CHAPTER XII.

Previous
RODENTS.
The rodents, psychologically considered, are, of all orders in the animal kingdom, most remarkable for the differences presented by constituent species. For while the group contains many animals, such as the guinea-pig, whose instincts and intelligence cannot be said to rise above the lowest level that obtains among mammalian forms, it also contains other animals with instincts as remarkable as those of the squirrel, intelligence as considerable as that of the rat, and a psychological development as unique as that of the beaver. In no other group of animals do we meet with nearly so striking an exemplification of the truth that zoological or structural affinity is only related in a most loose and general way to psychological or mental similarity. Up to a certain point, however, even here we meet with an exemplification of what I may call a complementary truth, namely, that similarity of organisation and environment is in a general way related to similarity of instincts (though not necessarily of intelligence). This is obviously the case with the habit from which the order takes its name; for whether the instinct of gnawing is here the cause or the result of peculiar organisation, the instinct is unquestionably correlated with the peculiarity. And similarly, though less obviously, is this the case with the instinct of storing food for winter consumption, which is more prevalent among the rodents than in any other order of mammals—rats, mice, squirrels, harvesters, beavers, &c., all manifesting it with remarkable vigour and persistency. Here we probably have a case of similar organisation and environment determining the same instinct; for the latter is not of sufficiently general occurrence among all species of rodents to allow us to suppose that the species in which it does occur have derived it from a common ancestry.

Rabbit.

Rabbits are somewhat stupid animals, exhibiting but small resources under novel circumstances, although inheriting several clever instincts, such as that of rapidly deciding upon the alternative of flight or crouching, which is usually done with the best judgment. I have, however, often observed that the animal does not seem to have sense enough to regard the colour of the surface on which it crouches, so that if this happens to be inappropriate, the rabbit may become conspicuous, and so its crouching a source of danger. I have been particularly struck with the fact that black rabbits inherit the crouching instinct as strongly as do normally coloured ones, with the effect of rendering themselves highly conspicuous. This shows that the instinct is not necessarily correlated with the colour which alone renders the instinct useful, but that both have developed simultaneously and independently, and by natural selection. The fact also shows that the crouching of rabbits is purely instinctive, and not due to any conscious process of comparing their own colour with that of the surfaces on which they crouch. No doubt the instinct began and was developed by natural selection placing a premium upon the better judgment of those individuals which know when best to seek safety in flight and when by crouching—protective colouring being added at the same time by the same agency.

Another fact, which every one who shoots must have observed, goes to show the stupidity of rabbits, or their inability to learn by experience. When alarmed they run for their burrows, and when they reach them, instead of entering they very frequently squat down to watch the enemy. Now, although they well know the distance at which it is safe to allow a man with a gun to approach, excess of curiosity, or a mistaken feeling of security in being so near their homes, induces the animals to allow a man to approach within easy shooting distance. Yet that in other respects rabbits can learn much by experience must be evident to all who are accustomed to shoot with ferrets. From burrows which have not been much ferreted, rabbits will bolt soon after the ferret is put in; but this is not the case where rabbits have had previous experience of the association between ferrets and sportsmen. Rather than bolt under such circumstances, and so face the known danger of the waiting gun, rabbits will often allow themselves to be torn with the ferrets' claws and mutilated by their teeth. This is the case, no matter how silently the sportsmen may conduct their operations; the mere fact of a ferret entering their burrows seems to be enough to assure the rabbits that sportsmen are waiting outside.[209]

In its emotions the rabbit is for the most part a very timid animal, although the males fight severely with one another—having more strongly developed than any other animal the strange but effectual instinct of castrating their rivals. Moreover, even against other animals, rabbits will, when compelled to do so, stand upon the defensive. To show this I may quote a letter which several years ago I published in 'Nature:'—

I have occasion just now to keep over thirty Himalayan rabbits in an outhouse. A short time ago it was observed that some of these rabbits had been attacked and slightly bitten by rats. Next day the person who feeds the rabbits observed, upon entering the outhouse, that nearly all the inmates were congregated in one corner; and upon going to ascertain the cause, found one rat dead, and another so much injured that it could scarcely run. Both rats were of an unusually large size, and their bodies were much mangled by the rabbits' teeth.

I never before knew that domestic rabbits would fight with any carnivorous antagonist. That wild rabbits never do so I infer from having several times seen ferrets turn out from the most crowded burrow in a warren young stoats and weasels not more than four inches long.

It is evident that the show-fight instinct cannot have been developed in Himalayan rabbits by means of natural selection, but it is no less evident that if it ever arose in wild rabbits it would be preserved and intensified by such means.

The following observation of my own on a previously unnoticed instinct displayed by wild rabbits is, I think, of sufficient interest to render. Most people are aware that if a rabbit is shot near the mouth of its burrow, the animal will employ the last remnant of its life in struggling into it. Having several times observed that wounded rabbits which had thus escaped appeared again several days afterwards above ground, lying dead a few feet from the mouth of the burrow, I wished to ascertain whether the wounded animals had themselves come out before dying, possibly for air, or had been taken out by their companions. I therefore shot numerous rabbits while they were sitting near their burrows, taking care that the distance between the gun and the animal should be such as to insure a speedy, though not an immediate death. Having marked the burrows at which I shot rabbits in this manner I returned to them at intervals for a fortnight or more, and found that about one-half of the bodies appeared again on the surface in the way described. That this reappearance above ground is not due to the victim's own exertions, I am now quite satisfied; for not only did two or three days generally elapse before the body thus showed itself—a period much too long for a severely wounded rabbit to survive—but in a number of cases decomposition had set in. Indeed, on one occasion scarcely anything of the animal was left save the skin and bones. This was in a large warren.

It is a curious thing that I have hitherto been unable to get any bodies returned to the surface, of rabbits which I inserted into their burrows after death. I account for this by supposing that the stench of the decomposing carcass is not so intolerable to the other occupants of the burrow when it is near the orifice as it is when further in. Similarly, I find that there is not so good a chance of bodies being returned from an extensive warren of intercommunicating holes, as there is from smaller warrens or blind holes; the reason probably being that in the one case the living inhabitants are free to vacate the offensive locality, while in the other case they are not so. Anyhow, there can be no reasonable doubt that the instinct of removing their dead has arisen in rabbits from the necessity of keeping their confined domiciles in a pure state.

Hare.

The hare is a more intelligent animal than the rabbit. Possibly its much greater powers of locomotion may be one cause of its mental superiority to its nearest congener. I have never myself observed a hare commit the mistake already mentioned in the case of the rabbit, viz., that of crouching for concealment upon an inappropriately coloured surface. But the best idea of the comparatively high intelligence of the hare will be gained by the following quotations. The first of these is taken from Loudoun's 'Magazine of Natural History' (vol. iv., p. 143):—

It is especially conscious of the scent left by its feet, and of the danger which threatens it in consequence; a reflection which implies as much knowledge of the habits of its enemies as of its own. When about to enter its seat for the purpose of rest, it leaps in various directions, and crosses and recrosses its path with repeated springs; and at last, by a leap of greater energy than it has yet used, it effects a lodgment in the selected spot, which is chosen rather to disarm suspicion than to protect it from injury. In the 'Manuel du Chasseur' some instances are quoted from an ancient volume on hunting by Jaques du Fouillouse. A hare intending to mislead its pursuers has been seen spontaneously to quit its seat and to proceed to a pond at the distance of nearly a mile, and having washed itself, push off again through a quantity of rushes. It has, too, been known, when pursued to fatigue by dogs, to thrust another hare from its seat and squat itself down in its place. This author has seen hares swim successively through two or three ponds, of which the smallest was eighty paces round. He has known it, after a long chase, to creep under the door of a sheep-house and rest among the cattle, and when the hounds were in pursuit, it would get into the middle of a flock of sheep and accompany them in all their motions round the field, refusing by any means to quit the shelter they afforded. The stratagem of its passing forward on one side of a hedge and returning by the other, with only the breadth of the hedge between itself and its enemies, is of frequent occurrence, and it has even been known to select its seat close to the walls of a dog-kennel. This latter circumstance, however, is illustrative of the principles of reflection and reasoning; for the fox, weasel, and polecat are to the hare more dangerous enemies than the hound; and the situations chosen were such as those ferocious creatures were not likely to approach. A gentleman was engaged in the amusement of coursing, when a hare, closely pressed, passed under a gate, while the dogs followed by leaping over it. The delay caused to her pursuers by this manoeuvre seems to have taught a sudden and useful lesson to the persecuted creature; for as soon as the dogs had cleared the gate and overtaken her, she doubled and returned under the gate as before, the dogs again following and passing over it. And this flirtation continued backwards and forwards until the dogs were fairly tired of the amusement; when the hare, taking advantage of their fatigue, quietly stole away.

The following note, by Mr. Yarrell, is significant of a process of reasoning derived from observations of the course of nature, such as would do no discredit to a higher race of creatures:—

A harbour of great extent on our northern coast has an island near the middle of considerable size, the nearest point of which is a mile distant from the mainland at high water, and with which point there is frequent communication by a ferry. Early one morning in spring two hares were observed to come down from the hills of the mainland towards the sea-side; one of which from time to time left its companion, and proceeding to the very edge of the water, stopped there a minute or two, and then returned to its mate. The tide was rising, and after waiting some time, one of them, exactly at high water, took to the sea, and swam rapidly over, in a straight line, to the opposite projecting point of land. The observer on this occasion, who was near the spot, but remained unperceived by the hares, had no doubt they were of different sexes, and that it was the male (like another Leander) which swam across the water, as he had probably done many times before. It was remarkable that the hares had remained on the shore nearly half an hour; one of them occasionally examining, as it would seem, the state of the current, and ultimately taking to the sea at that precise period of the tide called slackwater, when the passage across could be effected without being carried by the force of the stream either above or below the desired point of landing. The other hare then cantered back to the hills. (Loudoun's 'Magazine of Natural History,' vol. v., p. 99.)

According to Couch ('Illustrations of Instinct,' p. 177)—

When followed by dogs, it will not run through a gate, though this is obviously the most ready passage; nor in crossing a hedge will it prefer a smooth and even part, but the roughest, where thorns and briars abound; and when it mounts an eminence it proceeds obliquely, and not straightforward. And whether we suppose these actions to proceed from a desire to avoid those places where traps may probably have been laid, or from knowing that his pursuers will exactly follow his footsteps, and he has resolved to lead them through as many obstacles as possible, in either case an estimation of causes and consequences is to be discovered.

It is a remarkable thing that both hares and rabbits should allow themselves to be overtaken in the open field by weasels. I have myself witnessed the process, and am at a loss to account for it. The hare or rabbit seems perfectly aware of the dangerous character of the weasel, and yet does not put forth its powers of escape. It merely toddles along with the weasel toddling behind, until tamely allowing itself to be overtaken. This anomalous case may perhaps be akin to the alleged phenomena of the fascination of birds and small rodents by snakes; but in any case there seems to have been here a remarkable failure of natural selection in doing duty to the instincts of these swift-footed animals.

We must not close this account of the intelligence of the hare genus without alluding to the classical case of Cowper's hares. The following abstract is taken from Tegg's edition of 'The Life and Works of William Cowper,' p. 633:—

Puss was ill three days, during which time I nursed him, kept him apart from his fellows, .... and by constant care, &c., restored him to perfect health. No creature could be more grateful than my patient after his recovery, a sentiment which he most significantly expressed by licking my hand, first the back of it, then the palm, then every finger separately, then between all the fingers, as if anxious to leave no part of it unsaluted; a ceremony which he never performed but once again upon a similar occasion. Finding him extremely tractable, I made it my custom to carry him always after breakfast into the garden..... I had not long habituated him to this taste of liberty before he began to be impatient for the return of the time when he might enjoy it. He would invite me to the garden by drumming upon my knee, and by a look of such expression as it was not possible to misinterpret. If this rhetoric did not immediately succeed, he would take the skirt of my coat between his teeth and pull it with all his force. He seemed to be happier in human society than when shut up with his natural companions.

Rats and Mice.

Rats are well known to be highly intelligent animals. Unlike the hare or rabbit, their shyness seems to proceed from a wise caution rather than from timidity; for, when circumstances require, their boldness and courage in combat is surprising. Moreover, they never seem to lose their presence of mind; for, however great their danger, they seem always ready to take advantage of any favouring circumstances that may arise. Thus, when matched with so formidable an opponent as a ferret in a closed room, they have been known to display wonderful cunning in taking advantage of the light—keeping close under the window so as to throw the glare into the eyes of the enemy, darting forwards time after time to deliver a bite, and then as often retiring to their vantage-ground.[210] But the emotions of rats do not appear to be of an entirely selfish character. There are so many accounts in the anecdote books of blind rats being led about by their seeing companions, that it is difficult to discredit an observation so frequently confirmed.[211] Moreover, rats have been frequently known to assist one another in defending themselves from dangerous enemies. Several observations of this kind are recorded by the trustworthy writer Mr. Rodwell, in his somewhat elaborate work upon this animal.

Again, as showing affection for human beings, I may quote the following:—'The mouse which had been tamed by Baron Trench in his prison having been taken from him, watched at the door and crept in when it was opened; being removed again, it refused all food, and died in three days.'[212]

With regard to general intelligence, every one knows the extraordinary wariness of rats in relation to traps, which is only equalled in the animal kingdom by that of the fox and the wolverine. It has frequently been regarded as a wonderful display of intelligence on the part of rats that while gnawing through the woodwork of a ship, they always stop before they completely perforate the side; but, as Mr. Jesse suggests, this is probably due to their distaste of the salt water. No such disparaging explanation, however, is possible in some other instances of the display of rat-intelligence. Thus, the manner in which they transport eggs to their burrows has been too frequently observed to admit of doubt. Rodwell gives a case in which a number of eggs were carried from the top of a house to the bottom by two rats devoting themselves to each egg, and alternately passing it down to each other at every step of the staircase.[213] Dr. Carpenter also received from an eye-witness a similar account of another instance.[214] According to the article in the Quarterly Review, already mentioned, rats will not only convey eggs from the top of the house to the bottom, but from bottom to top. 'The male rat places himself on his fore-paws, with his head downwards, and raising up his hind legs and catching the egg between them, pushes it up to the female, who stands on the step above, and secures it with her fore-paws till he jumps up to her; and this process is repeated from step to step till the top is reached.'

'The captain of a merchantman,' says Mr. Jesse, 'trading to the port of Boston, in Lincolnshire, had constantly missed eggs from his sea stock. He suspected that he was robbed by his crew, but not being able to discover the thief, he was determined to watch his store-room. Accordingly, having laid in a fresh stock of eggs, he seated himself at night in a situation that commanded a view of his eggs. To his great astonishment he saw a number of rats approach; they formed a line from his egg baskets to their hole, and handed the eggs from one to another in their fore-paws.'[215]

Another device to which rats resort for the procuring of food is mentioned in all the anecdote books, and it seemed so interesting that I tried some direct experiments upon the subject. I shall first state the alleged facts in the words of Watson:—

As to oil, rats have been known to get oil out of a narrow-necked bottle in the following way:—One of them would place himself, on some convenient support, by the side of the bottle, and then, dipping his tail into the oil, would give it to another to lick. In this act there is something more than what we call instinct; there is reason and understanding.[216]

Jesse also gives the following account:—

A box containing some bottles of Florence oil was placed in a store-room which was seldom opened; the box had no lid to it. On going to the room one day for one of the bottles, the owner found that the pieces of bladder and cotton at the mouth of each bottle had disappeared, and that much of the contents of the bottles had been consumed. The circumstance having excited suspicion, a few bottles were refilled with oil, and the mouths of them secured as before. Next morning the coverings of the bottles had been removed, and some of the oil was gone. However, upon watching the room, which was done through a little window, some rats were seen to get into the box, and insert their tails into the necks of the bottles, and then withdrawing them, they licked off the oil which adhered to them.[217]

Lastly, Rodwell gives another case similar in all essential respects, save that the rat licked its own tail instead of presenting it to a companion.

The experiment whereby I tested the truth of these statements was a very simple one. I recorded it in 'Nature' as follows:—

It is, I believe, pretty generally supposed that rats and mice use their tails for feeding purposes when the food to be eaten is contained in vessels too narrow to admit the entire body of the animal. I am not aware, however, that the truth of this supposition has ever been actually tested by any trustworthy person, and so think the following simple experiments are worth publishing. Having obtained a couple of tall-shaped preserve bottles with rather short and narrow necks, I filled them to within three inches of the top with red currant jelly which had only half stiffened. I covered the bottles with bladder in the ordinary way, and then stood them in a place infested by rats. Next morning the bladder covering each of the bottles had a small hole gnawed through it, and the level of the jelly was reduced in both bottles to the same extent. Now, as this extent corresponded to about the length of a rat's tail if inserted at the hole in the bladder, and as this hole was not much more than just large enough to admit the root of this organ, I do not see that any further evidence is required to prove the manner in which the rats obtained the jelly, viz., by repeatedly introducing their tails into the viscid matter, and as repeatedly licking them clean. However, to put the question beyond doubt, I refilled the bottles to the extent of half an inch above the jelly level left by the rats, and having placed a circle of moist paper upon each of the jelly surfaces, covered the bottles with bladder as before. I now left the bottles in a place where there were no rats or mice, until a good crop of mould had grown upon one of the moistened pieces of paper. The bottle containing this crop of mould I then transferred to the place where the rats were numerous. Next morning the bladder had again been eaten through at one edge, and upon the mould there were numerous and distinct tracings of the rats' tails, resembling marks made with the top of a pen-holder. These tracings were evidently caused by the animals sweeping their tails about in a fruitless endeavour to find a hole in the circle of paper which covered the jelly.

With regard to mice, the Rev. W. North, rector of Ashdown, in Essex, placed a pot of honey in a closet, in which a quantity of plaster rubbish had been left by builders. The mice piled up the plaster in the form of a heap against the sides of the pot, in order to constitute an inclined plane whereby to reach the rim. A quantity of the rubbish had also been thrown into the pot, with the effect of raising the level of the honey that remained to near the rim of the pot; but, of course, the latter fact may have been due to accident, and not to design.[218] This is a case in which mal-observation does not seem to have been likely.

Powelsen, a writer on Iceland, has related an account of the intelligence displayed by the mice of that country, which has given rise to a difference of competent opinion, and which perhaps can hardly yet be said to have been definitely settled. What Powelsen said is that the mice collect in parties of from six to ten, select a flat piece of dried cow-dung, pile berries or other food upon it, then with united strength drag it to the edge of any stream they wish to cross, launch it, embark, and range themselves round the central heap of provisions with their heads joined over it, and their tails hanging in the water, perhaps serving as rudders. Pennant afterwards gave credit to this account, observing that in a country where berries were scarce, the mice were compelled to cross streams for distant forages.[219] Dr. Hooker, however, in his 'Tour in Iceland,' concludes that the account is a pure fabrication. Dr. Henderson, therefore, determined on trying to arrive at the truth of the matter, with the following result:—'I made a point of inquiring of different individuals as to the reality of the account, and am happy in being able to say that it is now established as an important fact in natural history by the testimony of two eye-witnesses of unquestionable veracity, the clergyman of Briamslaek, and Madame Benedictson of Stickesholm, both of whom assured me that they had seen the expedition performed repeatedly. Madame Benedictson, in particular, recollected having spent a whole afternoon, in her younger days, at the margin of a small lake on which these skilful navigators had embarked, and amusing herself and her companions by driving them away from the sides of the lake as they approached them. I was also informed that they make use of dried mushrooms as sacks, in which they convey their provisions to the river, and thence to their homes.'[220]

Before leaving the mice and rats I may say a few words upon certain mouse- and rat-like animals which scarcely require a separate section for their consideration. Of the harvesting mouse Gilbert White says:—

One of their nests I procured this autumn, most artificially plaited and composed of blades of wheat, perfectly round, and about the size of a cricket-ball, with the aperture so ingeniously closed that there was no discovering to what part it belonged. It was so compact and well filled that it would roll across the table without being discomposed, though it contained eight little mice that were naked and blind. As the nest was perfectly full, how could the dam come at her litter respectively, so as to administer a teat to each? Perhaps she opens different places for that purpose, adjusting them again when the business is over; but she could not possibly be contained herself in the ball with the young ones, which, moreover, would be daily increasing in size. This wonderful procreant cradle, an elegant instance of the efforts of instinct, was found in a wheat field, suspended on the head of a thistle.

Pallas has described the provident habits of the so-called 'rat-hare' (Lagomys), which lays up a store of grass, or rather hay, for winter consumption. These animals, which occur in the Altai Mountains, live in holes or crevices of rock. About the middle of the month of August they collect grass, and spread it out to dry into hay. In September they form heaps or stacks of the hay, which may be as much as six feet high, and eight feet in diameter. It is stored in their chosen hole or crevice, protected from the rain.

The following is quoted from Thompson's 'Passions of Animals,' pp. 235-6:—

The life of the harvester rat is divided between eating and fighting. It seems to have no other passion than that of rage, which induces it to attack every animal that comes in its way, without in the least attending to the superior strength of its enemy. Ignorant of the art of saving itself by flight, rather than yield, it will allow itself to be beaten to pieces with a stick. If it seizes a man's hand, it must be killed before it will quit its hold. The magnitude of the horse terrifies it as little as the address of the dog, which last is fond of hunting it. When a harvester perceives a dog at a distance, it begins by emptying its cheek-pouches, if they happen to be filled with grain; it then blows them up so prodigiously, that the size of the head and neck greatly exceeds that of the rest of the body. It rears itself upon its hind legs, and thus darts upon the enemy. If it catches hold, it never quits it but with the loss of its life; but the dog generally seizes it behind, and strangles it. This ferocious disposition prevents it from being at peace with any animal whatever. It even makes war against its own species. When two harvesters meet, they never fail to attack each other, and the stronger always devours the weaker. A combat between a male and a female commonly lasts longer than between two males. They begin by pursuing and biting each other, then each of them retires aside, as if to take breath. After a short interval they renew the combat, and continue to fight till one of them falls. The vanquished uniformly serves as a repast to the conqueror.

If we contrast the fearless disposition of the harvester with the timidity of the hare or rabbit, we observe that in respect of emotions, no less than in that of intelligence, the order Rodentia comprises the utmost extremes.

The so-called 'prairie-dog' is a kind of small rodent, which makes burrows in the ground, and a slight elevation above it. The animals being social in their habits, their warrens are called 'dog-towns.' Prof. Jillson, Ph.D., kept a pair in confinement (see 'American Naturalist,' vol. v., pp. 24-29), and found them to be intelligent and highly affectionate animals. These burrows he found to contain a 'granary,' or chambers set apart for the reception of stored food. With regard to the association said to exist between this animal and the owl and rattle-snake, Prof. Jillson says, 'I have seen many dog-towns, with owls and dogs standing on contiguous, and in some cases on the same mound, but never saw a snake in the vicinity.' The popular notion that the owl acts the part of sentry to the dog requires, to say the least, confirmation.

Beaver.

Most remarkable among rodents for instinct and intelligence unquestionably stands the beaver. Indeed, there is no animal—not even excepting the ants and bees—where instinct has risen to a higher level of far-reaching adaptation to certain constant conditions of environment, or where faculties, undoubtedly instinctive, are more puzzlingly wrought up with faculties no less undoubtedly intelligent. So much is this the case that, as we shall presently see, it is really impossible by the closest study of the psychology of this animal to distinguish the web of instinct from the woof of intelligence; the two principles seem here to have been so intimately woven together, that in the result, as expressed by certain particular actions, it cannot be determined how much we are to attribute to mechanical impulse, and how much to reasoned purpose.

Fortunately, the doubt that for many years shrouded the facts has been dispelled by the conscientious and laborious observations of the late Mr. Lewis H. Morgan,[221] whose work throughout displays the judicious accuracy of a scientific mind. As this is much the most trustworthy, as well as the most exhaustive essay upon the subject, I shall mainly rely upon it for my statement of facts, and while presenting these I shall endeavour to point out the psychological explanation, or difficulty of explanation, to which they are severally open.

The beaver is a social animal, the male living with his single female and progeny in a separate burrow or 'lodge.' Several of these lodges, however, are usually built close together, so as to form a beaver colony. The young quit the lodge of their parents when they enter upon the summer of their third year, seek mates, and establish new lodges for themselves. As each litter numbers three or four, and breeding is annual, it follows that a beaver lodge never or rarely contains more than twelve individuals, while the number usually ranges from four to eight. Every season, and particularly when a district becomes overstocked, some of the beavers migrate. The Indians say that in their local migrations the old beavers go up stream, and the young down; assigning as a reason that in the struggle for existence greater advantages are afforded near the source than lower down a stream, and therefore that the old beavers appropriate the former. But although lodges may thus be vacated by the old beavers, they are not left tenantless; their lease is, as it were, transferred to another beaver couple. This process of transference of ownership goes on from generation to generation, so that the same lodges are continuously occupied for centuries.

These lodges, which are always constructed in or near water, are of three kinds—the island, bank, and lake lodge. The first are formed on small islands which may happen to occur in the ponds made by the beaver-dams. The floor of the lodge is a few inches above the level of the water, and into it there open two, or sometimes more entrances:

These are made with great skill, and in the most artistic manner. One is straight, or as nearly so as possible, with its floor, which is of course under water, an inclined plane, rising gradually from the bottom of the pond into the chamber; while the other is abrupt in its descent, and often sinuous in its course. The first we shall call the 'wood entrance,' from its evident design to facilitate the admission into the chamber of their wood cuttings, upon which they subsist during the season of winter. These cuttings, as will elsewhere be shown, are of such size and length that such an entrance is absolutely necessary for their free admission into the lodge. The other, which we shall call the 'beaver entrance,' is the ordinary run-way for their exit and return. It is usually abrupt, and often winding. In the lodge under consideration, the wood entrance descended from the outer run of the chamber entrance about ten feet to the bottom of the pond in a straight line, and upon an inclined plane; while the other, emerging from the line of the chamber at the side, descended quite abruptly to the bottom of the moat or trench, through which the beavers must pass, in open water, out into the pond. Both entrances were rudely arched, with a roof of interlaced sticks filled in with mud intermixed with vegetable fibre, and were extended to the bottom of the pond or trench, with the exception of the opening at their ends. At the places where they were constructed through the floor they were finished with neatness and precision; the upper parts and sides forming an arch more or less regular, while the bottom and floor edges were formed with firm and compacted earth, in which small sticks were embedded. It is difficult to realise the artistic appearance of some of these entrances without actual inspection.

Upon the floor of the lodge there is constructed a house of sticks, brushwood, and mud, in the form of a circular or oval chamber, the size of which varies with the age of the lodge; for by a continuous process of repair (which consists in removing the decayed sticks, &c., from the interior and working them up with new material upon the exterior) the whole lodge progressively increases in size: eventually in this way the interior chamber may attain a diameter of seven or eight feet.

The 'bank lodges' are of two kinds:—

One is situated upon the bank of the stream or pond, a few feet back from its edge, and entered by an underground passage from the bed of the stream, excavated through the natural earth up into the chamber. The other is situated upon the edge of the bank, a portion of it projecting over and resting upon the bed of the channel, so as to have the floor of the chamber rest upon the bank as upon solid ground, while the external wall on the pond side projects beyond it, and is built up from the bottom of the pond.

Lastly, the 'lake lodges' are constructed on the shores of lakes, which, being usually shelving and hard, require some further variation in the structure of the lodges. These, therefore, are of interest 'as illustrations of the capacity of the beavers to vary the mode of construction of their lodges in accordance with the changes of situation.' One-half or two-thirds of the lodge is in this case 'built out upon the lake for the obvious purpose of covering the entrance, as well as for its extension into deep water.'

All these forms of lodge are, historically regarded, modified burrows.

The beaver is a burrowing animal. Indulging this propensity, he excavates chambers underground, and constructs artificial lodges upon its surface, both of which are indispensable to his security and happiness. The lodge is but a burrow above ground, covered with an artificial roof, and possesses some advantages over the latter as a place for rearing young.

There are reasons for believing that the burrow is the normal residence of the beavers, and that the lodge grew out of it, in the progress of their experience, by a process of natural suggestion..... In addition to the lodge, the same beavers who inhabit it have burrows in the banks surrounding the pond. They never risk their personal safety upon their lodge alone, which, being conspicuous to their enemies, is liable to attack..... As the entrances are always below the surface level of the pond, there are no external indications to mark the site of the burrow,

except occasionally a small pile of beaver-cuttings a foot or more high. These, the trappers affirm, are purposely left there by the beavers to keep the snow loose over the ends of their burrows during winter for the admission of air.

Mr. Morgan adds the very probable suggestion that this habit of piling up cuttings for purposes of ventilation may have constituted the origin of lodge-building.

It is but a step from such a surface-pile of sticks to a lodge, with its chamber above ground, and the previous burrow as its entrance from the pond. A burrow accidentally broken through at its upper end, and repaired with a covering of sticks and earth, would lead to a lodge above ground, and thus inaugurate a beaver lodge out of a broken burrow.

It is evidence of an important local variation of instinct, that in the Cascade Mountains the beavers live chiefly in burrows in the banks of streams, and rarely construct either lodges or dams. Dr. Newbury, in his report on the zoology of Oregon and California, says: 'We found the beavers in numbers, of which, when applied to beavers, I had no conception,' and yet 'we never saw their houses and seldom a dam.' Whether this local variation be due to a relapse from dam- and lodge-building instincts to the primitive burrowing instinct, or to a failure in the full development of the newer instinct, is immaterial. Probably, I think, looking to the high antiquity of the building instinct, and also to its being occasionally manifested by the Californian beavers, their case is to be regarded as one of relapsing instinct.

In selecting the site of their lodges beavers display much sagacity and forethought.

The severity of the climate in these high northern latitudes lays upon them the necessity of so locating their lodges as to be assured of water deep enough in their entrances, and also so protected in other respects, as not to freeze to the bottom;[222] otherwise they would perish with hunger, locked up in ice-bound habitations. To guard against this danger, the dam, also, must be sufficiently stable through the winter to maintain the water at a constant level; and this level, again, must be so adjusted with reference to the floor of the lodge as to enable them, at all times, to take in their cuttings from without as they are needed for food. When they leave their normal mode of life in the banks of the rivers, and undertake to live in dependence upon artificial ponds of their own formation, they are compelled to prevent the consequences of their acts at the peril of their lives.

On the upper Missouri, where the banks of the river are for miles together vertical, and rising from three to eight feet above its surface, the beavers resort to the device of making what are called 'beaver slides.' These are narrow inclined planes cut into the banks at intervals, the angle of inclination being 45° to 60°, so as to form a gradual descent from a point a few feet back from the edge of the bank to the level of the river. As Mr. Morgan observes, 'they furnish another conspicuous illustration of the fact that beavers possess a free intelligence, by means of which they are enabled to adapt themselves to the circumstances in which they are placed.'

Coming now to the habits of these animals in connection with the procuring and storing of food, it is first to be observed that 'the thick bark upon the trunks of large trees, and even upon those of medium size, is unsuitable for food; but the smaller limbs, the bark of which is tender and nutritious, afford the aliment which they prefer.' To obtain this food, the animals, as is well known, fell the trees by gnawing a ring round their base. Two or three nights' successive work by a pair of beavers is enough to bring down a half-grown tree, 'each family being left to the undisturbed enjoyment of the fruits of their own toil and industry.' 'When the tree begins to crackle they desist from cutting, which they afterwards continue with caution until it begins to fall, when they plunge into the pond usually, and wait concealed for a time, as if fearful that the cracking noise of the tree-fall might attract some enemy to the place.' It is of much interest that the beavers when thus felling trees know how to regulate the direction of the fall; by gnawing chiefly on the side of the trunk remote from the water, they make the tree fall towards the water, with the obvious purpose of saving as much as possible the labour of subsequent transport. For as soon as a tree is down, the next work is to cut off the branches, or such as are from two to six inches in diameter; and then, when they have been cleared of their twigs, to divide them into lengths sufficient to admit of the beavers transporting them to their lodges. The cutting into lengths is effected by making a number of semi-sections through the branch at more or less equal distances as it lies upon the ground, and then turning the branch half round and continuing the sections from the opposite side. 'To cut it (the branch) entirely through from the upper side would require an incision of such width as to involve a loss of labour.' The thicker the branch, the closer together are the sections made, and consequently the shorter are the resulting portions—the reason, of course, being that the strength of the animal would not be sufficient to transport a thick piece of timber of the same length as a thin piece which it is only just able to manage.

In moving cuttings of this description they are quite ingenious. They shove and roll them with their hips, using also their legs and tails as levers, moving sideways in the act. In this way they move the larger pieces from the more or less elevated ground on which the deciduous trees are found, over the uneven but generally descending surface to the pond..... After one of these cuttings has been transported to the water, a beaver, placing one end of it under his throat, pushes it before him to the place where it is to be sunk.

The sinking is no doubt partly effected by mere soaking; but there is also some evidence to show that the beavers have a method of anchoring down their supplies. Thus they have been observed towing pieces of brush to their lodges, and then, while holding the large end in their mouths, 'going down with it to the bottom, apparently to fix it in the mud bottom of the pond.' A brush-heap being thus formed, the cuttings from the felled trees are stuck through the brushwork, without which 'protection they would be liable to be floated off by the strong currents, and thus be lost to the beavers at the time when their lives might depend upon their safe custody.'

Lastly, as a method whereby the beavers can save themselves the trouble of cutting, transporting, and anchoring all at the same time, they are prone, when circumstances permit, to fell a tree growing near enough to their pond to admit of its branches being submerged in the water. The animals then well know that the branches and young shoots will remain preserved throughout the winter without any further trouble from them. But of course the supply of trees thus growing conveniently near a beaver-pond is too limited to last long.

We have next to consider the most wonderful, and I think the most psychologically puzzling structures that are presented as the works of any animal; I mean, of course, the dams and canals.

The object of the dam is that of forming an artificial pond, the use of which is to afford refuge to the animals as well as water connection with their lodges. Therefore the level of the pond must in all cases be higher than that of the lodge- and burrow-entrances, and it is usually maintained two or three feet above them.

As the dam is not an absolute necessity to the beaver for the maintenance of his life—his normal habitation being rather natural ponds and rivers, and the burrows in their banks—it is, in itself considered, a remarkable fact that he should have voluntarily transferred himself, by means of dams and ponds of his own construction, from a natural to an artificial mode of life.

In external appearance there are two distinct kinds of dams, although all are constructed on the same principle. One, the more common, is the 'stick dam,' which is composed of interlaced stick and pole work upon the lower face, with an embankment of earth mixed with the same materials on the upper face. The other is the 'solid-bank dam,' which differs from the former in having much more brush and mud worked into its construction, especially upon its surfaces; the result being that the whole formation looks like a solid bank of earth. In the first kind of dam the surplus water percolates through the structure along its entire length; but in the second kind the discharge takes place through a single furrow in the crest, which, remarkable though the fact unquestionably is, the beavers intentionally form for this purpose.

In the construction of the dam, stones are used here and there to give down-weight and solidity. These stones weigh from one to six pounds, and are carried by the beavers in the same way as they carry their mud—namely, by walking on their hind legs while holding their burden against the chest with their fore-paws. The solid dams are much firmer in their consistence than the stick dams; for while a horse might walk across the former, the weight of a man would be too great to be sustained by the latter. Each kind of dam is adapted to the locality in which it is built, the difference between the two kinds being due to the following cause. As a stream gains water and force in its descent, it develops banks, and also a broader and deeper channel. These banks assume a vertical form in the level areas where the soil is alluvial. Thus, an open stick-work dam could not in such places be led off from either bank; and even if it could, the force and depth of the stream would carry it away. Therefore in such places the beavers build their solid-bank dams, while in shallow and comparatively sluggish waters they content themselves with the smaller amount of labour involved in the building of a stick dam.

To give some idea of the proportions of a dam, I shall epitomise a number of measurements given by Mr. Morgan:—

Feet
Height of structure from base line 2 to 6
Difference in depth of water above and below dam 4 to 5
Width of base or section 6 to 18
Length of slope, lower face 6 to 13
Length of slope, upper face 4 to 8

The only other measurement is that of length, and this, of course, varies with the width of water to be spanned. Where this width is considerable the length of a dam may be prodigious, as the following quotation will show:—

Some of the dams in this region are not less remarkable for their prodigious length, a statement of which, in fact, would scarcely be credited unless verified by actual measurement. The largest one yet mentioned measures 260 feet, but there are dams 400 and even 500 feet long.

There is a dam in two sections, situated upon a tributary of the main branch of the Esconauba River, about a mile and a half north-west of the Washington Main. One section measures 110 and the other 400 feet, with an interval of natural bank, worked here and there, of 1,000 feet. A solid-bank dam, 20 feet in length, was first constructed across the channel of the stream, from bank to bank, with the usual opening for the surplus water, five feet wide. As the water rose and overflowed the bank on the left side, the dam was extended for 90 feet, until it reached ground high enough to confine the pond. This natural bank extended up the stream, and nearly parallel with it, for 1,000 feet, where the ground again subsided, and allowed the water in the upper part of the pond to flow out and around into the channel of the stream below the dam. To meet this emergency a second dam, 420 feet long, was constructed. For the greater part of its length it is low, but in some places it is two and a half and three feet high, and constructed of stick-work on the land, and with an earth embankment on its outer face. In effect, therefore, it is one structure 1,530 feet in length, of which 530 feet in two sections is artificial, and the remainder natural bank, but worked here and there where depressions in the ground required raising by artificial means.

It is truly an astonishing fact that animals should engage in such vast architectural labours with what appears to be the deliberate purpose of securing, by such very artificial means, the special benefits that arise from their high engineering skill. So astonishing, indeed, does this fact appear, that as sober-minded interpreters of fact we would fain look for some explanation which would not necessitate the inference that these actions are due to any intelligent appreciation, either of the benefits that arise from the labour, or of the hydrostatic principles to which this labour so clearly refers. Yet the more closely we look into the subject, the more impossible do we find it to account for the facts by any such easy method. Thus it seems perfectly certain that the beavers, properly and strictly speaking, understand the use of their dams in maintaining a certain level of water. For it is unquestionable that in the solid-bank dams, as already observed, a regular opening or trough is cut at one part of its crest to provide for the overflow; and now it has to be added that this opening is purposely widened or narrowed with reference to the amount of water in the stream at different times, so as to ensure the maintenance of a constant level in the pond. Similarly, though by different means, the same end is secured in the case of the stick dams. For 'in most of these dams the rapidity or slowness with which the surplus water is discharged is undoubtedly regulated by the beavers; otherwise the level of the pond would continually vary. There must be a constant tendency to enlarge the orifices through which the water passes,' when the stream is small, and vice versÂ; otherwise the lodges would be either inundated or have their sub-aquatic entrances exposed.[223] Moreover, a very little consideration is enough to show that in stick dams the tendency to increased leakage from the effects of percolation, and to a settling down of the dam as its materials decay from underneath, must demand unceasing vigilance and care to avert the consequences. And accordingly it is found that 'in the fall of the year a new supply of materials is placed upon the lower face of these dams to compensate this waste from decay.'

Now, it is obvious that we have here presented a continual variation of conditions, imposed by continual variations in the amount of water coming down; and it is a matter of observation that these variations are met by the beavers in the only way that they can be met—namely, by regulating the amount of flow taking place through the dams. It will therefore be seen that we have here to consider a totally different case from that of the operation of pure instinct, however wonderful such operation may be. For the adaptations of pure instinct only have reference to conditions that are unchanging; so that if in this case we suppose pure instinct to account for all the facts, we must greatly modify our ideas of what pure instinct is taken to mean. Thus we must suppose that when the beavers find the level of their ponds rising or falling, the discomfort which they experience acts as a stimulus to cause them, without intelligent purpose, either to widen or to narrow the orifices in their dams as the case may be. And not only so, but the conditions of stimulation and response must be so nicely balanced that the animals widen or narrow these orifices with a more or less precise quantitative reference to the degree of discomfort, actual or prospective, which they experience. Now it seems to me that even thus far it is an extremely difficult thing to believe that the mechanism of pure or wholly unintelligent instinct could admit of sufficient refinement to meet so complex a case of compensating adaptation; and, as we shall immediately see, this difficulty increases still more as we contemplate additional facts relating to these structures.

Thus it sometimes happens that in large dams the pressure of the water which they keep back is so considerable that their stability is endangered. In such cases it has been observed by Mr. Morgan that, at a short distance beneath the main dam, another and lower dam is thrown across the stream, with the result of forming a shallow pond between the two. This pond is

Of no apparent use for beaver occupation, but yet subserving the important purpose of setting back water to the depth of twelve or fifteen inches; .... and the small dam, by maintaining the water a foot deep below the great dam, diminishes to this extent the difference in level above and below, and neutralises to the same extent the pressure of the water in the pond above against the main structure.

'Whether,' adds Mr. Morgan, with commendable caution, 'the lower dam was constructed with this motive and for this object, or is explainable on some other hypothesis, I shall not venture an opinion.' But as, he further adds, 'I have also found the same precise work repeated below other large dams,' we are led to conclude that their correlation cannot at least be accidental; and as it is of so definite a character, there really seems no 'other hypothesis' open to us than that of its having reference to the stability of the main dam. Yet, if this is the case, it becomes in my opinion simply impossible to attribute the fact to the operation of pure instinct.

Again, Mr. Morgan observed one case in which, higher up stream than the main dam, there was constructed another dam, ninety-three feet long, and two and a half feet high at the centre:—

A dam at this point is apparently of no conceivable use to improve the lake for beaver occupation. It has one feature, also, in which it differs from other dams except those upon lake outlets, and that consists in its elevation, at all points, of about two feet above the level of the lake at ordinary stages of the water. In all other dams, except those upon lake outlets, and in most of the latter, the water stands quite near their crests, while in the one under consideration it stood about two feet below it. This fact suggests at least the inference, although it may have but little of probability to sustain it, that it was constructed with special reference to sudden rises of the lake in times of freshet, and that it was designed to hold this surplus water until it could be gradually discharged through the dam into the great space below. It would at least subserve this purpose very efficiently, and thus protect the dam below it from the effects of freshets. To ascribe the origin of this dam to such motives of intelligence is to invest this animal with a higher degree of sagacity than we have probable reason to concede to him, and yet it is proper to mention the relation in which these dams stand to each other—whether that relation is regarded as accidental or intentional.

As before, we have here to commend the caution displayed by the closing sentence; but, as useless dams are not found in other places, the inference clearly is that the dam in question, both as regards its exceptional position and exceptional height, can only be explained by supposing the structure to have been designed for the use which it unquestionably served. That is to say, if we do not entertain this explanation, there is no other to be suggested; and although in any ordinary or occasional instance of the display of animal intelligence in such a degree as this I should not hesitate to attribute the facts to accident, in the case of the beaver there are such a multitude of constantly recurring facts, all and only referable to a practical though not less extraordinary appreciation of hydrostatic principles, that the hypothesis of accident must here, I think, be laid aside. To substantiate this statement I shall detail the facts concerning the beaver-canals.

As Mr. Morgan, who first discovered and described these astonishing structures, observes,—

Remarkable as the dam may still be considered, from its structure and objects, it scarcely surpasses, if it may be said to equal, these water-ways, here called canals, which are excavated through the low lands bordering their ponds for the purpose of reaching the hard wood, and for affording a channel for its transportation to their lodges. To conceive and execute such a design presupposes a more complicated and extended process of reasoning than that required for the construction of a dam, and, although a much simpler work to perform when the thought was fully developed, it was far less to have been expected from a mute animal.

These canals are developed in this way. One of the principal objects served by a dam thrown across a small stream, is that of flooding the low ground so as to obtain water connection with the first high ground upon which hard wood is to be found, such connection being convenient, or even necessary, for the purposes of transport.

Where the pond fails to accomplish this fully, and also where the banks are defined and mark the limits of the pond, the deficiency is supplied by the canals in question. On descending surfaces, as has elsewhere been stated, beavers roll and drag their short cuttings down into the ponds. But where the ground is low it is generally so uneven and rough as to render it extremely difficult, if not impossible, for the beavers to move them for any considerable distance by physical force. Hence the canal for floating them across the intervening level ground to the pond. The necessity for it is so apparent as to diminish our astonishment at its construction; and yet that the beaver should devise a canal to surmount this difficulty is not the less remarkable.

The canals, which are made by excavation, are usually from three to five feet wide, three feet deep, and perhaps hundreds of feet long—the length of course depending on the distance between the lodge and the wood supply. They are cut in the form of trenches, having perpendicular sides and abrupt ends. All roots of trees, under-brush, &c., are cleared away in their course, so as to afford an unobstructed passage. These canals are of such frequent occurrence that it is impossible to attribute them to accident; they are evidently made, at the cost of much labour, with the deliberate purpose of putting them to the use for which they are designed. In executing this purpose there is sometimes displayed a depth of engineering forethought over details of structure required by the circumstances of special localities, which is even more astonishing than the execution of the general idea. Thus it not unfrequently happens that when a canal has been run for a certain distance, a rise in the level of the ground renders it impossible to continue the structure further from the water supply or lodge-pond, without either incurring a great amount of labour in digging the canal with progressively deepening sides, or leaving the trench empty of water, and so useless. In such cases the beavers resort to various expedients, according to the nature of the ground.

drawn map

Mr. Morgan gives an interesting sketch of one such case, where the canal is excavated through low ground for a distance of 450 feet, when it reaches the first rise of ground, and throughout this distance, being level with the pond, it is supplied with water from this source. Where the rise begins a dam is made, and the canal is then continued for 25 feet at a level of one foot higher than before. This higher level reach is supplied with water collected from still higher levels by another dam, extending for 75 feet upon one side of the canal and 25 feet on the other, in the form of a crescent with its concavity directed towards the highlands, so as to collect all the drainage water, and concentrate it into the second reach of the canal. Beyond this larger dam there is another abrupt rise of a foot, and the canal is there continued for 47 feet more, where a third dam is built resembling the second in construction, only having a still wider span on either side of the canal (142 feet), so as to catch a still larger quantity of drainage water to supply the third or uppermost reach of the canal. We have, therefore, here presented, not only a perfect application of the principle of 'locks,' which are used in canals of human construction, but also the principle of collecting water to supply the reaches situated on the slope by means of elaborately constructed dams of wide extent, and of the best form for the purpose. There is thus shown much too great a concurrence of engineering principles to the attainment of one object to admit of our attributing the facts to accident. On this structure Mr. Morgan observes:—

The crests of these dams where they cross the canals are depressed, or worn down, in the centre, by the constant passage of beavers over them while going to and fro and dragging their cuttings. This canal with its adjuncts of dams and its manifest objects is a remarkable work, transcending very much the ordinary estimates of the intelligence of the beaver. It served to bring the occupants of the pond into easy connection by water with the trees that supplied them with food, as well as to relieve them from the tedious and perhaps impossible task of transporting their cuttings 500 feet over uneven ground unassisted by any descent.

Again, in another case, also sketched by Mr. Morgan, another device is resorted to, and one which, having reference to the particular circumstances of the case, is the best that could have been adopted. Here the canal, proceeding from the pond to the woodland 150 feet distant, encounters at the woodland a rising slope covered with hard wood. Thereupon the canal bifurcates, and the two diverging branches or prongs are carried in opposite directions along the base of the woodland rise, one for a distance of 100 and the other for 115 feet. The level being throughout the same, the water from the pond supplies the two branch-canals as well as the trunk. Both branches end with abrupt vertical faces. Now the object of these branches is sufficiently apparent:—

After the rising ground, and with it the hard wood trees, were reached at the point where it branches, there was no very urgent necessity for the branches. But their construction along the base of the high ground gave them a frontage upon the canal of 215 feet of hard-wood lands, thus affording to them, along this extended line, the great advantages of water transportation for their cuttings.

One more proof of engineering purpose in the construction of canals will be sufficient to place beyond all question the fact that beavers form these canals, as they form their dams, with a far-seeing perception of the suitability of highly artificial means to the attainment of particular ends, under a variety of special circumstances. Mr. Morgan observed one or two instances where the land included in a wind or loop of a river was cut through by a beaver canal across the narrowest part, 'apparently to shorten the distance in going up and down by water.' Judging from the figures which he gives, drawn to measurement, there can be no question that such was the object; and as these structures may be one or two hundred feet in length, and represent the laborious excavation of some 1,500 cubic feet of soil, the animals must be actuated by the most vivid conception of the subsequent saving in labour that is to be effected by making an artificial communication across the chord of an arc, instead of always going round the natural curve of a stream.

Regarding now together all these facts relating to the psychology of the beaver, it must be confessed, as I said at the outset, that we have presented to us a problem perhaps the most difficult of any that we have to encounter in the whole range of animal intelligence. On the one hand, it seems incredible that the beaver should attain to such a level of abstract thought as would be implied by his forming his various structures with the calculated purpose of achieving the ends which they undoubtedly subserve. On the other hand, as we have seen, it seems little less than impossible that the formation of these structures can be due to instinct. Yet one or other hypothesis, either singly or in combination, must be resorted to. The case, it will be observed, thus differs from that of the more wonderful performances of instinct elsewhere, such as that of ants and bees, inasmuch as the performances here are so complex and varied, as well as having reference to physical principles of a much more recondite or less observable nature. The case from its theoretical side being thus one of much difficulty, I think it will be better to postpone its discussion till in 'Mental Evolution' I come to treat of the whole subject of instinct in relation to intelligence.

I must not, however, conclude this epitome of the facts without alluding to the only other publication on the habits of the beaver which is of distinctly scientific value. This is a short but interesting paper by Prof. Alexander Agassiz.[224] He says that the largest dam he has himself seen measured 650 feet in length, and 3½ feet in height, with a small number of lodges in the vicinity of the pond. The number of lodges is always thus very small in proportion to the size of the dam, the greatest number of lodges that he has observed upon one pond being five. It is evident from this that beavers are not really gregarious in their habits, and that their dams and canals 'are the work of a comparatively small number of animals; but to make up for the numbers the work of succeeding inhabitants of any one pond must have been carried on for centuries to accomplish the gigantic results we find in some localities.'

In one case Prof. Agassiz obtained what may be termed geological evidence of the truth of an opinion advanced by Mr. Morgan, that beaver-works may be hundreds if not thousands of years in course of continuous formation. For the purpose of obtaining a secure foundation for a mill dam erected above a beaver dam, it was necessary to clear away the soil from the bottom of the beaver pond. This soil was found to be a peat bog. A trench was dug into the peat 12 feet wide by 1,200 feet long, and 9 feet deep; all the way along this trench old stumps of trees were found at various depths, some still bearing marks of having been gnawed by beavers' teeth. Agassiz calculated the growth of the bog as about a foot per century, so that here we have tolerably accurate evidence of an existing beaver dam being somewhere about a thousand years old.

The gradual growth of these enormous dams has the effect of greatly altering the configuration of the country where they occur. By taking levels from dams towards the sources of streams on which they occur, Agassiz was able ideally to reconstruct the original landscape before the growth of the dams, and he found that, 'from the nature of the surrounding country, the open spaces now joining the beaver ponds—the beaver meadows where the trees are scanty or small—must at one time have been all covered with forests.' At first the beavers 'began to clear the forest just in the immediate vicinity of the dams, extending in every direction, first up the stream as far as the nature of the creek would allow, and then laterally by means of their canals, as far as the level of the ground would allow, thus little by little clearing a larger area according to the time they have occupied any particular place,' In this way beavers may change the whole aspect of large tracts of country, covering with water a great extent of ground which was once thickly wooded.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page