CHAPTER VII.

Previous
REMAINING ARTICULATA.
The Hymenoptera being so much the most intelligent order, not merely of insects, but of Invertebrata, and the Arachnida having been now considered, very little space need be occupied with the remaining classes of the Articulata.

Coleoptera.

Sir John Lubbock, in his first paper on Bees and Wasps, quotes the following case from Kirby and Spence, with the remarks which I append:—

The first of these anecdotes refers to a beetle (Ateuchus pilularius) which, having made for the reception of its eggs a pellet of dung too heavy for it to move, repaired to an adjoining heap, and soon returned with three of his companions. 'All four now applied their united strength to the pellet, and at length succeeded in pushing it out; which being done, the three assistant beetles left the spot and returned to their own quarters.' This observation rests on the authority of an anonymous German artist; and though we are assured that he was a 'man of strict veracity,' I am not aware that any similar fact has been recorded by any other observer.

Catesby, however, says:—

I have attentively admired their industry, and their mutual assisting of each other in rolling these globular balls from the place where they made them, to that of their interment, which is usually a distance of some yards, more or less. This they perform back foremost, by raising their hind parts and pushing away the ball with their hind feet. Two or three of them are sometimes engaged in trundling one ball, which from meeting with impediments, on account of the unevenness of the ground, is sometimes deserted by them. It is, however, attempted by others with success, unless it happen to roll into some deep hollow or ditch, where they are accustomed to leave it; but they continue their work by rolling off the next ball that comes in their way. None of them seem to know their own balls, but an equal care for the whole appears to affect all the community. They form these pellets while the dung remains moist, and leave them to harden in the sun before they attempt to roll them. In their rolling of them from place to place, both they and the balls may frequently be seen tumbling about over the little eminences that are in their way. They are not, however, easily discouraged, and by repeating their attempts usually surmount the difficulties.[90]

BÜchner speaks of the fact that dung-beetles co-operate in their work as one that is well established, but gives no authorities or references.[91] A friend of my own, however, informs me that she has witnessed the fact; and in view of analogous observations made on other species of Coleoptera, I see no reason to doubt this one. Some of these observations I may here append.

Herr Gollitz writes to BÜchner thus:—

Last summer, in the month of July, I was one day in my field, and found there a mound of fresh earth like a molehill, on which a striped black and red beetle, with long legs, and about the size of a hornet, was busy taking away the earth from a hole that led like a pit into the mound, and levelling the place. After I had watched this beetle for some time, I noticed a second beetle of the same kind, which brought a little lump of earth from the interior to the opening of the hole, and then disappeared again in the mound; every four or five minutes a pellet came out of the hole, and was carried away by the first-named beetle. After I had watched these proceedings for about half an hour, the beetle which had been working underground came out and ran to its comrade. Both put their heads together, and clearly held a conversation, for immediately afterwards they changed work. The one which had been working outside went into the mound, the other took the outside labour, and all went on vigorously. I watched the affair still for a little longer, and went away with the notion that these insects could understand each other just like men. KlingelhÖffer, of Darmstadt (in Brehm, loc. cit., ix., p. 86), says:—A golden running beetle came to a cockchafer lying on its back in the garden, intending to eat it, but was unable to master it; it ran to the next bush, and returned with a friend, whereupon the two overpowered the cockchafer, and pulled it off to their hiding-place.

Similarly, there is no doubt that the burying beetles (Nicrophorus) co-operate.

Several of them unite together to bury under the ground, as food and shelter for their young, some dead animal, such as a mouse, a toad, a mole, a bird, &c. The burial is performed because the corpse, if left above ground, would either dry up, or grow rotten, or be eaten by other animals. In all these cases the young would perish, whereas the dead body lying in the earth and withdrawn from the outer air lasts very well. The burying beetles go to work in a very well-considered fashion, for they scrape away the earth lying under the body, so that it sinks of itself deeper and deeper. When it is deep enough down, it is covered over from above. If the situation is stony, the beetles with united forces and great efforts drag the corpse to some place more suitable for burying. They work so diligently that a mouse, for instance, is buried within three hours. But they often work on for days, so as to bury the body as deeply as possible. From large carcasses, such as those of horses, sheep, &c., they only bury pieces as large as they can manage.[92]

Lastly, Clarville gives a case of a burying beetle which wanted to carry away a dead mouse, but, finding it too heavy for its unaided strength, went off, like the beetles previously mentioned, and brought four others to its assistance.[93]

A friend of Gleditsch fastened a dead toad, which he desired to dry, upon the top of an upright stick. The burying beetles were attracted by the smell, and finding that they could not reach the toad, they undermined the stick, so causing it to fall with the toad, which was then buried safe out of harm's way.[94]

A converse exemplification of beetle-intelligence is given by G. Berkeley.[95] He saw a beetle carrying a dead spider up a heath plant, and hanging it upon a twig of the heath in so secure a position, that when the insect had left it Mr. Berkeley found that a sharp shake of the heather would not bring the dead spider down. As the burying beetle preserves its treasure by hiding it out of sight below ground, so this beetle no doubt secured the same end but by other means; 'seeing,' as Mr. Berkeley observes, 'that if it did not hang up its prey, it might fall into the hands of other hunters, it took all possible pains to find out the best store-room for it.'

The above instances of beetle-intelligence lead me to credit the following, which has been communicated to me by Dr. Garraway, of Faversham. On a bank of moss in the Black Forest he saw a beetle alight with a caterpillar which it was carrying, and proceed to excavate a cylindrical hole in the peat, about an inch and a half deep, into which, when completed, it dropped the caterpillar, and then flew away through the pines. 'I was struck,' says my correspondent, 'with the creature's folly in leaving the whole uncovered, as every curious wayfaring insect would doubtless be tempted to enter therein. However, in about a minute the beetle returned, this time carrying a small pebble, of which there were none in the immediate vicinity, and having carefully fitted this into the aperture, fled away into space.'

Earwig.

I must devote a short division of this chapter to the earwig. M. Geer describes a regular process of incubation as practised by the mother insect. He placed one with her eggs in a box, and scattered the eggs on the floor of the latter. The earwig, however, carried them one by one into a certain part of the box, and then remained constantly sitting upon the heap without ever quitting it for a moment. When the eggs were hatched, the young earwigs kept close to their mother, following her about everywhere, and often running under her abdomen, just as chickens run under a hen.[96]

A young lady, who objects to her name being published, informs me that her two younger sisters (children) are in the habit of feeding every morning with sugar an earwig, which they call 'Tom,' and which crawls up a certain curtain regularly every day at the same hour, with the apparent expectation of getting its breakfast. This resembles analogous instances which, have been mentioned in the case of spiders.

Dipterous Insects.

The gad-fly, whose eggs are hatched out in the intestines of the horse, exhibits a singular refinement of instinct in depositing them upon those parts of the horse which the animal is most likely to lick. For, according to Bingley and other writers, 'the inside of the knee is the part on which these flies principally deposit their eggs; and next to this they fix them upon the sides, and the back part of the shoulder; but almost always in places liable to be licked by the tongue.' The female fly deposits her eggs while on the wing, or at least scarcely appears to settle when she extends her ovidepositor to touch the horse. She lays only a single egg at a time—flying away a short distance after having deposited one in order to prepare another, and so on.

The following anecdote, which I quote from Jesse, seems to indicate no small degree of intelligence on the part of the common house-fly—intelligence, for instance, the same both in kind and degree as that which was displayed by Sir John Lubbock's pet wasp already mentioned:

Slingsby, the celebrated opera dancer, resided in the large house in Cross-deep, Twickenham, next to Sir Wathen Waller's, looking down the river. He was fond of the study of natural history, and particularly of insects, and he once tried to tame some house-flies, and preserve them in a state of activity through the winter. For this purpose, quite at the latter end of autumn, and when they were becoming almost helpless, he selected four from off his breakfast-table, put them upon a large handful of cotton, and placed it in one corner of the window nearest the fireplace. Not long afterwards the weather became so cold that all flies disappeared except these four, which constantly left their bed of cotton at his breakfast-time, came and fed at the table, and then returned to their home. This continued for a short time, when three of them became lifeless in their shelter, and only one came down. This one Slingsby had trained to feed upon his thumb-nail, by placing on it some moist, sugar mixed with a little butter. Although there had been at intervals several days of sharp frost, the fly never missed taking his daily meal in this way till after Christmas, when, his kind preserver having invited a friend to dine and sleep at his house, the fly, the next morning, perched upon the thumb of the visitor, who, being ignorant that it was a pet of his host's, clapped his hand upon it, and thus put an end to Mr. Slingsby's experiment.[97]

Crustacea.

There is no doubt that these are an intelligent group of animals, although I have been able to collect but wonderfully little information upon the subject. Mr. Moseley, F.R.S., in his very interesting work, 'Notes by a Naturalist on the Challenger,' says (p. 70):—

In the tropics one becomes accustomed to watch the habits of various species of crabs, which there live so commonly an aËrial life. The more I have seen of them, the more have I been astonished at their sagacity.

And again (pp. 48-9):—

A rock crab (Grapsus stringosus) was very abundant, running about all over the rocks, and making off into clefts on one's approach. I was astonished at the keen and long sight of this crab. I noticed some made off at full speed to their hiding-places at the instant that my head showed above a rock fifty yards distant.....

At Still Bay, on the sandy beach of which a heavy surf was breaking, I encountered a sand crab (Œcypoda ippeus), which was walking about, and got between it and its hole in the dry sand above the beach. The crab was a large one, at least three inches in breadth of its carapace..... With its curious column-like eyes erect, the crab bolted down towards the surf as the only escape, and as it saw a great wave rushing up the shelving shore, dug itself tight into the sand, and held on to prevent the undertide from carrying it into the sea. As soon as the wave had retreated, it made off full speed for the shore. I gave chase, and whenever a wave approached, the crab repeated the manoeuvre. I once touched it with my hand whilst it was buried and blinded by the sandy water, but the surf compelled me to retreat, and I could not snatch hold of it for fear of its powerful claws. At last I chased it, hard pressed, into the surf in a hurry, and being unable to get proper hold in time, it was washed into the sea. The crab evidently dreaded going into the sea..... They soon die when kept a short time beneath the water.

The land crabs of the West Indies and North America descend from their mountain home in May and June, to deposit their spawn in the sea. They travel in such swarms that the roads and woods are covered with them. They migrate in a straight line, and rather than allow themselves to be deflected from it, 'they scale the houses, and surmount every other obstacle that lies in their way' (Kirby). They travel chiefly by night, and when they arrive at the sea-shore they 'bathe three or four different times,' and then 'commit their eggs to the waves.' They return to the mountains by the same route, but only the most vigorous survive the double journey.

Prof. Alex. Agassiz details some interesting observations on the behaviour of young hermit crabs reared by himself 'from very young stages,' when first presented with shells of mollusks. 'A number of shells, some of them empty, others with the animal living, were placed in a glass dish with the young crabs. Scarcely had the shells reached the bottom before the crabs made a rush for the shells, turned them round and round, invariably at the mouth, and soon a couple of the crabs decided to venture in, which they did with remarkable alacrity.' The crabs which obtained for their share the shells still inhabited by living mollusks, 'remained riding round upon the mouth of their future dwelling, and, on the death of the mollusk, which generally occurred soon after in captivity, commenced at once to tear out the animal, and having eaten him, proceeded to take its place within the shell.'[98]

There is a species of small crustacean (Podocerus capillatus) described by Mr. Bates, which builds a nest to contain its eggs. The nest is in the form of a hollow cone, built upon seaweed, and composed of fine thread-like material closely interlaced. 'These nests,' says Mr. Bates, 'are evidently used as a place of refuge and security, in which the parent protects and keeps her brood of young until they are old enough to be independent of the mother's care.'

Dr. Erasmus Darwin tells us, on the authority of a friend on whose competency as an observer he relied, that the common crab during the moulting season stations as sentinel an unmoulted or hard-shelled individual, to prevent marine enemies from injuring moulted individuals in their unprotected state. While thus mounting guard the hard-shelled crab is much more courageous than at other times, when he has only his own safety to consider. But these observations require to be corroborated.

In 'Nature' (xv., p. 415) there is a notice of a lobster (Homarus marinus) in the Rothesay Aquarium which attacked a flounder that was confined in the same tank with him, and having devoured a portion of his victim, buried the rest beneath a heap of shingle, on which he 'mounted guard.' 'Five times within two hours was the fish unearthed, and as often did the lobster shovel the gravel over it with his huge claws, each time ascending the pile and turning his bold defensive front to his companions.'

The following is quoted from Mr. Darwin's 'Descent of Man' (pp. 270-1):—

A trustworthy naturalist, Mr. Gardner, whilst watching a shore-crab (Gelasimus) making its burrow, threw some shells towards the hole. One rolled in, and three other shells remained within a few inches of the mouth. In about five minutes the crab brought out the shell which had fallen in, and carried it away to the distance of a foot; it then saw the three other shells lying near, and evidently thinking that they might likewise roll in, carried them to the spot where it had laid the first. It would, I think, be difficult to distinguish this act from one performed by man by the aid of reason.

Mr. Darwin also alludes to the curious instinctive habits of the large shore-crab (Birgus latro), which feeds on fallen cocoa-nuts 'by tearing off the husk fibre by fibre; and it always begins at that end where the three eye-like depressions are situated. It then breaks through one of these eyes by hammering with its heavy front pincers, and turning round, extracts the albuminous core with its narrow posterior pincers.'

Remarkable cases occur of commensalism between certain crabs and sea-anemones, and they betoken much intelligence. Thus Professor MÖbius says in his 'BeitrÄge zur Meeresfauna der Insel Mauritius' (1880) that there are two crabs belonging to different genera which have the habit of firmly grasping a sea-anemone in each claw and carrying them about, presumably to secure some benefit to themselves. The more familiar case of the species of anemone which lives on the shells tenanted by hermit crabs is of special interest to us on account of a remarkable observation published by Mr. Gosse, F.R.S. (Zoologist, June, 1859). He found that on his detaching the anemone (Adamsia) from the shell, the hermit crab always took it up in its claws and held it against the shell 'for the space of ten minutes at a time, until fairly attached by a good strong base.' It was said by the late Dr. Robert Ball that when the common Sagartia parasitica is attached to a stone and a hermit crab is placed in its vicinity, the anemone will leave the stone and attach itself to the hermit's shell (Critic, March 24, 1860).

Intelligence of LarvÆ of Certain Insects.

I shall now allude to some of the more interesting facts touching the psychology of insects when in their immature or larval state. This is an interesting topic from the point of view which we occupy as evolutionists, because a caterpillar is really a locomotive and self-feeding embryo, whose entire mental constitution is destined to undergo a metamorphosis no less complete and profound than that which is also destined to take place in its corporeal structure. Yet although the caterpillar has an embryo psychology, its instincts and even intelligence often seem to be higher or more elaborated than is the case with the imago form. Where such is the case the explanation of course must be that it is of more importance to the species that the larval form should be in a certain measure intelligent than that the imago form should be so. Every larva is a potential imago, or breeding individual; therefore its life is of no less value to the species during its larval than during its adult existence; and if certain instincts or grades of intelligence are of more use to it during the former than during the latter period, of course natural selection would determine the unusual event which we seem here in some cases to see—namely, that the embryo should stand on a higher level of psychological development than the adult.

I may most fitly begin under this heading with the remarkable instincts of the so-called 'ant-lion,' which is the larva of a neuropterous insect, the common Myrmeleon (M. formicarium). I quote the following account of its habits from Thompson's 'Passions of Animals' (p. 258):—

The devices of the ant-lion are still more extraordinary if possible. He forms, with astonishing labour and perseverance, a pit in the shape of a funnel, in a dry sandy soil, under some old wall or other spot protected from the wind. His pit being finished, he buries himself among the sand at the bottom, leaving only his horns visible, and thus waits patiently for his prey. When an ant or any other small insect happens to walk on the edge of the hollow, it forces down some of the particles of sand, which gives the ant-lion notice of its presence. He immediately throws up the sand which covers his head to overwhelm the ant, and with its returning force brings it to the bottom. This he continues to do till the insect is overcome and falls between his horns. Every endeavour to escape, when once the incautious ant has stepped within the verge of the pit, is vain, for in all its attempts to climb the side the deceptive sand slips from under its feet, and every struggle precipitates it still lower. When within reach its enemy plunges the points of its jaws into its body, and having sucked out all its juices, throws out the empty skin to some distance.

According to Bingley, if the ant-lion, while excavating its pitfall,—

Comes to a stone of some moderate size, it does not desert the work on this account, but goes on, intending to remove that impediment the last. When the pit is finished, it crawls backward up the side of the place where the stone is; and, getting its tail under it, takes great pains and time to get it on a true poise, and then begins to crawl backward with it up the edge to the top of the pit, to get it out of the way. It is a common thing to see an ant-lion labouring in this manner at a stone four times as big as its own body; and as it can only move backwards, and the poise is difficult to keep, especially up a slope of such crumbling matter as sand, which moulders away from under its feet, and necessarily alters the position of its body, the stone very frequently rolls down, when near the verge, quite to the bottom. In this case the animal attacks it again in the same way, and is often not discouraged by five or six miscarriages, but continues its struggle so long that it at length gets over the verge of the place. When it has done this, it does not leave it there, lest it should roll in again; but is always at the pains of pushing it further on, till it has removed it to a necessary distance from the edge of the pit.[99]

Passing on now to the intelligence of caterpillars, Mr. G. B. Buckton, F.R.S., writing from Haslemere, says:—

Many caterpillars of Pieris rapÆ have, during this autumn, fed below my windows. On searching for suitable positions for passing into chrysalides, some eight or ten individuals, in their direct march upwards, encountered the plate-glass panes of my windows; on these they appeared to be unable to stand. Accordingly in every case they made silken ladders, some of them five feet long, each ladder being formed of a single continuous thread, woven in elegant loops from side to side..... The reasoning, however, seems to be but narrow, for one ladder was constructed parallel to the window-frame for nearly three feet, on which secure footing could be had by simply diverting the track two inches.[100]

In this case it appears clear that we have to do with instinct, and not with reason. No doubt it is the congenital habit of these caterpillars to overcome impediments in this way; but the instinct is one of sufficient interest to be here stated.

The following is quoted from Kirby and Spence:—

A caterpillar described by Bonnet, which, from being confined in a box, was unable to obtain a supply of the bark with which its ordinary instinct directs it to make its cocoon, substituted pieces of paper that were given to it, tied them together with silk, and constructed a very passable cocoon with them. In another instance the same naturalist having opened several cocoons of a moth (Noctura verbasci), which are composed of a mixture of grains of earth and silk, just after being finished, the larvÆ did not repair the injury in the same manner. Some employed both earth and silk; others contented themselves with spinning a silken veil before the opening.[101]

The same authorities state, as result of their own observation, that the

Common cabbage caterpillar, which, when building web under stone or wooden surfaces, previously covers a space with a web to form a base for supporting its dependent pupa, when building a web beneath a muslin surface dispenses with this base altogether: it perceives that the woven texture of the muslin forms facilities for attaching the threads of the cocoon securely enough to support the weight of the cocoon without the necessity of making the usual square inch or so of basal support.[102]

The instincts of the larva of the Tinea moth are thus described by RÉaumur:—

It feeds upon the elm, using the leaves both as food and clothing. To do this it only eats the parenchyma of the leaf, preserving the upper and under epidermal membranes, between which it then insinuates itself as it progressively devours the parenchyma. It, however, carefully avoids separating these membranes where they unite at the extreme edge of the leaf, which is designed to form 'one of the seams of its coat.' The cavity when thus excavated between the two epidermal membranes is then lined with silk, made cylindrical in shape, cut off at the two ends and all along the side remote from the 'seam,' and then the two epidermal membranes sewn together along the side where they have had to be cut in order to separate them from the tree. The larva now has a coat exactly fitting its body, and open at each end. By the one opening it feeds, and by the other discharges its excrement, 'having on one side a nicely jointed seam—that which is commonly applied to its back—composed of the natural marginal junction of the membranes of the leaf.'

RÉaumur cut off the edge of a newly finished coat, so as to expose the body of the larva at that point. The animal did not set about making a new coat ab initio, as we might expect that it would on the popular supposition that a train of instinctive actions is always as mechanical as the running down of a set of cog-wheels, and that wherever a novel element is introduced the machinery must be thrown out of gear, so that it cannot meet a new emergency of however simple a character, and must therefore re-start the whole process over again from the beginning. In this case the larva sewed up the rent; and not only so, but 'the scissors having cut off one of the projections intended to enter into the construction of the triangular end of the case, it entirely changed the original plan, and made that end the head which had been first designed for the tail.'

Another remarkable case of the variation of instinct in the Lepidoptera is stated by Bonnet. There are usually, he says, two generations of the Angoumois moth: the first appear in early summer, and lay their eggs upon the ears of wheat in the fields; the second appear later in the summer, or in the autumn, and these lay their eggs upon wheat in the granaries; from these eggs there comes the first generation of next year's moths. This is a highly remarkable case—supposing the facts to be as Bonnet states; for it seems that the early summer moths, although born in the granaries, immediately fly to the unreaped fields to lay their eggs in the standing corn, while the autumn moths never attempt to leave the granaries, but lay their eggs upon the stored wheat.[103]

Westwood says that—

A species of Tasmanian caterpillar (Noctua Ewingii) swarms over the land in enormous companies, which regularly begin to march at four o'clock in the morning, and as regularly halt at midday. Liparis chrysorrhaca, a kind of caterpillar, spins for the winter a common web, in which several hundred individuals find a common shelter.[104]

According to Kirby and Spence,—

The larva of the ichneumon, while feeding upon its caterpillar host, spares the walls of the intestines until it is time for it to escape, when, the life of the caterpillar being no longer necessary to its development, it perforates these walls.[105]

The larvÆ Theda isocrates live in a group of seven or eight in the fruit of pomegranate. In consequence of their excavations within the fruit, the latter is apt to fall; and to prevent its doing so the larvÆ throw out a thread of attachment wherewith to secure the fruit to the branch, so that if the stalk withers, this thread serves to suspend the fruit.[106]

The caterpillar of the Bombyx moth, which is a native of France, exhibits very wonderful instincts. The larva is gregarious in its habits, each society (family) consisting of perhaps 600 or 800 individuals. When young they have no fixed habitation, but encamp sometimes in one place, and sometimes in another, under the shelter of their web; but when they have attained two-thirds of their growth, they weave for themselves a common tent. About sunset the regiment leaves its quarters..... At their head is a chief, by whose movements their procession is regulated. When he stops all stop, and proceed when he proceeds; three or four of his immediate followers succeed in the same line, the head of the second touching the tail of the first; then comes an equal series of pairs, next of threes, and so on, as far as fifteen or twenty. The whole procession moves regularly on with an even pace, each file treading in the steps of those that precede it. If the leader, arriving at a particular point, pursues a different direction, all march to that point before they turn.[107]

The following additional facts concerning these remarkable habits may be quoted. I take them from the account published by Mr. Davis in 'Loudoun's Magazine of Natural History:'—

The caterpillars, he observed, were Bombyces, and were seen crossing a road in single file, each so close to its predecessor that the line was quite continuous, 'moving like a living cord.' The number of caterpillars was 154, and the length of the line 27 feet. When Mr. Davis removed one from the line the caterpillar immediately in front suddenly stood still, then the next, and next, and so on to the leader. Similarly, those behind the point of interruption successively halted. After a pause of a few moments, the first caterpillar behind the break in the line endeavoured to fill up the vacant space, and so recover contact or communication, which after a time it succeeded in doing, when the information that the line was again closed was passed forward in some way from caterpillar to caterpillar till it reached the leader, when the whole fine was again put in motion. The individual which had been abstracted remained rolled up and motionless; but on being placed near the moving column it immediately unrolled, and made every attempt to get readmitted into the procession. After many endeavours it succeeded, the one below falling into the rear of the interloper. On repeating the experiment by removing a caterpillar fifty from the head of the procession, Mr. Davis found that it took just thirty seconds by his watch for information of the fact to reach the leader. All the same results followed as in the previous case. It was observable that the animals were guided neither by sight nor smell while endeavouring to close up the interrupted line; for the caterpillar next behind the interruption, on whom the duty of closing up devolved, 'turned right and left, and often in a wrong direction, when within half an inch of the one immediately before him; when he at last touched the object of his search, the fact was communicated again by signal; and in thirty seconds the whole line was in rapid march.' This gentleman adds that the object of the march was the search for new pasture. The caterpillars feed on the Eucalyptus, and when they have completely stripped one tree of its leaves, they all congregate on the trunk, and proceed as described to another tree.

De Villiers[108] gives an account of his observations on the manner in which these caterpillars (Cnethocampii pitzocampa) are able to pass information, which does not quite agree with the above observation of Mr. Davis. For he says that, in a train of 600 caterpillars, interference by him in any part of the train was communicated through the whole series instantaneously—all the 600 caterpillars stopping immediately and with one consent like a single organism.

According to Kirby and Spence there is a kind of caterpillar (Pieris cratÆgi) which lives in little colonies of ten or twelve in common chambers lined with silk. In one part they make of the same material a little bag or pocket, which is used by the community or household as a water-closet. When full of excrement the caterpillars empty it by turning out the pellets with their feet.[109]

Only two other instances of noteworthy intelligence as exhibited by larvÆ have fallen within my reading. One of these is mentioned by RÉaumur, who says that the larvÆ of Hemerobius chrysops chase aphides, and having killed them, clothe themselves in their skins; and the other case is the very remarkable one mentioned in his newly published work by W. MacLachlan, F.R.S., of caddis-worms adjusting the specific gravity of their tubes to suit that of the water in which they live, by attaching heavy or light material to them according as they require sinking or flotation.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page