. On the other hand, the theory of special creation can only maintain that these rudiments are formed for the sake of adhering to an ideal type. Now, here again the former theory appears to be triumphant over the latter; for, without waiting to dispute the wisdom of making dwarfed and useless structures merely for the whimsical motive assigned, surely if such a method were adopted in so many cases, we should expect that in consistency it would be adopted in all cases. This reasonable expectation, however, is far from being realized. We have already seen that in numberless cases, such as that of the fore-limbs of serpents, no vestige of a rudiment is present. But the vacillating policy in the matter of rudiments does not end here; for it is shown in a still more aggravated form where within the limits of the same natural group of organisms a rudiment is sometimes present and sometimes absent. For instance, although in nearly all the numerous species of snakes there are no vestiges of limbs, in the Python we find very tiny rudiments of the hind-limbs. (Fig. 8.) Now, is it a worthy conception of Deity that, while neglecting to maintain his unity of ideal in the case of nearly all the numerous species of snakes, he should have added a tiny rudiment in the case of the Python—and even in that case should have maintained his ideal very inefficiently, inasmuch as only two limbs, instead of four, are represented? How much more reasonable is the naturalistic interpretation; for here the very irregularity of their appearance in different species, which constitutes rudimentary structures one of the crowning difficulties to the theory of special design, furnishes the best possible evidence in favour of hereditary descent; seeing that this irregularity then becomes what may be termed the anticipated expression of progressive dwindling due to inutility. Thus, for example, to return to the case of wings, we have already seen that in an extinct genus of bird, Dinornis, these organs were reduced to such an extent as to leave it still doubtful whether so much as the tiny rudiment hypothetically supplied to Fig. 6 (p. 61) was present in all the species. And here is another well-known case of another genus of still existing bird, which, as was the case with Dinornis, occurs only in New Zealand. (Fig. 9.) Upon this island there are no four-footed enemies—either existing or extinct—to escape from which the wings of birds would be of any service. Consequently we can understand why on this island we should meet with such a remarkable dwindling away of wings.

Apteryx Australis.
Fig. 9.—Apteryx Australis. Drawn from life in the Zoological Gardens, 1/8 nat. size. The external wing is drawn to a scale in the upper part of the cut. The surroundings are supplied from the most recent descriptions.

Similarly, the logger-headed duck of South America can only flap along the surface of the water, having its wings considerably reduced though less so than the Apteryx of New Zealand. But here the interesting fact is that the young birds are able to fly perfectly well. Now, in accordance with a general law to be considered in a future chapter, the life-history of an individual organism is a kind of condensed recapitulation of the life-history of its species. Consequently, we can understand why the little chickens of the logger-headed duck are able to fly like all other ducks, while their parents are only able to flap along the surface of the water.

Facts analogous to this reduction of wings in birds which have no further use for them, are to be met with also in insects under similar circumstances. Thus, there are on the island of Madeira somewhere between 500 and 600 species of beetles, which are in large part peculiar to that island, though related to other—and therefore presumably parent—species on the neighbouring continent. Now, no less than 200 species—or nearly half the whole number—are so far deficient in wings that they cannot fly. And, if we disregard the species which are not peculiar to the island—that is to say, all the species which likewise occur on the neighbouring continent, and therefore, as evolutionists conclude, have but recently migrated to the island,—we find this very remarkable proportion. There are altogether 29 peculiar genera, and out of these no less than 23 have all their species in this condition.

Similar facts have been recently observed by the Rev. A. E. Eaton with respect to insects inhabiting Kerguelen Island. All the species which he found on the island—viz. a moth, several flies, and numerous beetles—he found to be incapable of flight; and therefore, as Wallace observes, “as these insects could hardly have reached the islands in a wingless state, even if there were any other known land inhabited by them, which there is not, we must assume that, like the Madeiran insects, they were originally winged, and lost their power of flight because its possession was injurious to them"—Kerguelen Island being “one of the stormiest places on the globe,” and therefore a place where insects could rarely afford to fly without incurring the danger of being blown out to sea.

Here is another and perhaps an even more suggestive class of facts.

It is now many years ago since the editors of Silliman’s Journal requested the late Professor Agassiz to give them his opinion on the following question. In a certain dark subterranean cave, called the Mammoth cave, there are found some peculiar species of blind fishes. Now the editors of Silliman’s Journal wished to know whether Prof. Agassiz would hold that these fish had been specially created in these caves, and purposely devoided of eyes which could never be of any use to them; or whether he would allow that these fish had probably descended from other species, but, having got into the dark cave, gradually lost their eyes through disuse. Prof. Agassiz, who was a believer in special creation, allowed that this ought to constitute a crucial test as between the two theories of special design and hereditary descent. “If physical circumstances,” he said, “ever modified organized beings, it should be easily ascertained here.” And eventually he gave it as his opinion, that these fish “were created under the circumstances in which they now live, within the limits over which they now range, and with the structural peculiarities which now characterise them.”

Since then a great deal of attention has been paid to the fauna of this Mammoth cave, and also to the faunas of other dark caverns, not only in the New, but also in the Old World. In the result, the following general facts have been fully established.

(1) Not only fish, but many representatives of other classes, have been found in dark caves.

(2) Wherever the caves are totally dark, all the animals are blind.

(3) If the animals live near enough to the entrance to receive some degree of light, they may have large and lustrous eyes.

(4) In all cases the species of blind animals are closely allied to species inhabiting the district where the caves occur; so that the blind species inhabiting American caves are closely allied to American species, while those inhabiting European caves are closely allied to European species.

(5) In nearly all cases structural remnants of eyes admit of being detected, in various degrees of obsolescence. In the case of some of the crustaceans of the Mammoth cave the foot-stalks of the eyes are present, although the eyes themselves are entirely absent.

Now, it is evident that all these general facts are in full agreement with the theory of evolution, while they offer serious difficulties to the theory of special creation. As Darwin remarks, it is hard to imagine conditions of life more similar than those furnished by deep limestone caverns under nearly the same climate in the two continents of America and Europe; so that, in accordance with the theory of special creation, very close similarity in the organizations of the two sets of faunas might have been expected. But, instead of this, the affinities of these two sets of faunas are with those of their respective continents—as of course they ought to be on the theory of evolution. Again, what would have been the sense of creating useless foot-stalks for the imaginary support of absent eyes, not to mention all the other various grades of degeneration in other cases? So that, upon the whole, if we agree with the late Prof. Agassiz in regarding these cave animals as furnishing a crucial test between the rival theories of creation and evolution, we must further conclude that the whole body of evidence which they now furnish is weighing on the side of evolution.

So much, then, for a few special instances of what Darwin called rudimentary structures, but what may be more descriptively designated—in accordance with the theory of descent—obsolescent or vestigial structures. It is, however, of great importance to add that these structures are of such general occurrence throughout both the vegetable and animal kingdoms, that, as Darwin has observed, it is almost impossible to point to a single species which does not present one or more of them. In other words, it is almost impossible to find a single species which does not in this way bear some record of its own descent from other species; and the more closely the structure of any species is examined anatomically, the more numerous are such records found to be. Thus, for example, of all organisms that of man has been most minutely investigated by anatomists; and therefore I think it will be instructive to conclude this chapter by giving a list of the more noteworthy vestigial structures which are known to occur in the human body. I will take only those which are found in adult man, reserving for the next chapter those which occur in a transitory manner during earlier periods of his life. But, even as thus restricted, the number of obsolescent structures which we all present in our own persons is so remarkable, that their combined testimony to our descent from a quadrumanous ancestry appears to me in itself conclusive. I mean, that even if these structures stood alone, or apart from any more general evidences of our family relationships, they would be sufficient to prove our parentage. Nevertheless, it is desirable to remark that of course these special evidences which I am about to detail do not stand alone. Not only is there the general analogy furnished by the general proof of evolution elsewhere, but there is likewise the more special correspondence between the whole of our anatomy and that of our nearest zoological allies. Now the force of this latter consideration is so enormous, that no one who has not studied human anatomy can be in a position to appreciate it. For without special study it is impossible to form any adequate idea of the intricacy of structure which is presented by the human form. Yet it is found that this enormously intricate organization is repeated in all its details in the bodies of the higher apes. There is no bone, muscle, nerve, or vessel of any importance in the one which is not answered to by the other. Hence there are hundreds of thousands of instances of the most detailed correspondence, without there being any instances to the contrary, if we pay due regard to vestigial characters. The entire corporeal structure of man is an exact anatomical copy of that which we find in the ape.

My object, then, here is to limit attention to those features of our corporeal structure which, having become useless on account of our change in attitude and habits, are in process of becoming obsolete, and therefore occur as mere vestigial records of a former state of things. For example, throughout the vertebrated series, from fish to mammals, there occurs in the inner corner of the eye a semi-transparent eye-lid, which is called the nictitating membrane. The object of this structure is to sweep rapidly, every now and then, over the external surface of the eye, apparently in order to keep the surface clean. But although the membrane occurs in all classes of the sub-kingdom, it is more prevalent in some than in others—e.g. in birds than in mammals. Even, however, where it does not occur of a size and mobility to be of any use, it is usually represented, in animals above fishes, by a functionless rudiment, as here depicted in the case of man. (Fig. 10.)

Nictitating membrane in various animals.
Fig. 10.—Illustrations of the nictitating membrane in the various animals named drawn from nature. The letter N indicates the membrane in each case. In man it is called the plica semilunaris, and is represented in the two lower drawings under this name. In the case of the shark (Galeus) the muscular mechanism is shown as dissected.

Now the organization of man presents so many vestigial structures thus referring to various stages of his long ancestral history, that it would be tedious so much as to enumerate them. Therefore I will yet further limit the list of vestigial structures to be given as examples, by not only restricting these to cases which occur in our own organization; but of them I shall mention only such as refer us to the very last stage of our ancestral history—viz. structures which have become obsolescent since the time when our distinctively human branch of the family tree diverged from that of our immediate forefathers, the Quadrumana.

Rudimentary muscles of the human ear.
Fig. 11.—Rudimentary, or vestigial and useless, muscles of the human ear. (From Gray’s Anatomy.)

(1) Muscles of the external ear.—These, which are of large size and functional use in quadrupeds, we Retain in a dwindled and useless condition (Fig. 11). this is likewise the case in anthropoid apes; but in not a few other quadrumana (e.g. baboons, macacus, magots, &c.) degeneration has not proceeded so far, and the ears are voluntarily moveable.

(2) Panniculus carnosis.—A large number of the mammalia are able to move their skin by means of sub-cutaneous muscle—as we see, for instance, in a horse, when thus protecting himself against the sucking of flies. We, in common with the Quadrumana, possess an active remnant of such a muscle in the skin of the forehead, whereby we draw up the eyebrows; but we are no longer able to use other considerable remnants of it, in the scalp and elsewhere,—or, more correctly, it is rarely that we meet with persons who can. But most of the Quadrumana (including the anthropoids) are still able to do so. There are also many other vestigial muscles, which occur only in a small percentage of human beings, but which, when they do occur, present unmistakeable homologies with normal muscles in some of the Quadrumana and still lower animals[5].

(3) Feet.—It is observable that in the infant the feet have a strong deflection inwards, so that the soles in considerable measure face one another. This peculiarity, which is even more marked in the embryo than in the infant (see p. 153), and which becomes gradually less and less conspicuous even before the child begins to walk, appears to me a highly suggestive peculiarity. For it plainly refers to the condition of things in the Quadrumana, seeing that in all these animals the feet are similarly curved inwards, to facilitate the grasping of branches. And even when walking on the ground apes and monkeys employ to a great extent the outside edges of their feet, as does also a child when learning to walk. The feet of a young child are also extraordinarily mobile in all directions, as are those of apes. In order to show these points, I here introduce comparative drawings of a young ape and the portrait of a young male child. These drawings, moreover, serve at the same time to illustrate two other vestigial characters, which have often been previously noticed with regard to the infant’s foot. I allude to the incurved form of the legs, and the lateral extension of the great toe, whereby it approaches the thumb-like character of this organ in the Quadrumana. As in the case of the incurved position of the legs and feet, so in this case of the lateral extensibility of the great toe, the peculiarity is even more marked in embryonic than in infant life. For, as Prof. Wyman has remarked with regard to the foetus when about an inch in length, “The great toe is shorter than the others; and, instead of being parallel to them, is projected at an angle from the side of the foot, thus corresponding with the permanent condition of this part in the Quadrumana[6].” So that this organ, which, according to Owen, “is perhaps the most characteristic peculiarity in the human structure,” when traced back to the early stages of its development, is found to present a notably less degree of peculiarity.

Young male gorilla.
Fig. 12.—Portrait of a young male gorilla (after Hartmann).
Young male child.
Fig. 13.—Portrait of a young male child. Photographed from life, when the mobile feet were for a short time at rest in a position of extreme inflection.

(4) Hands.—Dr. Louis Robinson has recently observed that the grasping power of the whole human hand is so surprisingly great at birth, and during the first few weeks of infancy, as to be far in excess of present requirements on the part of a young child. Hence he concludes that it refers us to our quadrumanous ancestry—the young of anthropoid apes being endowed with similar powers of grasping, in order to hold on to the hair of the mother when she is using her arms for the purposes of locomotion. This inference appears to me justifiable, inasmuch as no other explanation can be given of the comparatively inordinate muscular force of an infant’s grip. For experiments showed that very young babies are able to support their own weight, by holding on to a horizontal bar, for a period varying from one half to more than two minutes[7]. With his kind permission I here reproduce one of Dr. Robinson’s instantaneous, and hitherto unpublished, photographs of a very young infant. This photograph was taken after the above paragraph (3) was written, and I introduce it here because it serves to show incidentally—and perhaps even better than the preceding figure—the points there mentioned with regard to the feet and great toes. Again, as Dr. Robinson observes, the attitude, and the disproportionately large development of the arms as compared with the legs, give all the photographs a striking resemblance to a picture of the chimpanzee “Sally” at the Zoological Gardens. For “invariably the thighs are bent nearly at right angles to the body, and in no case did the lower limbs hang down and take the attitude of the erect position.” He adds, “In many cases no sign of distress is evinced, and no cry uttered, until the grasp begins to give way.”

3 weeks old infant supporting its own weight.
Fig. 14.—An infant, three weeks old, supporting its own weight for over two minutes. The attitude of the lower limbs, feet, and toes, is strikingly simian. Reproduced from an instantaneous photograph, kindly given for the purpose by Dr. L. Robinson.
Sacrum of Gorilla and Man.
Fig. 15.—Sacrum of Gorilla compared with that of Man, showing the rudimentary tail-bones of each. Drawn from nature (R. Coll. Surg. Mus.).

(5) Tail.—The absence of a tail in man is popularly supposed to constitute a difficulty against the doctrine of his quadrumanous descent. As a matter of fact, however, the absence of an external tail in man is precisely what this doctrine would expect, seeing that the nearest allies of man in the quadrumanous series are likewise destitute of an external tail. Far, then, from this deficiency in man constituting any difficulty to be accounted for, if the case were not so—i. e. if man did possess an external tail,—the difficulty would be to understand how he had managed to retain an organ which had been renounced by his most recent ancestors. Nevertheless, as the anthropoid apes continue to present the rudimentary vestiges of a tail in a few caudal vertebrÆ below the integuments, we might well expect to find a similar state of matters in the case of man. And this is just what we do find, as a glance at these two comparative illustrations will show. (Fig. 15.) Moreover, during embryonic life, both of the anthropoid apes and of man, the tail much more closely resembles that of the lower kinds of quadrumanous animals from which these higher representatives of the group have descended. For at a certain stage of embryonic life the tail, both of apes and of human beings, is actually longer than the legs (see Fig. 16). And at this stage of development, also, the tail admits of being moved by muscles which later on dwindle away. Occasionally, however, these muscles persist, and are then described by anatomists as abnormalities. The following illustrations serve to show the muscles in question, when thus found in adult man.

Human embryo, about seven weeks old.
Fig. 16.—Diagrammatic outline of the human embryo when about seven weeks old, showing the relations of the limbs and tail to the trunk (after Allen Thomson), r, the radial, and u, the ulnar, border of the hand and fore-arm; t, the tibial, and f, the fibular, border of the foot and lower leg; au, ear; s, spinal cord; v, umbilical cord; b, branchial gill-slits; c, tail.
Front and back of adult human sacrum.
Fig. 17.—Front and back view of adult human sacrum, showing abnormal persistence of vestigial tail-muscles. (The first drawing is copied from Prof. Watson’s paper in Journl. Anat. and Physiol., vol. 79: the second is compiled from different specimens.)

(6) Vermiform Appendix of the CÆcum.—This is of large size and functional use in the process of digestion among many herbivorous animals; while in man it is not only too small to serve any such purpose, but is even a source of danger to life—many persons dying every year from inflammation set up by the lodgement in this blind tube of fruit-stones, &c.

In the orang it is longer than in man (Fig. 18), as it is also in the human foetus proportionally compared with the adult. (Fig. 19.) In some of the lower herbivorous animals it is longer than the entire body.

Appendix vermiformis in Orang and in Man.
Fig. 18.—Appendix vermiformis in Orang and in Man. Drawn from dried inflated specimens in the Cambridge Museum by Mr. J. J. Lister. Il, ilium; Co, colon; C, cÆcum; W, a window cut in the wall of the cÆcum; X X X, the appendix.
The same, showing variation in the Orang.
Fig. 19.—The same, showing variation in the Orang. Drawn from a specimen in the Museum of the Royal College of Surgeons.

Like vestigial structures in general, however, this one is highly variable. Thus the above cut (Fig. 19) serves to show that it may sometimes be almost as short in the orang as it normally is in man—both the human subjects of this illustration having been normal.

(7) Ear.—Mr. Darwin writes:—

The celebrated sculptor, Mr. Woolner, informs me of one little peculiarity in the external ear, which he has often observed both Human ear. Fig. 20.—Human ear, modelled and drawn by Mr. Woolner. a, the projecting point. in men and women.... The peculiarity consists in a little blunt point, projecting from the inwardly folded margin, or helix. When present, it is developed at birth, and, according to Prof. Ludwig Meyer, more frequently in man than in woman. Mr. Woolner made an exact model of one such case, and sent me the accompanying drawing.... The helix obviously consists of the extreme margin of the ear folded inwards; and the folding appears to be in some manner connected with the whole external ear being permanently pressed backwards. In many monkeys, which do not stand high in the order, as baboons and some species of macacus, the upper portion of the ear is slightly pointed, and the margin is not at all folded inwards; but if the margin were to be thus folded, a slight point would necessarily project towards the centre.... The following wood-cut is an accurate copy of a photograph of the foetus of an orang (kindly sent me by Dr. Nitsche), in which it may be seen how different the pointed outline of the ear is at this period from its adult condition, when it bears a close general resemblance to that of man [including even the occasional appearance of the projecting point shown in the preceding woodcut]. It is evident that the folding over of the tip of such an ear, unless it changed greatly during its further development, would give rise to a point projecting inwards[8].

Foetus of an Orang.
Fig. 21.—Foetus of an Orang. Exact copy of a photograph, showing the form of the ear at this early stage.

The following woodcut serves still further to show vestigial resemblances between the human ear and that of apes. The last two figures illustrate the general resemblance between the normal ear of foetal man and the ear of an adult orang-outang. The other two figures on the lower line are intended to exhibit occasional modifications of the adult human ear, which approximate simian characters somewhat more closely than does the normal type. It will be observed that in their comparatively small lobes these ears resemble those of all the apes; and that while the outer margin of one is not unlike that of the Barbary ape, the outer margin of the other follows those of the chimpanzee and orang. Of course it would be easy to select individual human ears which present either of these characters in a more pronounced degree; but these ears have been chosen as models because they present both characters in conjunction. The upper row of figures likewise shows the close similarity of hair-tracts, and the direction of growth on the part of the hair itself, in cases where the human ear happens to be of an abnormally hirsute character. But this particular instance (which I do not think has been previously noticed) introduces us to the subject of hair, and hair-growth, in general.

(8) Hair.—Adult man presents rudimentary hair over most parts of the body. Wallace has sought to draw a refined distinction between this vestigial coating and the useful coating of quadrumanous animals, in the absence of the former from the human back. But even this refined distinction does not hold. On the one hand, the comparatively hairless chimpanzee which died last year in the Zoological Gardens (T. calvus) was remarkably denuded over the back; and, on the other hand, men who present a considerable development of hair over the rest of their bodies present it also on their backs and shoulders. Again, in all men the rudimentary hair on the upper and lower arm is directed towards the elbow—a peculiarity which occurs nowhere else in the animal kingdom, with the exception of the anthropoid apes and a few American monkeys, where it presumably has to do with arboreal habits. For, when sitting in trees, the orang, as observed by Mr. Wallace, places its hands above its head with its elbows pointing downwards: the disposition of hair on the arms and fore-arms then has the effect of thatch in turning the rain. Again, I find that in all species of apes, monkeys, and baboons which I have examined (and they have been numerous), the hair on the backs of the hands and feet is continued as far as the first row of phalanges; but becomes scanty, or disappears altogether, on the second row; while it is invariably absent on the terminal row. I also find that the same peculiarity occurs in man. We all have rudimentary hair on the first row of phalanges, both of hands and feet: when present at all, it is more scanty on the second row; and in no case have I been able to find any on the terminal row. In all cases these peculiarities are congenital, and the total absence or partial presence of hair on the second phalanges is constant in different species of Quadrumana. For instance, it is entirely absent in all the chimpanzees, which I have examined, while scantily present in all the orangs. As in man, it occurs in a patch midway between the joints.

Hair-tracts on the arms and hands of Man and Chimpanzee.
Fig. 23.—Hair-tracts on the arms and hands of Man, as compared with those on the arms and hands of Chimpanzee. Drawn from life.

Besides showing these two features with regard to the disposition of hair on the human arm and hand, the above woodcut illustrates a third. By looking closely at the arm of the very hairy man from whom the drawing was taken, it could be seen that there was a strong tendency towards a whorled arrangement of the hairs on the backs of the wrists. This is likewise, as a general rule, a marked feature in the arrangement of hair on the same places in the gorilla, orang, and chimpanzee. In the specimen of the latter, however, from which the drawing was taken, this characteristic was not well marked. The downward direction of the hair on the backs of the hands is exactly the same in man as it is in all the anthropoid apes. Again, with regard to hair, Darwin notices that occasionally there appears in man a few hairs in the eyebrows much longer than the others; and that they seem to be representative of similarly long and scattered hairs which occur in the chimpanzee, macacus, and baboons.

Lastly, it may be here more conveniently observed than in the next chapter on Embryology, that at about the sixth month the human foetus is often thickly coated with somewhat long dark hair over the entire body, except the soles of the feet and palms of the hands, which are likewise bare in all quadrumanous animals. This covering, which is called the lanugo, and sometimes extends even to the whole forehead, ears, and face, is shed before birth. So that it appears to be useless for any purpose other than that of emphatically declaring man a child of the monkey.

(9) Teeth.—Darwin writes:—

It appears as if the posterior molar or wisdom-teeth were tending to become rudimentary in the more civilized races of man. These teeth are rather smaller than the other molars, as is likewise the case with the corresponding teeth in the chimpanzee and orang; and they have only two separate fangs.... They are also much more liable to vary, both in structure and in the period of their development, than the other teeth. In the Melanian races, on the other hand, the wisdom-teeth are usually furnished with three separate fangs, and are usually sound [i. e. not specially liable to decay]; they also differ from the other molars in size, less than in the Caucasian races.

Now, in addition to these there are other respects in which the dwindling condition of wisdom-teeth is manifested—particularly with regard to the pattern of their crowns. Indeed, in this respect it would seem that even in the anthropoid apes there is the beginning of a tendency to degeneration of the molar teeth from behind forwards. For if we compare the three molars in the lower jaw of the gorilla, orang, and chimpanzee, we find that the gorilla has five well-marked cusps on all three of them; but that in the orang the cusps are not so pronounced, while in the chimpanzee there are only four of them on the third molar. Now in man it is only the first of these three teeth which normally presents five cusps, both the others presenting only four. So that, comparing all these genera together, it appears that the number of cusps is being reduced from behind forwards; the chimpanzee having lost one of them from the third molar, while man has not only lost this, but also one from the second molar,—and, it may be added, likewise partially (or even totally) from the first molar, as a frequent variation among civilized races. But, on the other hand, variations are often met with in the opposite direction, where the second or the third molar of man presents five cusps—in the one case following the chimpanzee, in the other the gorilla. These latter variations, therefore, may fairly be regarded as reversionary. For these facts I am indebted to the kindness of Mr. C. S. Tomes.

Molar teeth of lower jaw in Gorilla, Orang, and Man.
Fig. 24.—Molar teeth of lower jaw in Gorilla, Orang, and Man. Drawn from nature, nat. size (R. Mus. Coll. Surg.).

(10) Perforations of the humerus.—The peculiarities which we have to notice under this heading are two in number. First, the supra condyloid foramen is a normal feature in some of the lower Quadrumana (Fig. 25), where it gives passage to the great nerve of the fore-arm, and often also to the great artery. In man, however, it is not a normal feature. Yet it occurs in a small percentage of cases—viz., according to Sir W. Turner, in about one per cent., and therefore is regarded by Darwin as a vestigial character. Secondly, there is inter-condyloid foramen, which is also situated near the lower end of the humerus, but more in the middle of the bone. This occurs, but not constantly, in apes, and also in the human species. From the fact that it does so much more frequently in the bones of ancient—and also of some savage—races of mankind (viz. in 20 to 30 per cent. of cases), Darwin is disposed to regard it also as a vestigial feature. On the other hand, Prof. Flower tells me that in his opinion it is but an expression of impoverished nutrition during the growth of the bone.

Perforation of the humerus in three species of Quadrumana and in Man.
Fig. 25.—Perforation of the humerus (supra-condyloid foramen) in three species of Quadrumana where it normally occurs, and in Man, where it does not normally occur. Drawn from nature (R. Coll. Surg. Mus.).

(11) Flattening of tibia.—In some very ancient human skeletons, there has also been found a lateral flattening of the tibia, which rarely occurs in any existing human beings, but which appears to have been usual among the earliest races of mankind hitherto discovered. According to Broca, the measurements of these fossil human tibiÆ resemble those of apes. Moreover, the bone is bent and strongly convex forwards, while its angles are so rounded as to present the nearly oval section seen in apes. It is in association with these ape-like human tibiÆ that perforated humeri of man are found in greatest abundance. On the other hand, however, there is reason to doubt whether this form of tibia in man is really a survival from his quadrumanous ancestry. For, as Boyd-Dawkins and Hartmann have pointed out, the degree of flattening presented by some of these ancient human bones is greater than that which occurs in any existing species of anthropoid ape. Of course the possibility remains that the unknown species of ape from which man descended may have had its tibia more flattened than is now observable in any of the existing species. Nevertheless, as some doubt attaches to this particular case, I do not press it—and, indeed, only mention it at all in order that the doubt may be expressed.

Similarly, I will conclude by remarking that several other instances of the survival of vestigial structures in man have been alleged, which are of a still more doubtful character. Of such, for example, are the supposed absence of the genial tubercle in the case of a very ancient jaw-bone of man, and the disposition of valves in human veins. From the former it was argued that the possessor of this very ancient jaw-bone was probably speechless, inasmuch as the tubercle in existing man gives attachment to muscles of the tongue. From the latter it has been argued that all the valves in the veins of the human body have reference, in their disposition, to the incidence of blood-pressure when the attitude of the body is horizontal, or quadrupedal. Now, the former case has already broken down, and I find that the latter does not hold. But we can well afford to lose such doubtful and spurious cases, in view of all the foregoing unquestionable and genuine cases of vestigial structures which are to be met with even within the limits of our own organization—and even when these limits are still further limited by selecting only those instances which refer to the very latest chapter of our long ancestral history.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page