CHAPTER IV.

Previous
BEES AND WASPS.
Arranging this chapter under the same general headings as the one on ants, we shall consider first—

Powers of Special Sense.

Bees and wasps have much greater powers of sight than ants. They not only perceive objects at a greater distance, but are also able to distinguish their colours. This was proved by Sir John Lubbock, who placed honey on slips of paper similarly formed, but of different colours; when a bee had repeatedly visited a slip of one colour (A), he transposed the slips during the absence of the bee; on its return the insect did not fly to slip B, although this now occupied the position which had been previously occupied by slip A, but again visited slip A, although this now occupied the position which had been previously occupied by slip B. Therefore, as these experiments were again and again repeated both on bees and wasps with uniform results, there can be no question that the insects by their first visits to slip A established an association between the colour of A and the honey upon it, such that, when they again returned and found B in the place of A, they were guided by their memory of the colour rather than by their memory of the position. It was thus shown that the insects could distinguish green, red, yellow, and blue. These experiments also brought out the further fact that both bees and wasps exhibit a marked preference for some colours over others. Thus, in a series of black, white, yellow, orange, green, blue, and red slips, two or three bees paid twenty-one visits to the orange and yellow, and only four to all the other slips. The slips were then moved, after which, out of thirty-two visits, twenty-two were to the orange and yellow. Another colour to which a similar preference is shown is blue.

As regards scent, Sir John found that on putting a few drops of eau de Cologne at the entrance of a beehive, 'immediately a number (about 15) came out to see what was the matter.' Other scents had a similar effect; but on repetition several times the bees became accustomed to the scent, and no longer came out.

As in ants, so in bees, Sir John's experiments failed to yield any evidence of a sense of hearing. But in this connection we must not forget the well-known fact, first observed by Huber, that the queen bee will answer by a certain sound the peculiar piping of a pupa queen; and again, by making a certain cry or humming noise, will strike consternation suddenly on all the bees in the hive—these remaining for a long time motionless as if stupefied.

Sense of Direction.

The following are Sir John Lubbock's observations upon this subject in the case of bees and wasps:—

Every one has heard of a 'bee-line.' It would be no less correct to speak of a wasp-line. On August 6 I marked a wasp, the nest of which was round the corner of the house, so that her direct way home was not out at the window by which she had entered, but in the opposite direction, across the room to a window which was closed. I watched her for some hours, during which time she constantly went to the wrong window, and lost much time in buzzing about at it. For ten consecutive days this wasp paid numerous visits, coming in at the open window, and always trying, though always unsuccessfully, to return to her nest in the 'wasp-line' of the closed window—buzzing about that window for hours at a time, though eventually on finding it closed she returned and went round through the open window by which she always entered.

This observation shows how strong must be the instinct in a wasp to take the shortest way home, and how much the insect depends upon its sense of direction in so doing. It also shows how long a time it requires to learn by individual experience the properties of a previously unknown substance such as glass. But to this latter point we shall presently have occasion to return.

Next we must adduce evidence to show that in way-finding the 'sense of direction' in bees appears to be largely supplemented by observation of particular objects.

Sir John Lubbock observes: 'I never found bees to return if brought any considerable distance at once. By taking them, however, some twenty yards each time they came to the honey, I at length trained them to come to my room;' that is to say, bees require to learn their way little by little before they can return to a store of honey which they may have been fortunate enough to find; their general sense of direction is not in itself a sufficient guide. This, at least, is the case where, as in the experiments in question, the bees are carried from the hive to the store of honey (here a distance of less than 200 yards): possibly if they had found the honey by themselves flying towards it, and so probably taking note of objects by the way, one journey might have proved sufficient to teach them the way. But, whether or not this would have been the case, the fact that when carried they required also to be taught the way piece by piece, is conclusive proof that their sense of direction alone is not sufficient to enable them to traverse a route of 200 yards a second time.

The same result is brought out by other experiments conducted on a different plan, though not apparently with this object. 'My room is square, with two windows on the south-west side, where the hive was placed, and one on the south-east.' Besides the ordinary entrance from outside, the hive had a small postern door opening into the room.

At 6.50 a bee came out through the little postern door. After she had fed, she evidently did not know her way home; so I put her back.
At 7.10 she came out again. I again fed her and put her back.
At 10.15 she came out a third time; and again I had to put her back.
At 10.55 she came out again, and still did not remember the door. Though I was satisfied that she really wished to return, and was not voluntarily remaining outside; still, to make the matter clear, I turned her out of a side window into the garden, when she at once returned to the hive.
At 11.15 she came out again; and again I had to show her the way back.
At 11.20 she came out again; and again I had to show her the way back (this makes five times); when, however,—
At 11.30 she came out again after feeding, she returned straight to the hive.
At 11.40 she came out, fed, and returned straight to the hive.
At 11.50 she came out, fed, and returned straight to the hive; she then stayed in for some time.
At 12.30 she came out again, but seemed to have forgotten the way back; after some time, however, she found the door and went in.

Again:—August 24 at 7.20 a bee came through the postern: I fed her; and though she was not frightened or disturbed, when she had finished her meal she flew to the window and had evidently lost her way; so at 8 o'clock I in pity put her back myself.

August 29.—A bee came out to the honey at 10.10; at 10.12 she flew to the window, and remained buzzing about till 11.12, when, being satisfied that she could not find her way, I put her in.

Nay, even those who seemed to know the postern, if taken near the other window, flew to it, and seemed to have lost themselves.

This cost me a great many bees. Those which got into my room by accident continually died on the floor near the window.

These observations show that even when a bee is not carried from the hive to the honey, but herself flies to it, her sense of direction is not alone sufficient to enable her to find the way back to the hive—or, rather, to the unaccustomed entrance to the hive from which she had come out. Probably if the side window had been open, the bee would have returned to the hive round the corner of the house, and through the entrance to which she was most accustomed. But as it was she had to learn, by five or six journeys, the way between the postern entrance and the food.

But the following observation on a wasp is in this connection the most conclusive.

A marked wasp visited honey exposed in the room before mentioned. 'The next morning she came—

At 7.25, and fed till 7.28, when she began flying about the room and even into the next; so I thought it well to put her out of the window, when she flew straight away to her nest. My room, as already mentioned, had windows on two sides; and the nest was in the direction of a closed window, so that the wasp had to go out of her way in going out through the open one.
At 7.45 she came back. I had moved the glass containing the honey about two yards; and though it stood conspicuously, the wasp seemed to have much difficulty in finding it. Again she flew to the window in the direction of her nest, and I had to put her out, which I did at 8.2.
At 8.15 she returned to the honey almost straight. 8.21, she flew again to the closed window, and apparently could not find her way; so at 8.35 I put her out again. It seems obvious from this that wasps have a sense of direction, and do not find their way merely by sight.
At 8.50 back to honey, and 8.54 again to wrong window; but finding it closed, she took two or three turns round the room, and then flew out through the open window.
At 9.24 back to the honey; and 9.27 away, first, however, paying a visit to the wrong window, but without alighting.
At 9.36 back to the honey, and 9.39 away, but, as before, going first to wrong window.
She was away therefore 9 minutes.
9.50 back to the honey 9.53 away, this time straight. 11 "
10 " 10. 7 " " 11 "
10.19 " 10.22 " " 12 "
10.35 " 10.39 " " 13 "
10.47 " 10.50 " " 9 "
11. 4 " 11. 7 " " 14 "
11.21 " 11.24 " " 14 "
11.34 " 11.37 " " 10 "
11.49 " 11.52 " " 1 "
12. 3 " 12. 5 " " 11 "
12.13 " 12.15½ " " 8 "
12.25 " 12.28 " " 10 "
12.39 " 12.43 " " 11 "
12.54 " 12.57 " " 11 "
1.15 " 1.19 " " 18 "
1.27 " 1.30 " " 8 minutes,'
&c., &c., the way being now clearly well learnt.

But that the sense of direction is of much service to bees in finding the locality of their hives seems to be indicated by the following observation thus narrated, on the authority of the authors themselves, by Messrs. Kirby and Spence:—

In vain, during my stay at St. Nicholas, I sallied out at every outlet to try to gain some idea of the extent and form of the town. Trees, trees, trees, still met me, and intercepted the view in every direction; and I defy any inhabitant bee of this rural metropolis, after once quitting its hive, ever to gain a glimpse of it again until nearly perpendicularly over it. The bees, therefore, .... must be led to their abodes by instinct, &c.

The observation, however, is not so conclusive as its authors suppose; for there is nothing to show that the bees did not take note of particular objects on their accustomed routes, and so learn these routes by stages. It would be worth while in this connection to try the effect of hooding the eyes of a bee, or, if this were deemed too disturbing an experiment, removing the hive bodily to a distance from its accustomed site, and observing whether the bees start away boldly as before for long flights, or learn their new routes by stages.

In this connection I may quote the following.

Mr. John Topham, of Marlborough House, Torquay, writing to 'Nature,'[46] says:—

On October 29, 1873, I removed a hive of bees in my garden, after it was quite dark, for a distance of 12 yards from the place in which it had stood for several months; and between its original situation and the new one there was a bushy evergreen tree, so that all sight of its former place was obstructed to a person looking from the new situation of the hive.

Notwithstanding this change, the bees every day flew to the locality where they formerly lived, and continued flying around the site of what had been their home until, as night came on, they many of them sank upon the grass exhausted and chilled by the cold. Numbers, however, returned alive to their new position, after having looked in vain for their hive in its old place. At night I picked the exhausted bees up, and having restored warmth to them (by leaving them for a time on my coat-sleeve), I returned them to their companions.

Here was an illustration that the faculty of memory was superior to that of observation; but that was not all. Nearly every bee which I picked up during the 23 days through which this effort of memory lasted was an old one, as was easily deduced from observing the worn edges of the wings; showing that whilst the young insects were quick in receiving new impressions and in correcting errors, the nervous system of the old bees continued acting in the direction which early habit had effected. So true it is that 'one touch of nature makes the whole world kin.'

A closely similar observation has been told me by a friend, Mr. George Turner. He found that when he removed a beehive only a yard or two from its accustomed site, the bees, on returning home, flew in swarms around the latter, and for a long time were unable to find the hive. And several other similar cases might be adduced. Lastly, Thompson says:—

It is highly remarkable that they [bees] know their hive more from its locality than from its appearance, for if it be removed during their absence and a similar one be substituted, they enter the strange one. If the position of a hive be changed, the bees for the first day take no distant flight till they have thoroughly scrutinised every object in its neighbourhood.[47]

On the other hand, the writer of the article on 'Bees' in the 'EncyclopÆdia Britannica' says that in certain parts of France it is the habit of bee-keepers to place a number of hives upon a boat, which, in charge of a man, floats slowly down a river. The bees are thus continuously changing their pasture-ground, and yet do not lose their locomotive hives.

It may be here worth while to add, parenthetically, as the only authentic observation with which I am acquainted concerning the distance that bees are accustomed to forage, the following statement of Prof. Hugh Blackburn. Writing from Glasgow University to 'Nature,'[48] he says that bees are found in a certain peach-house every spring at the time of blossom, although, so far as he can ascertain, the beehives nearest to the peach-house in question are his own, and these are at a distance of ten miles.

On the whole, then, and in the absence of further experiments, we must conclude it to be probable that the sense of direction with which hymenopterous insects are, as shown by some of Sir John Lubbock's experiments, unquestionably endowed, is of no small use to them in finding their way from home to food and vice versÂ; although it appears certain, from other of his experiments, that this sense of direction is not in all cases a sufficient guide, and therefore requires to be supplemented by the definite observation of landmarks.

But the most conclusive evidence on this latter point is afforded by a highly interesting observation of Mr. Bates on the sand-wasps at Santurem, which may here be suitably introduced, as the insects are not distantly allied. He describes these animals as always taking a few turns in the air round the hole they had made in the sand before leaving to seek for flies in the forest, apparently in order to mark well the position of the burrow, so that on their return they might find it without difficulty. This observation has been since confirmed in a striking manner by Mr. Belt, who found that the sand-wasp takes the most precise bearings of an object the position of which she desires to remember. This observation is so interesting that it deserves to be rendered in extenso:—

A specimen of Polistes carnifex (i.e. the sand-wasp noticed by Mr. Bates) was hunting about for caterpillars in my garden. I found one about an inch long, and held it out towards it on the point of a stick. It seized it immediately, and commenced biting it from head to tail, soon reducing the soft body to a mass of pulp. It rolled up about one-half of it into a ball, and prepared to carry it off. Being at the time amidst a thick mass of a fine-leaved climbing plant, it proceeded, before flying away, to take note of the place where it was leaving the other half. To do this, it hovered in front of it for a few seconds, then took small circles in front of it, then larger ones round the whole plant. I thought it had gone, but it returned again, and had another look at the opening in the dense foliage down which the other half of the caterpillar lay. It then flew away, but must have left its burden for distribution with its comrades at the nest, for it returned in less than two minutes, and making one circle around the bush, descended to the opening, alighted on a leaf, and ran inside. The green remnant of the caterpillar was lying on another leaf inside, but not connected with the one on which the wasp alighted, so that in running in it missed it, and soon got hopelessly lost in the thick foliage. Coming out again, it took another circle, and pounced down on the same spot again, as soon as it came opposite to it. Three small seed-pods, which here grew close together, formed the marks that I had myself taken to note the place, and these the wasp seemed also to have taken as its guide, for it flew directly down to them, and ran inside; but the small leaf on which the fragment of caterpillar lay not being directly connected with any on the outside, it again missed it, and again got far away from the object of its search. It then flew out again, and the same process was repeated again and again. Always when in circling round it came in sight of the seed-pods down it pounced, alighted near them, and recommenced its quest on foot. I was surprised at its perseverance, and thought it would have given up the search; but not so, it returned at least half-a-dozen times, and seemed to get angry, hurrying about with buzzing wings. At last it stumbled across its prey, seized it eagerly, and as there was nothing more to come back for, flew straight off to its nest, without taking any further note of the locality. Such an action is not the result of blind instinct, but of a thinking mind; and it is wonderful to see an insect so differently constructed using a mental process similar to that of man.

Memory.

We may here first allude to an observation of Sir John Lubbock already quoted in another connexion (see p. 147). It is here evident that the wasp, after finding the store of honey in the room, and after finding the window closed in the 'wasp-line' direction to its nest, required three repeated lessons from Sir John before she learnt that the window on the other side of the room, and away from the direction of her nest, afforded no obstacle to her exit. Having learnt this, the fourth time she came she again flew to the closed window as before, and then, as if but dimly remembering that there was another opening somewhere that offered no such mysterious resistance to her passage, 'she took two or three turns round the room, and then flew out through the open window.' Having now taken the bearings of all the room upon her own wings, and having again found the difference between the two windows in respect of resistance, although in all other respects so much alike, the next time she came she made in the first instance as it were an experimental flight towards the closed window, but clearly had the alternative of going to the open one in her memory; for on finding the window closed as before, she did not alight, but flew straight from the closed to the open window. The same thing happened once again, but now, with the distinction between the two windows thus fully learnt, and with it the perception that in this case 'the shortest cut was the longest way round,' she never again flew to the closed window; in the forty successive visits which she paid through the remainder of that day, and the hundred visits or so which she made during the two following days, she seems to have uniformly flown to the open window.

As evidence of forgetfulness, it will be enough to refer to the case of another wasp which, under precisely similar circumstances to those just detailed, learnt her way out of the open window one day, having made fifty passages through it in five hours. Yet Sir John remarks,—

It struck me as curious that on the following day this wasp seemed by no means so sure of her way, but over and over again went to the closed window.

It is further of interest to note, as showing the similarity of the memory displayed by these insects with that of the higher animals, that there are considerable individual differences to be found in the degree of its manifestation.

In this respect they certainly differ considerably. Some of the bees which came out of the little postern door (already described) were able to find their way back after it had been shown to them a few times. Others were much more stupid; thus one bee came out on the 9th, 10th, 11th, 12th, 14th, 15th, 16th, 17th, 18th, and 19th, and came to the honey; but though I repeatedly put her back through the postern, she was never able to find her way for herself.

I often found that if bees which were brought to honey did not return at once, still they would do so a day or two afterwards. For instance, on July 11, 1874, a hot thundery day, and when the bees were much out of humour, I brought twelve bees to some honey; only one came back, and that one only twice; but on the following day several of them returned.

This latter observation is important, as proving that bees can remember for at least a whole day the locality where they have found honey only once before, and that they so far think about their past experiences as to return to that locality when foraging.

As the association of ideas by contiguity is the principle which forms the basis of all psychology, it is desirable to consider still more attentively this the earliest manifestation that we have of it in the memory of the Hymenoptera. That it is not exercised with exclusive reference to locality is proved by the following observation of Sir John Lubbock:—

I kept a specimen of Polistes Gallica for no less than nine months.[49] .... I had no difficulty in inducing her to feed on my hand; but at first she was shy and nervous. She kept her sting in constant readiness..... Gradually she became quite used to me, and when I took her on my hand apparently expected to be fed. She even allowed me to stroke her without any appearance of fear, and for some months I never saw her sting.

One other observation which goes to prove that other things besides locality are noted and remembered by bees may here be quoted. Sir John placed a bee in a bell jar, the closed end of which he held towards a window. The bee buzzed about at that end trying to make for the open air. He then showed her the way out of the open end of the jar, and after having thus learnt it, she was able to find the way out herself. This seems to show that the bee, like the wasp on the closed window-pane, was able to appreciate and to remember the difference between the quality of glass as resisting and air as permeable, although to her sense of vision the difference must have been very slight. In other words, the bee must have remembered that by first flying away from the window, round the edge of the jar, and then towards the window, she could surmount the transparent obstacle; and this implies a somewhat different act of memory from that of associating a particular object—such as honey—with a particular locality. It is noteworthy that a fly under similar circumstances did not require to be taught to find its way out of the jar, but spontaneously found its own way out. This, however, may be explained by the fact that flies do not always direct their flight towards windows, and therefore the escape of this one was probably not due to any act of intelligence.

While upon the subject of memory in the Hymenoptera, it is indispensable that we should again refer to the observation of Messrs. Belt and Bates already alluded to on pages 150-51. For it is from that observation rendered evident that these sand-wasps took definite pains, as it were, to teach themselves the localities to which they desired to return. Mr. Bates further observed that after thus taking a careful mental note of the place, they would return to it without a moment's hesitation after an absence of an hour. The observation of Mr. Belt, already quoted in extenso, proves that these mental notes may be taken with the utmost minuteness, so that even in the most intricate places the insect, on its return, is perfectly confident that it has not made a mistake.

With regard to the duration of memory, Stickney relates a case in which some bees took possession of a hollow place beneath a roof, and having been then removed into a hive, continued for several years to return and occupy the same hole with their successive swarms.[50]

Similarly Huber relates an observation of his own showing the duration of memory in bees. One autumn he put some honey in a window, which the bees visited in large numbers. During the winter the honey was taken away and the shutters shut. When they were again opened in the spring the bees returned, although there was no honey in the window.

These two cases amply prove that the memory of bees is comparable with that of ants, which, as we have seen from analogous facts, also extends at least over a period of many months.

Emotions.

Sir John Lubbock's experiments on this head go to show that the social sympathies of bees are even less developed than he found them to be in certain species of ants. Thus he says:—

I have already mentioned with reference to the attachment which bees have been said to show for one another, that though I have repeatedly seen them lick a bee which had smeared herself in honey, I never observed them show the slightest attention to any of their comrades who had been drowned in water. Far, indeed, from having been able to discover any evidence of affection among them, they appear to be thoroughly callous and utterly indifferent to one another. As already mentioned, it was necessary for me occasionally to kill a bee; but I never found that the others took the slightest notice. Thus on the 11th of October I crushed a bee close to one which was feeding—in fact, so close that their wings touched; yet the survivor took no notice whatever of the death of her sister, but went on feeding with every appearance of composure and enjoyment, just as if nothing had happened. When the pressure was removed, she remained by the side of the corpse without the slightest appearance of apprehension, sorrow, or recognition. It was, of course, impossible for her to understand my reason for killing her companion; yet neither did she feel the slightest emotion at her sister's death, nor did she show any alarm lest the same fate should befall her also. In a second case exactly the same occurred. Again, I have several times, while a bee has been feeding, held a second bee by the leg close to her; the prisoner, of course, struggled to escape, and buzzed as loudly as she could; yet the selfish eater took no notice whatever. So far, therefore, from being at all affectionate, I doubt whether bees are in the least fond of one another.

RÉaumur, however ('Insects,' vol. v., p. 265), narrates a case in which a hive-bee was partly drowned and so rendered insensible; the others in the hive carefully licked and otherwise tended her till she recovered. This seems to show that bees, like ants, are more apt to have their sympathies aroused by the sight of ailing or injured companions than by that of healthy companions in distress; but Sir John Lubbock's observations above quoted go to prove that even in this case display of sympathy is certainly not the rule.

Powers of Communication.

Huber says that when one wasp finds a store of honey 'it returns to its nest, and brings off in a short time a hundred other wasps;' and this statement is confirmed by Dujardin, who witnessed a somewhat similar performance in the case of bees—the individual which first found a concealed store informing other individuals of the fact, and so on till numberless individuals had found it.

Although the systematic experiments of Sir John Lubbock have not tended to confirm these observations with regard to bees and wasps, we must not too readily allow his negative results to discredit these positive observations—more especially as we have seen that his later experiments have fully confirmed the opinion of these previous authors with respect to ants. His experiments on bees and wasps consisted in exposing honey in a hidden situation, marking a bee or wasp that came to it, and observing whether it afterwards brought any companions to share the booty. He found that although the same insect would return over and over again, strangers came so rarely that their visits could only be attributed to accidental and independent discovery. Only if the honey were in an exposed situation, where the insects could see one another feeding, would one follow the other to the food.

But we have the more reason not to accept unreservedly the conclusion to which these experiments in themselves might lead, because the very able observer F. MÜller states an observation of his own which must be considered as alone sufficient to prove that bees are able to communicate information to one another:—

Once (he says[51]) I assisted at a curious contest, which took place between the queen and the other bees in one of my hives, which throws some light on the intellectual faculties of these animals. A set of forty-seven cells have been filled, eight on a newly completed comb, thirty-five on the following, and four around the first cell of a new comb. When the queen had laid eggs in all the cells of the two older combs she went several times round their circumference (as she always does, in order to ascertain whether she has not forgotten any cell), and then prepared to retreat into the lower part of the breeding-room. But as she had overlooked the four cells of the new comb, the workers ran impatiently from this part to the queen, pushing her, in an odd manner, with their heads, as they did also other workers they met with. In consequence the queen began again to go around on the two older combs; but as she did not find any cell wanting an egg she tried to descend, but everywhere she was pushed back by the workers. This contest lasted for a rather long while, till the queen escaped without having completed her work. Thus the workers knew how to advise the queen that something was as yet to be done, but they knew not how to show her where it had to be done.

Again, Mr. Josiah Emery, writing to 'Nature,'[52] with reference to Sir John Lubbock's experiments, says that the faculty of communication which bees possess is so well and generally known to the 'bee-hunters' of America, that the recognised method of finding a bees' nest is to act upon the faculty in question:—

Going to a field or wood at a distance from tame bees, with their box of honey they gather up from the flowers and imprison one or more bees, and after they have become sufficiently gorged, let them out to return to their home with their easily gotten load. Waiting patiently a longer or shorter time, according to the distance of the bee-tree, the hunter scarcely ever fails to see the bee or bees return accompanied with other bees, which are in like manner imprisoned till they in turn are filled, when one or more are let out at places distant from each other, and the direction in each case in which the bee flies noted, and thus, by a kind of triangulation, the position of the bee-tree proximately ascertained.

Those who have stored honey in their houses understand very well how important it is to prevent a single bee from discovering its location. Such discovery is sure to be followed by a general onslaught from the hive unless all means of access is prevented. It is possible that our American are more intelligent than European bees, but hardly probable; and I certainly shall not ask an Englishman to admit it. Those in America who are in the habit of playing first, second, and third fiddle to instinct will probably attribute this seeming intelligence to that principle.

According to De FraviÈre, bees have a number of different notes or tones which they emit from the stigmata of the thorax and abdomen, and by which they communicate information. He says:—

As soon as a bee arrives with important news, it is at once surrounded, emits two or three shrill notes, and taps a comrade with its long, flexible, and very slender feelers, or antennÆ. The friend passes on the news in similar fashion, and the intelligence soon traverses the whole hive. If it is of an agreeable kind—if, for instance, it concerns the discovery of a store of sugar or of honey, or of a flowering meadow—all remains orderly. But, on the other hand, great excitement arises if the news presages some threatened danger, or if strange animals are threatening invasion of the hive. It seems that such intelligence is conveyed first to the queen, as the most important person in the state.

This account, which is quoted from BÜchner, no doubt bears indications of imaginative colouring; but if the observation as to the emission of sounds is correct—and, as we shall see, this point is well confirmed by other observers—it is most likely concerned in communicating by tone a general idea of good or harm: probably in the former case it acts as a sign, 'follow me;' and in the latter as a signal of danger. BÜchner further says that, according to Landois, if a saucer of honey is placed before a hive, a few bees come out, which emit a cry of tut, tut, tut. This note is rather shrill, and resembles the cry of an attacked bee. Hereupon a large number of bees come out of the hive to collect the offered honey.

Again,—

The best way to observe the power of communication possessed by bees by means of their interchange of touches, is to take away the queen from a hive. In a little time, about an hour afterwards, the sad event will be noticed by a small part of the community, and these will stop working and run hastily about over the comb. But this only concerns part of the hive, and the side of a single comb. The excited bees, however, soon leave the little circle in which they at first revolved, and when they meet their comrades they cross their antennÆ and lightly touch the others with them. The bees which have received some impression from this touch now become uneasy in their turn, and convey their uneasiness and distress in the same way to the other parts of the dwelling. The disorder increases rapidly, spreads to the other side of the comb, and at last to all the people. Then arises the general confusion before described.

Huber tested this communication by the antennÆ by a striking experiment. He divided a hive into two quite separate parts by a partition wall, whereupon great excitement arose in the division in which there was no queen, and this was only quieted when some workers began to build royal cells.

He then divided a hive in similar fashion by a trellis, through which the bees could pass their feelers. In this case all remained quiet, and no attempt was made to build royal cells: the queen could also be clearly seen crossing her antennÆ with the workers on the other side of the trellis.

Apparently the feelers are also connected with the exceedingly fine scent of the bees, which enables them, wonderful as it may seem, to distinguish friend and foe, and to recognise the members of their own hive among the thousands and thousands of bees swarming around, and to drive back from the entrance stranger or robber bees. The bee-masters, therefore, when they want two separate colonies or the members of them to unite in one hive, sprinkle water over the bees, or stupefy them with some fumigating substance, so as to make them to a certain extent insensible to smell, in order to attain their object. It is always possible to unite colonies by making the bees smell of some strong-smelling stuff, such as musk.[53]

Lastly, under the present heading I shall quote one other observation, for which I am also indebted to BÜchner's very admirable collection of facts relating to the psychology of Hymenoptera:—

Herr L. Brofft relates, in 'der Zoologische Garten' (XVIII. Year, No. 1, p. 67), that a poor and a rich hive stood next each other on his father's bee stand, and the latter suddenly lost its queen. Before the owner had come to a decision thereupon the bees of the two hives came to a mutual understanding as to the condition of their two states. The dwellers in the queenless hive, with their stores of provisions, went over into the less populous or poorer hive, after they had assured themselves, by many influential deputations, as to the state of the interior of the poor hive, and, as appeared, especially as to the presence of an egg-laying queen!

General Habits.

The active life of bees is divided between collecting food and rearing young. We shall therefore consider these two functions separately.

The food collected consists of two kinds, honey (which, although stored in the 'crop' for the purpose of carriage from the flowers to the cells, appears to be but the condensed nectar of flowers) and so-called 'bee-bread.' This consists of the pollen of flowers, which is worked into a kind of paste by the bees and stored in their cells till it is required to serve as food for their larvÆ. It is then partly digested by the nurses with honey, so that a sort of chyle is formed. It is observable that in each flight the 'carrier bees' collect only one kind of pollen, so that it is possible for the 'house bees' (which, by the way, are the younger bees left at home to discharge domestic duties with only a small proportion of older ones, left probably to direct the more inexperienced young) to sort it for storage in different cells. In the result there are several different kinds of bee-bread, some being more stimulating or nutritious than others. The most nutritious has the effect, when given to any female larva, of developing that larva into a queen or fertile female. This fact is well known to the bees, who only feed a small number of larvÆ in this manner, and the larvÆ which they select so to feed they place in larger or 'royal' cells, with an obvious foreknowledge of the increased dimensions to which the animal will grow under the influence of this food. Only one queen is required for a single hive; but the bees always raise several, so that if any mishap should occur to one, other larvÆ may be ready to fall back upon.

Besides honey and bee-bread two other substances are found in beehives. These are propolis and beeswax. The former is a kind of sticky resin collected for the most part from coniferous trees. This is used as mortar in building, &c. It adheres so strongly to the legs of the bee which has gathered it, that it can only be detached by the help of comrades. For this purpose the loaded bee presents her legs to her fellow-workers, who clean it off with their jaws, and while it is still ductile, apply it round the inside of the hive. According to Huber, who made this observation, the propolis is applied also to the insides of the cells. The workers first planed the surfaces with their mandibles, and one of them then pulled out a thread of propolis from the heap deposited by the carrier bees, severed it by a sudden throwing back of the head, and returned with it to the cell which it had previously been planing. It then laid the thread between the two walls which it had planed; but, proving too long, a portion of the thread was bitten off. The properly measured portion was then forced into the angle of the cell by the fore-feet and mandibles. The thread, now converted into a narrow ribbon, was next found to be too broad. It was therefore gnawed down to the proper width. Other bees then completed the work which this one had begun, till all the walls of the cells were framed with bands of propolis. The object of the propolis here seems to be that of giving strength to the cells.

The wax is a secretion which proceeds from between the segments of the abdomen. Having ingested a large meal of honey, the bees hang in a thick cluster from the top of their hive in order to secrete the wax. When it begins to exude, the bees, assisted by their companions, rub it off into heaps, and when a sufficient quantity of the material has been thus collected, the work begins of building the cells. As the cells are used both for storing food and rearing young, I shall consider them later on. Now we have to pass to the labours incidental to propagation.

All the eggs are laid by one queen, who requires during this season a large amount of nourishment, so much, indeed, that ten or twelve working bees (i.e. sterile females) are set apart as her feeders. Leaving the 'royal cell,' she walks over the nursery-combs attended by a retinue of workers, and drops a single egg into each open cell. It is a highly remarkable fact that the queen is able to control the sex of the eggs which she lays, and only deposits drone or male eggs in the drone cells, and worker or female eggs in the worker cells—the cells prepared for the reception of drone larvÆ being larger than those required for the worker larvÆ. Young queens lay more worker eggs than old queens, and when a queen, from increasing age or any other cause, lays too large a proportion of drone eggs, she is expelled from the community or put to death. It is remarkable, also, under these circumstances, that the queen herself seems to know that she has become useless, for she loses her propensity to attack other queens, and so does not run the risk of making the hive virtually queenless. There is now no doubt at all that the determining cause of an egg turning out male or female is that which Dzierzon has shown, namely, the absence or presence of fertilisation—unfertilised eggs always developing into males, and fertilised ones into females. The manner, therefore, in which a queen controls the sex of her eggs must depend on some power that she has of controlling their fertilisation.

The eggs hatch out into larvÆ, which require constant attention from the workers, who feed them with the chyle or bee-bread already mentioned. In three weeks from the time that the egg is deposited, the white worm-like larva has passed through its last metamorphosis. When it has emancipated itself its nurses assemble round it to wash and caress it, as well as to supply it with food. They then clean out the cell which it has left.

When so large a number of the larvÆ hatch out as to overcrowd the hive, it is the function of the queen to lead forth a swarm. Meanwhile several larval queens have been in course of development, and matters are so arranged by the foresight of the bees, that one or more young queens are ready to emerge at a time when otherwise the hive would be left queenless. But the young queen or queens, although perfectly formed, must not escape from their royal prison-houses until the swarm has fairly taken place; the worker bees will even strengthen the coverings of these prison-houses if, owing to bad weather or other causes, swarming is delayed. The prisoner queens, which are fed through a small hole in the roof of their cells, now continually give vent to a plaintive cry, called by the bee-keepers 'piping,' and this is answered by the mother queen. The tones of the piping vary. The reason why the young queens are kept such close prisoners till after the departure of the mother queen with her swarm, is simply that the mother queen would destroy all the younger ones, could she get the chance, by stinging them. The workers, therefore, never allow the old queen to approach the prisons of the younger ones. They establish a guard all round these prisons or royal cells, and beat off the old queen whenever she endeavours to approach. But if the swarming season is over, or anything should prevent a further swarm from being sent out, the worker bees offer no further resistance to the jealousy of the mother queen, but allow her in cold blood to sting to death all the young queens in their nursery prisons. As soon as the old queen leaves with a swarm, the young queens are liberated in succession, but at intervals of a few days; for if they were all liberated at once they would fall upon and destroy one another. Each young queen as it is liberated goes off with another swarm, and those which remain unliberated are as carefully guarded from the liberated sister queen as they were previously guarded from the mother queen. When the season is too late for swarming the remaining young queens are liberated simultaneously, and are then allowed to fight to the death, the survivor being received as sovereign.

The bees, far from seeking to prevent these battles, appear to excite the combatants against each other, surrounding and bringing them back to the charge when they are disposed to recede from each other; and when either of the queens shows a disposition to approach her antagonist, all the bees forming the cluster instantly give way to allow her full liberty of attack. The first use which the conquering queen makes of her victory is to secure herself against fresh dangers by destroying all her future rivals in the royal cells; while the other bees, which are spectators of the carnage, share in the spoil, greedily devouring any food which may be found at the bottom of the cells, and even sucking the fluid from the abdomen of the pupÆ before they toss out the carcasses.[54]

Similarly, when a strange queen is put into a hive already provided with a queen—

A circle of bees instinctively crowd around the invader, not, however, to attack her—for a worker never assaults a queen—but to respectfully prevent her escape, in order that a combat may take place between her and their reigning monarch. The lawful possessor then advances towards the part of the comb where the invader has established herself, the attendant workers clear a space for the encounter, and, without interfering, wait the result. A fearful encounter then ensues, in which one is stung to death, the survivor mounting the throne. Although the workers of a de facto monarch will not fight for her defence, yet, if they perceive a strange queen attempting to enter the hive, they will surround her, and hold her until she is starved to death; but such is their respect for royalty that they never attempt to sting her.[55]

All these facts display a wonderful amount of apparently sagacious purpose on the part of the workers, although they may not seem to reflect much credit on the intelligence of the queens. But in this connection we must remember the observation of F. Huber, who saw two queens, which were the only ones left in the hive, engaged in mortal combat; and when an opportunity arose for each to sting the other simultaneously, they simultaneously released each other's grasp, as if in horror of a situation that might have ended in leaving the hive queenless. This, then, is the calamity to avert which all the instincts both of workers and queens are directed. And that these instincts are controlled by intelligence is suggested, if not proved, by the adaptations which they show to special circumstances. Thus, for instance, F. Huber smoked a hive so that the queen and older bees effected their escape, and took up their quarters a short distance away. The bees which remained behind set about constructing three royal cells for the purpose of rearing a new queen. Huber now carried back the old queen and ensconced her in the hive. Immediately the bees set about carrying away all the food from the royal cells, in order to prevent the larvÆ contained therein from developing into queens. Again, if a strange queen is presented to a hive already provided with one, the workers do not wait for their own queen to destroy the pretender, but themselves sting or smother her to death. When, on the other hand, a queen is presented to a hive which is without one, the bees adopt her, although it is often necessary for the bee-master to protect her for a day or two in a trellis cage, until her subjects have become acquainted with her. When a hive is queenless, the bees stop all work, become restless, and make a dull complaining noise. This, however, is only the case if there is likewise a total absence of royal pupÆ, and of ordinary pupÆ under three days of age—i.e. the age during which it is possible to rear an ordinary larva into a queen.

As soon as the queen has been fertilised, and the services of the drones therefore no longer required, the worker bees fall upon their unfortunate and defenceless brothers to kill them, either by direct stinging or by throwing them out of the hive to perish in the cold. The drones' cells are then torn down, and any remaining drone eggs or pupÆ destroyed. Generally all the drones—which may number more than a thousand—are slaughtered in the course of a single day. Evidently the object of this massacre is that of getting rid of useless mouths; but there is a more difficult question as to why these useless mouths ever came into existence. It has been suggested that the enormous disproportion between the present number of males and the single fertile female refers to a time before the social instincts became so complex or consolidated, and when, therefore, bees lived in lesser communities. Probably this is the explanation, although I think we might still have expected that before this period in their evolution had arrived bees might have developed a compensating instinct, either not to allow the queen to lay so many drone eggs, or else to massacre the drones while still in the larval state. But here we must remember that among the wasps the males do work (chiefly domestic work, for which they are fed by their foraging sisters); so it is possible that in the hive-bee the drones were originally useful members of the community, and that they have lost their primitively useful instincts. But whatever the explanation, it is very curious that here, among the animals which are justly regarded as exhibiting the highest perfection of instinct, we meet with perhaps the most flagrant instance in the animal kingdom of instinct unperfected. It is the more remarkable that the drone-killing instinct should not have been better developed in the direction of killing the drones at the most profitable time—namely, in their larval or oval state—from the fact that in many respects it seems to have been advanced to a high degree of discriminative refinement. Thus, to quote BÜchner,—

That the massacre of the drones is not performed entirely from an instinctive impulse, but in full consciousness of the object to be gained, is proved by the circumstance that it is carried out the more completely and mercilessly the more fertile the queen shows herself to be. But in cases where this fertility is subject to serious doubt, or when the queen has been fertilised too late or not at all, and therefore only lays drones' eggs, or when the queen is barren, and new queens, to be fertilised later, have to be brought up from working-bee larvÆ, then all or some of the drones are left alive, in the clear prevision that their services will be required later..... This wise calculation of consequences is further exemplified in that sometimes the massacre of the drones takes place before the time for swarming, as, for instance, when long-continued unfavourable weather succeeds a favourable beginning of spring, and makes the bees anxious for their own welfare. If, however, the weather breaks, and work again becomes possible, so that the bees take courage anew, they then bring up new drones, and prepare them in time for the swarming. This killing of drones is distinguished from the regular drone massacre by the fact that the bees then only kill the developed drones, and leave the drone larvÆ, save when absolute hunger compels their destruction. Not less can it be regarded as a prudent calculation of circumstances when the bees of a hive, brought from our temperate climate to a more southern country, where the time of collecting lasts longer, do not kill the drones in August, as usual, but at a later period, suitable to the new conditions.

But the philosophy of drone-killing is, I think, even more difficult in the case of the wasps than in that of the bees. For, unlike the bees, whose communities live from year to year, the wasps all perish at the end of autumn, with the exception of a very few fertilised females. As this season of universal calamity approaches, the workers destroy all the larval grubs—a proceeding which, in the opinion of some writers, strikingly exemplifies the beneficence of the Deity! Now, it does not appear to me easy to understand how the presence of such an instinct in this case is to be explained. For, on the one hand, the individual females which are destined to live through the winter cannot be conspicuously benefited by this slaughter of grubs; and, on the other hand, the rest of the community is so soon about to perish, that one fails to see of what advantage it can be to it to get rid of the grubs. If the whole human race, with the exception of a few women, were to perish periodically once in a thousand years, the race would profit nothing by destroying, a few months before the end of each millennium, all sick persons, lunatics, and other 'useless mouths.' I have not seen this difficulty with regard to the massacring instinct in wasps mentioned before, and I only mention it now in order to draw attention to the fact that there seems to be a more puzzling problem presented here than in the case of the analogous instinct as exhibited by bees. The only solution which has suggested itself to my mind is the possibility that in earlier times, or in other climates, wasps may have resembled bees in living through the winter, and that the grub-slaying instinct is in them a survival of one which was then, as in the case of the bees now, a clearly beneficial instinct.

For some days before swarming begins, there is a great excitement and buzzing in the hive, the temperature of which rises from 92° to 104°. Scouts having been previously sent out to explore for suitable quarters wherein to plant the new colony, these now act as guides. The swarm leaves the hive with their queen. The bees which remain behind busy themselves in rearing out the pupÆ, which soon arriving at maturity, also quit the hive in successive swarms. According to BÜchner, 'secondary swarms with young queens send out no scouts, but fly at random through the air. They clearly lack the experience and prudence of the older bees.' And, regarding the behaviour of the scouts sent out by primary swarms, this author says:—

M. de FraviÈre had the opportunity of observing the manner in which such an examination is carried on, and with what prudence and accuracy. He placed an empty beehive, made in a new style, in front of his house, so that he could exactly watch from his own window what went on inside and out without disturbance to himself or to the bees. A single bee came and examined the building, flying all round it and touching it. It then let itself down on the board, and walked carefully and thoroughly over the interior, touching it continually with its antennÆ so as to subject it on all sides to a thorough investigation. The result of its examination must have been satisfactory, for after it had gone away it returned accompanied by a crowd of some fifty friends, which now together went through the same process as their guide. This new trial must also have had a good result, for soon a whole swarm came, evidently from a distant spot, and took possession. Still more remarkable is the behaviour of the scouts when they take possession of a satisfactory hive or box for an imminent or approaching swarm. Although it is not yet inhabited they regard it as their property, watch it and guard it against stranger bees or other assailants, and busy themselves earnestly in the most careful cleansing of it, so far as this cleansing is impossible to the setter up of the hive. Such a taking possession sometimes occurs eight days before the entrance of the swarm.

Wars.—As with ants, so with bees, the great cause of war is plunder; and facts now well substantiated by numberless observers concerning 'robber-bees' indicate a large measure of intelligence. These aim at lessening their labour in collecting honey by plundering the store of other hives. The robberies may be conducted singly or in concert. When the thieving propensity is developed only in individual cases, the thieves cannot rely on force in plundering a foreign state, and so resort to cautious stealth. 'They show by their whole behaviour—creeping into the hive with careful vigilance—that they are perfectly conscious of their bad conduct; whereas the workers belonging to the hive fly in quickly and openly, and in full consciousness of their right.' If such solitary burglars are successful in obtaining plunder, their bad example leads other members of their own community to imitate them; thus it is that the whole bee-nation may develop marauding habits, and when they do this they act in concert to rob by force. In this case an army of bees precipitates itself upon the foreign hive, a battle ensues, and if successful in overcoming resistance, the invaders first of all search out the queen-bee and put her to death, whereby they disorganise their enemies and plunder the hive with ease. It is observed that when this policy is once successful, the spirit of aggrandisement is encouraged, so that the robber-bees 'find more pleasure in robbery than in their own work, and become at last formidable robber-states.' When an invaded hive is fairly overcome by the invaders killing the queen, the owners of the hive, finding that all is lost, not only abandon further resistance, but very often reverse their policy and join the ranks of their conquerors. They assist in the tearing down of their cells, and in the conveyance of the honey to the hive of their invaders. 'When the assailed hive is emptied, the next ones are attacked, and if no effective resistance is offered, are robbed in similar fashion, so that in this way a whole bee-stand may be gradually destroyed.' Siebold observed the same facts in the case of wasps (Polistes gallica). If, however, the battle turns in favour of the defenders, they pursue the flying legions of their enemies to a distance from their home. It sometimes happens that the plundered hive offers no resistance at all, owing to the robbers having visited the same flowers as the robbed, and so probably (having much the same smell) not being recognised as belonging to a different community. The thieves, when they find such to be the case, may become so bold as to stop the bees that are returning to the hive with their loads, of which they deprive them at the entrance of the hive. This is done by a process which one observer, Weygandt,[56] calls 'milking,' and it seems that the milking bee attains the double advantage of securing the honey from the milked one and disarming suspicion of the other bees by contracting its smell and entering the hive loaded, into which it is admitted without opposition to continue its plunder.

Sometimes robber-bees attack their victims in the fields at a distance from the hives. This sort of highway robbery is generally conducted by a gang of four or five robber-bees which set upon a single honest bee, 'hold him by the legs, and pinch him until he unfolds his tongue, which is sucked in succession by his assailants, who then suffer him to depart in peace.'

It is strange that hive-bees of dishonest temperaments seem able to coax or wheedle humble-bees into the voluntary yielding of honey. 'Humble-bees have been known to permit hive-bees to take the whole honey that they have collected, and to go on gathering more, and handing it over, for three weeks, although they refuse to part with it, or seek refuge in flight, when wasps make similar overtures.'[57]

Besides theft and plunder, there are other causes of warfare among bees, which, however, are only apparent in their effects. Thus, for some undiscernible reason, duels are not infrequent, which generally end in the death of one or both combatants. At other times, equally without apparent reason, civil war breaks out in a hive, which is sometimes attended with much slaughter.

Architecture.—Coming now to the construction of the cells and combs, there is no doubt that here we meet with the most astonishing products of instinct that are presented in the animal kingdom. A great deal has been written on the practical exhibition of high mathematical principles which bees display in constructing their combs in the form that secures the utmost capacity for storage of honey with the smallest expenditure of building material. The shortest and clearest statement of the subject that I have met with is the following, which has been given by Dr. Reid:—

There are only three possible figures of the cells which can make them all equal and similar, without any useless interstices. These are the equilateral triangle, the square, and the regular hexagon. Mathematicians know that there is not a fourth way possible in which a plane may be cut into little spaces that shall be equal, similar, and regular, without useless spaces. Of the three figures, the hexagon is the most proper for convenience and strength. Bees, as if they knew this, make their cells regular hexagons.

Again, it has been demonstrated that, by making the bottoms of the cells to consist of three planes meeting in a point, there is a saving of material and labour in no way inconsiderable. The bees, as if acquainted with these principles of solid geometry, follow them most accurately. It is a curious mathematical problem, at what precise angle the three planes which compose the bottom of a cell ought to meet, in order to make the greatest possible saving, or the least expense of material and labour. This is one of the problems which belong to the higher parts of mathematics. It has accordingly been resolved by some mathematicians, particularly by the ingenious Maclaurin, by a fluctionary calculation, which is to be found in the Transactions of the Royal Society of London. He has determined precisely the angle required, and he found, by the most exact mensuration the subject would admit, that it is the very angle in which the three planes in the bottom of the cell of a honeycomb do actually meet.[58]

Marvellous as these facts undoubtedly are, they may now be regarded as having been satisfactorily explained. Long ago Buffon sought to account for the hexagonal form of the cells by an hypothesis of mutual pressure. Supposing the bees to have a tendency to build tubular cells, if a greater number of bees were to build in a given space than could admit of all the parallel tubes being completed, tubes with flat sides and sharp angles might result, and if the mutual pressure were exactly equal in all directions, these sides and angles would assume the form of hexagons. This hypothesis of Buffon was sustained by such physical analogies as the blowing of a crowd of soap-bubbles in a cup, the swelling of moistened peas in a confined space, &c. The hypothesis, however, as thus presented was clearly inadequate; for no reason is assigned why the mutual pressure, even if conceded to exist, should always be so exactly equal in all directions as to convert all the cylinders into perfect hexagons—even the analogy of the soap-bubbles and the moistened peas failing, as pointed out by Brougham and others, to sustain it, seeing that as a matter of fact bubbles and peas under circumstances of mutual pressure do not assume the form of hexagons, but, on the contrary, forms which are conspicuously irregular. Moreover, the hypothesis fails to account for the particular prismatic shape presented by the cell base. Therefore it is not surprising that this hypothesis should have gained but small acceptance. Kirby and Spence dispose of it thus:—'He (Buffon) gravely tells us that the boasted hexagonal cells of the bee are produced by the reciprocal pressure of the cylindrical bodies of these insects against each other!!'[59] The double note of admiration here may be taken to express the feelings with which this hypothesis of Buffon was regarded by all the more sober-minded naturalists. Yet it turns out to have been not very wide of the mark. As is often the case with the gropings of a great mind, the idea contains the true principle of the explanation, although it fails as an explanation from not being in a position to take sufficient cognizance of all the facts. Safer it is for lesser minds to restrain their notes of exclamation while considering the theories of a greater; however crude or absurd the latter may appear, the place of their birth renders it not impossible that some day they may prove to have been prophetic of truth revealed by fuller knowledge. Usually in such cases the final explanation is eventually reached by the working of a yet greater mind, and in this case the undivided credit of solving the problem is to be assigned to the genius of Darwin.

Mr. Waterhouse pointed out 'that the form of the cell stands in close relation to the presence of adjoining cells.' Starting from this fact, Mr. Darwin says,—

Let us look to the great principle of gradation, and see whether Nature does not reveal to us her method of work. At one end of a short series we have humble-bees, which use their old cocoons to hold honey, sometimes adding to them short tubes of wax, and likewise making separate and very irregular rounded cells of wax. At the other end of the series we have the cells of the hive-bee, placed in a double layer..... In the series between the extreme perfection of the cells of the hive-bee and the simplicity of those of the humble-bee we have the cells of the Mexican Melipona domestica, carefully described and figured by Pierre Huber..... It forms a nearly regular waxen comb of cylindrical cells, in which the young are hatched, and, in addition, some large cells of wax for holding honey. These latter cells are nearly spherical and of nearly equal sizes, and are aggregated into an irregular mass. But the important thing to notice is, that these cells are always made at that degree of nearness to each other that they would have intersected or broken into each other if the spheres had been completed; but this is never permitted, the bees building perfectly flat cells of wax between the spheres which thus tend to intersect. Hence each cell consists of an outer spherical portion; and of two, three, or more flat surfaces, according as the cell adjoins two, three, or more other cells. When one cell rests on three other cells, which, from the spheres being nearly of the same size, is very frequently and necessarily the case, the three flat surfaces are united into a pyramid; and this pyramid, as Huber has remarked, is manifestly a gross imitation of the three-sided pyramidal base of the cell of the hive-bee.....

Reflecting on this case, it occurred to me that if the Melipona had made its spheres at some given distance from each other, and had made them of equal sizes, and had arranged them symmetrically in a double layer, the resulting structure would have been as perfect as the comb of the hive-bee. Accordingly I wrote to Prof. Miller of Cambridge, and this geometer has kindly read over the following statement, drawn up from his information, and tells me that it is strictly correct.

This statement having fully borne out his theory, Mr. Darwin continues:—

Hence we may safely conclude that, if we could slightly modify the instincts already possessed by the Melipona, and in themselves not very wonderful, this bee would make a structure as wonderfully perfect as that of the hive-bee. We must suppose the Melipona to have the power of forming her cells truly spherical, and of equal sizes; and this would not be very surprising, seeing that she already does so to a certain extent, and seeing what perfectly cylindrical burrows many insects make in wood, apparently by turning round on a fixed point. We must suppose the Melipona to arrange her cells in level layers, as she already does her cylindrical cells; and we must further suppose—and this is the greatest difficulty—that she can somehow judge accurately at what distance to stand from her fellow-labourers when several are making their spheres; but she is already so far able to judge of distance that she always describes her spheres so as to intersect to a certain extent; and then she unites the points of intersection by perfectly flat surfaces. By such modifications of instinct, which in themselves are not very wonderful—hardly more wonderful than those which guide a bird to make its nest,—I believe that the hive-bee has acquired through natural selection her inimitable architectural powers.[60]

Mr. Darwin next tested this theory by the experiment of introducing into beehives plates of wax, and observing that the bees worked upon these plates just as the theory required. That is to say, they made their cells by excavating a number of little circular pits at equal distances from one another, so that by the time the pits had acquired the width of an ordinary cell, the sides of the pits intersected. As soon as this occurred the bees ceased to excavate, and instead began to build up flat walls of wax on the lines of intersection. Other experiments with very thin plates of vermilion-coloured wax showed that the bees all worked at about the same rate, and on opposite sides of the plates, so that the common bottoms of any two opposite pits were flat. These flat bottoms 'were situated, as far as the eye could judge, exactly along the planes of imaginary intersection between the basins on the opposite sides of the ridge of wax;' so that if the plate of wax had been thick enough to admit of the opposite basins being deepened (and widened) into cells, the mutual intersection of adjacent as well as opposite bottoms would have given rise, as in the first experiment with the thick plate of wax, to the pyramidal bottoms. Experiments with the vermilion wax also showed, as Huber had previously stated, that a number of individual bees work by turns at the same cell; for by covering parts of growing cells with vermilion wax, Mr. Darwin—

Invariably found that the colour was most delicately diffused by the bees—as delicately as a painter could have done it with his brush—by atoms of the coloured wax having been taken from the spot on which it had been placed, and worked into the growing edges of the cells all round.

Such, omitting details, is the substance of Mr. Darwin's theory. In summary he concludes,—

The work of construction seems to be a sort of balance struck between many bees, all instinctively standing at the same relative distance from each other, all trying to sweep equal spheres, and then building up, or leaving ungnawed, the planes of intersection between these spheres.

This theory, while serving as a full and simple explanation of all the facts, has, as we have seen, been so fully substantiated by observation and experiment, that it deserves to be regarded as raised to the rank of a completed demonstration. It differs from the theory of Buffon in two important particulars: it embraces all the facts, and supplies a cause adequate to explain them. This cause is natural selection, which converts the random 'pressure' in Buffon's theory into a precisely regulated principle. Random pressure alone could never produce the beautifully symmetrical form of the hexagonal cell with the pyramidal bottom; but it could and must have produced the intersection of cylindrical cells among possibly many extinct species of bees, such as the Melipona. Whenever this intersection occurred in crowded nests, it must clearly have been of great benefit in securing economy of precious wax; for in every case where a flat wall of partition between two adjacent cells did duty instead of a double cylindrical wall of separate cells, there wax should have been saved. Thus we can see how natural selection would have worked towards the developing of an instinct to excavate cells near enough together to produce intersection; and once begun, there is no reason why this instinct should not have been perfected by the same agency, till we meet with its ideal perfection in the hive-bee. For as Mr. Darwin observes,—

With respect to the formation of wax, it is known that bees are often hard pressed to get sufficient nectar; and I am informed by Mr. Tegetmeier that it has been experimentally proved that from twelve to fifteen pounds of dry sugar are consumed by a hive of bees for the secretion of a pound of wax; so that a prodigious quantity of fluid nectar must be collected and consumed by the bees in a hive for the secretion of the wax necessary for the construction of their combs. Moreover, many bees have to remain idle for many days during the process of secretion..... Hence it would continually be more and more advantageous to our humble-bees if they were to make their cells more and more regular, nearer together, and aggregated into a mass, like the cells of Melipona; for in this case a large part of the bounding surface of each cell would serve to bound the adjoining cell, and much labour and wax would be saved. Again, from the same cause, it would be advantageous to the Melipona if she were to make her cells closer together, and more regular in every way than at present; for then, as we have seen, the spherical surfaces would wholly disappear and be replaced by plane surfaces; and the Melipona would make a comb as perfect as that of the hive-bee. Beyond this stage of perfection in architecture, natural selection could not lead; for the comb of the hive-bee, as far as we can see, is absolutely perfect in economising labour and wax.

The problem, then, as to the origin and perfection of the cell-making instinct appears thus to have been fully and finally solved. I shall now adduce a few facts to show that while the general instinct of building hexagonal cells has doubtless been acquired by natural selection in the way just explained, it is nevertheless an instinct not wholly of a blind or mechanical kind, but is constantly under the control of intelligent purpose. Thus Mr. Darwin observes,

It was really curious to note in cases of difficulty, as when two pieces of comb met at an angle, how often the bees would pull down and rebuild in different ways the same cell, sometimes recurring to a shape which they had at first rejected.[61]

Again, Huber saw a bee building upon the wax which had already been put together by her comrades. But she did not arrange it properly, or in a way to continue the design of her predecessors, so that her building made an undesirable corner with theirs. 'Another bee perceived it, pulled down the bad work before our eyes, and gave it to the first in the requisite order, so that it might exactly follow the original direction.' Similarly, to quote BÜchner,—

All the cells have not the same shape, as would be the case if the bees in building worked according to a perfectly instinctive and unchangeable plan. There are very manifold changes and irregularities. Almost in every comb irregular and unfinished cells are to be found, especially where the several divisions of a comb come together. The small architects do not begin their comb from a single centre, but begin building from many different points, so as to progress as rapidly as possible, and so that the greatest number may work simultaneously; they therefore build from above downwards, in the shape of flat truncated cones or hanging pyramids, and these several portions are afterwards united together during the winter budding. At these lines of junction it is impossible to avoid irregular cells between the pressed together or unnaturally lengthened ones. The same is true more or less of the passage cells, which are made to unite the large cells of the so-called drone wax with the smaller ones of the working bees, and which are generally placed in two or three rows. The cells also which they usually build from the combs to the glass walls of their hives, in order to hold them up, show somewhat irregular forms. Finally, in places where special conditions of the situation do not otherwise permit, it may be observed that the bees, far from clinging obstinately to their plan, very well understand how to accommodate themselves to circumstances not only in cell-building, but also in making their combs. F. Huber tried to mislead their instinct, or rather to put to the proof their reason and cleverness in every possible way, but they always emerged triumphant from the ordeal. For instance, he put bees in a hive the floor and roof of which were made of glass, that is of a body which the bees use very unwillingly for the attachment of their combs, on account of its smoothness. Thus the possibility of building as usual from above downwards, and also from below upwards, was taken away from them; they had no point of support save the perpendicular walls of their dwelling. They thereupon built on one of these walls a regular stratum of cells, from which, building sideways, they tried to carry the comb to the opposite side of the hive. To prevent this Huber covered that side also with glass. But what way out of the difficulty was found by the clever insects? Instead of building further in the projected direction, they bent the comb round at the extreme point, and carried it at a right angle towards one of the inner sides of the hive which was not covered with glass, and there fastened it. The form and dimensions of the cells must necessarily have been altered thereby, and the arrangement of their work at the angle must have been quite different from the usual. They made the cells of the convex side so much broader than those of the concave that they had a diameter two or three times as great, and yet they managed to join them properly with the others. They also did not wait to bend the comb until they came to the glass itself, but recognised the difficulty beforehand,[62] which had been interposed by Huber while they were building with a view to overcome the first difficulty.

Special Habits.

The Mason-Bee.—This insect closes the roof of its larval cell with a kind of mortar, which sets as hard as stone. A little hole, closed only with soft mud, is, however, left in one part of the roof as a door of exit for the matured insect. It is said that when a mason-bee finds an old and deserted nest, it saves itself the trouble of making a new one—utilising the ready-made nest after having well cleaned it. In Algiers the mason-bees have been observed in this way to utilise empty snail-shells. According to Blanchard, some individuals avoid the labour of making their own nests or houses for their young, by possessing themselves of their neighbours' houses either by craft or by force. 'Does the mason-bee act like a machine,' says E. Menault, 'when it directs its work according to circumstances, possesses itself of old nests, cleanses and improves them, and thereby shows that it can fully appreciate the immediate position? Can one believe that no kind of reflection is here necessary?'

The Tapestry-Bee.—The so-called tapestry-bee digs holes for her larvÆ three or four inches deep in the earth, and lines the walls and floor of the chamber with petals of the poppy laid perfectly smooth. Several layers of petals are used, and when the eggs are introduced the chamber is closed by drawing all the leaves together at the top. Loose earth is then piled over the whole structure in order to conceal it. The so-called rose-bee (Megachile centuncularis) displays very similar habits.[63]

The Carpenter-Bee.—This was first observed and described by RÉaumur.[64] It makes a long cylindrical tube in the wood of beams, palings, &c. This it divides into a number of successive chambers by partitions made of agglutinated saw-dust built across the tube at right angles to its axis. In each chamber there is deposited a single egg, together with a store of pollen for the nourishment of the future larva. The larvÆ hatch out in succession and in the order of their age—i.e. the dates at which they were deposited. To provide for this, the bee bores a hole from the lower cell to the exterior, so that each larva, when ready to escape from its chamber, finds an open way from the tube. The larvÆ have to cut their own way out through the walls of their respective chambers, and it is remarkable that they always cut through the wall that faces the tubular passage left by the parent; they never bore their way out in the opposite direction, which, were they to do so, would entail the destruction of all the other and immature larvÆ.

The Carding-Bee.—This insect surrounds its nest with a layer of wax, and then with a thick covering of moss. For this purpose a number of bees co-operate, and in order to save time each bee does not find and carry its own moss, but, with a division of labour similar to that which we have already noticed in the case of certain ants, a row of bees is formed, and the bits of moss passed from one to another along the line. There is a long passage to the nest, through which the moss has to be passed, and it is said that at the mouth of the tunnel a guard is stationed to drive away ants or other intruders.

Wasps.—These usually construct their nests of wood-dust, which they scrape off the weather-worn surfaces of boards, palings, &c., and work into a kind of paper with their saliva. If they happen to find any real paper, they perceive that it so much resembles the product of their own manufacture that they utilise it forthwith. The wasps do not require any special cells or chambers for the storage of honey, as they do not lay up any supply for the winter. The cells which they construct are therefore used exclusively for the rearing of larvÆ. In form these cells are sometimes cylindrical or globular, but more usually hexagonal, like those of the hive-bee. Although the mode of building is different from that employed by the bees, there can be little doubt that if it were as carefully investigated Mr. Darwin's theory of transition from the cylindrical to the hexagonal form would be found to apply here also, seeing that both forms so frequently occur in the same nest.

The Mason-Wasp.—The habits of this insect are described by Mr. Bates. It constructs its nest of clay. Each pellet that the insect brings it lays on the top of its nest-wall, and then spreads it out with its jaws, and treads it smooth with its feet. The nest, which is suspended on the branch of a tree, is then stocked with spiders and insects paralysed by stinging. The victims, not being wholly deprived of life, keep fresh until required as food of the developing larvÆ.

The Butcher-Wasps.—These also paralyse their prey in a similar manner, and for a similar purpose. Fabre removed from a so-called sphex-wasp a killed grasshopper, which it was conveying to its nest and had momentarily laid down at the mouth of the burrow—as these insects always do on returning with prey, in order to see that nothing has intruded into the burrow during their absence. Fabre carried the dead or paralysed grasshopper to a considerable distance from the hole. On coming out the insect searched about until it found its prey. It then again carried it to the mouth of its burrow, and again laid it down while it once more went in to see that all was right at home. Again Fabre removed the grasshopper, and so on for forty times in succession—the sphex never omitting to go through its fixed routine of examining the interior of its burrow every time that it brought the prey to its mouth.

Mr. Mivart, in his 'Lessons from Nature,' points to the instinct of this animal in the stinging of the ganglion of its prey as one that cannot be explained on Mr. Darwin's theory concerning the origin of instincts. In my next work, which will have to deal with this theory, I shall consider Mr. Mivart's difficulty, and also the difficulty first pointed out by Mr. Darwin himself as to why neuter insects, separated as they appear to be from the possibility of communicating by heredity any instinctive acquirements of the individual to the species, should present any instincts at all.

General Intelligence.

Beginning with Sir John Lubbock's observations on this head, I shall first quote his statements with regard to way-finding:—

I have found, he says, that some bees are much more intelligent in this respect than others. A bee which I had fed several times, and which had flown about in the room, found its way out of the glass in a quarter of an hour, and when put in a second time came out at once. Another bee, when I closed the postern door, used to come round to the honey through an open window.

Bees seem to me much less clever in finding things than I had expected. One day (April 14, 1872), when a number of them were very busy on some barberries, I put a saucer with some honey between two bunches of flowers; these were repeatedly visited, and were so close that there was hardly room for the saucer between them, yet from 9.30 to 3.30 not a single bee took any notice of the honey. At 3.30 I put some honey on one of the bunches of flowers, and it was eagerly sucked by the bees; two kept continually returning till past five in the evening.

One day when I came home in the afternoon I found that at least a hundred bees had got into my room through the postern and were on the window, yet not one was attracted by an open jar of honey which stood in a shady corner about 3 feet 6 inches from the window.

One day (29th April, 1872) I placed a saucer of honey close to some forget-me-nots, on which bees were numerous and busy; yet from 10 A.M. till 6 only one bee went to the honey.

I put some honey in a hollow in the garden wall opposite the hives at 10.30 (this wall is about five feet high and four feet from the hives); yet the bees did not find it during the whole day.

On the 30th March, 1873, a fine sunshiny day, when the bees were very active, I placed a glass containing honey at 9 in the morning on the wall in front of the hives; but not a single bee went to the honey the whole day. On April 20 I tried the same experiment, with the same result.

September 19.—At 9.30 I placed some honey in a glass about four feet from and just in front of the hive; but during the whole day not a bee observed it.

As it then occurred to me that it might be suggested that there was something about this honey which rendered it unattractive to the bees, on a following day I placed it again on the top of the wall for three hours, during which not a single bee came, and then moved it close to the alighting-board of the hive. It remained unnoticed for a quarter of an hour, when two bees observed it; and others soon followed in considerable numbers..... On the whole, wasps seem to me more clever in finding their way than bees. I tried wasps with the glass mentioned on p. 124 [i.e. the bell-jar], but they had no difficulty in finding their way out.

We shall now conclude this rÉsumÉ of Sir John Lubbock's observations by quoting two other passages bearing on the general intelligence of bees and wasps:—

The following fact struck me as rather remarkable. The wasp already mentioned at the foot of p. 135 one day smeared her wings with syrup, so that she could not fly. When this happened to a bee, it was only necessary to carry her to the alighting-board, when she was soon cleaned by her comrades. But I did not know where this wasp's nest was, and therefore could not pursue a similar course with her. At first, then, I was afraid that she was doomed. I thought, however, that I would wash her, fully expecting, indeed, to terrify her so much that she would not return again. I therefore caught her, put her in a bottle half full of water, and shook her up well till the honey was washed off. I then transferred her to a dry bottle and put her in the sun. When she was dry I let her out, and she at once flew to her nest. To my surprise, in thirteen minutes she returned, as if nothing had happened, and continued her visits to the honey all the afternoon.

This experiment interested me so much that I repeated it with another marked wasp, this time, however, keeping the wasp in the water till she was quite motionless and insensible. When taken out of the water she soon recovered; I fed her; she went quietly away to her nest as usual, and returned after the usual absence. The next morning this wasp was the first to visit the honey.

I was not able to watch any of the above-mentioned wasps for more than a few days; but I kept a specimen of Polistes Gallica for no less than nine months.

This is the wasp which has already been alluded to under the heading 'Memory;' but it is evident that the capacity which the insect displayed of becoming tamed implies no small degree of general intelligence; its hereditary instincts were conspicuously modified by the individual experiences incidental to its domestication.

The remaining passages that deserve quotation are the following:—

It is sometimes said of bees that those of one hive all know one another, and immediately recognise and attack any intruder from another hive. At first sight this certainly implies a great deal of intelligence. It is, however, possible that the bees of particular hives have a particular smell. Thus Langshaft, in his interesting 'Treatise on the Honey-Bee,' says: 'Members of different colonies appear to recognise their hive companions by the sense of smell; and I believe that if colonies are sprinkled with scented syrup, they may generally be safely mixed. Moreover, a bee returning to its own hive with a load of treasure is a very different creature from a hungry marauder; and it is said that a bee, if laden with honey, is allowed to enter any hive with impunity.' Mr. Langshaft continues, 'There is an air of roguery about a thieving bee which, to the expert, is as characteristic as are the motions of a pickpocket to a skilful policeman. Its sneaking look, and nervous, guilty agitation, once seen, can never be mistaken.' It is, at any rate, natural that a bee which enters a wrong hive by accident should be much surprised and alarmed, and would thus probably betray herself.

On the whole, then, I do not attach much importance to their recognition of one another as an indication of intelligence.

Since their extreme eagerness for honey may be attributed rather to their anxiety for the common weal than to their desire for personal gratification, it cannot fairly be imputed as greediness; still the following scene, one which most of us have witnessed, is incompatible surely with much intelligence. The sad fate of their unfortunate companions does not in the least deter others who approach the tempting lure from madly alighting on the bodies of the dying and dead, to share the same miserable end. No one can understand the extent of their infatuation until he has seen a confectioner's shop assailed by myriads of hungry bees. I have seen thousands strained out from the syrup in which they had perished; thousands more alighting even upon the boiling sweets, the floor covered and windows darkened with bees, some crawling, others flying, and others still, so completely besmeared as to be able neither to crawl nor fly, not one in ten able to carry home its ill-gotten spoils, and yet the air filled with new hosts of thoughtless comers.

Passing on now to the statements of other observers, Huber first noticed the remarkable fact that when beehives are attacked by the death's-head moth the bees close the entrance of their hive with wax and propolis to keep out the marauder. The barricade, which is built immediately behind the gateway, completely stops it up—only a small hole being left large enough to admit a bee, and therefore of course too small to admit the moth. Huber specially states that it was not until the beehives had been repeatedly attacked and robbed by the death's-head moth, that the bees closed the entrance of their hive with wax and propolis. Pure instinct would have induced the bees to provide against the first attack. Huber also observed that a wall built in 1804 against the death's-head hawk-moth was destroyed in 1805. In the latter year there were no death's-head moths, nor were any seen during the following. But in the autumn of 1807 a large number again appeared, and the bees at once protected themselves against their enemies. The bulwark was destroyed again in 1808.

Again, Huber (loc. cit., tom. ii., p. 280) gives a case of apparent exercise of reason, or power of inference from a particular case to other and general cases. A piece of comb fell down and was fixed in its new position by wax. The bees then strengthened the attachments of all the other combs, clearly because they inferred that they too might be in danger of falling. This is a very remarkable case, and leads Huber to exclaim, 'I admit that I was unable to avoid a feeling of astonishment in the presence of a fact from which the purest reason seemed to shine out.'

A closely similar, and therefore corroborative case of an even more remarkable kind is thus narrated in Watson's 'Reasoning Power of Animals' (p. 448):—

Dr. Brown, in his book on the bee, gives another illustration of the reasoning power of bees, observed by a friend of his. A centre comb in a hive, being overburdened with honey, had parted from its fastenings, and was pressing against another comb, so as to prevent the passage of the bees between them. This accident excited great bustle in the colony, and as soon as their proceedings could be observed, it was found that they had constructed two horizontal beams between the two combs, and had removed enough of the honey and wax above them to admit the passage of a bee, while the detached comb had been secured by another beam, and fastened to the window with spare wax. But what was most remarkable was, that, when the comb was thus fixed, they removed the horizontal beams first constructed, as being of no further use. The whole occupation took about ten days.

Again, Mr. Darwin's MS. quotes from Sir B. Brodie's 'Psychological Inquiries' (1854, p. 88) the following case, which is analogous to the above, except that the supports required had to be made in a vertical instead of in a horizontal direction:—

On one occasion, when a large portion of the honeycomb had been broken off, they pursued another course. The fragment had somehow become fixed in the middle of the hive, and the bees immediately began to erect a new structure of comb on the floor, so placed as to form a pillar supporting the fragment, and preventing its further descent. They then filled up the space above, joining the comb which had become detached to that from which it had been separated, and they concluded their labours by removing the newly constructed comb below, thus proving that they had intended it to answer a merely temporary purpose.

Similarly, Dr. Dzierzon, an experienced keeper of bees, and the observer who first discovered the fact of their parthenogenesis, makes the general remark,—

The cleverness of the bees in repairing perfectly injuries to their cells and combs, in supporting on pillars pieces of their building accidentally knocked down by a hasty push, in fastening them with rivets, and bringing everything again into proper unity, making hanging bridges, chains, and ladders, compels our astonishment.

Lastly, as still further corroboration of such facts, I shall quote the following from Jesse's 'Gleanings:'[65]

Bees show great ingenuity in obviating the inconvenience they experience from the slipperiness of glass, and certainly beyond what we can conceive that mere instinct would enable them to do. I am in the habit of putting small glass globes on the top of my straw hives, for the purpose of having them filled with honey; and I have invariably found that before the bees commence the construction of combs, they place a great number of spots of wax at regular distances from each other, which serve as so many footstools on the slippery glass, each bee resting on one of these with its middle pair of legs, while the fore claws were hooked with the hind ones of the bee next above him; thus forming a ladder, by means of which the workers were enabled to reach the top, and begin to make their combs there.

Herr Kleine, in his pamphlet on Italian Bees and Bee-keeping (Berlin, 1855), says that on substituting during the absence of the bees a hive filled with empty comb for their own hive, the returning bees exhibit the utmost perplexity. As the substituted hive stands in the exact spot previously occupied by their own hive, the returning bees fly into it without observing the change. But finding only empty combs inside, 'they stop, do not know where they are, come out of the hole again without depositing their loads, fly off, look most carefully round the stand to assure themselves that they have made no mistake, and go in once more when convinced that they are at the right place. The same thing is repeated over and over again, until the bees at last bow to the incomprehensible and unavoidable, lay down their loads, and set to work at those tasks made necessary by the new circumstances of the hive. But as all the newly arriving bees behave in similar fashion, the disturbance lasts till late in the evening, and the uncertainty and anxiety of the bees is so great that the bee-master cannot contemplate it without deep sympathy.' Under such circumstances the bees take quickly to a substituted queen; 'for the feeling of the first comers that they have no right to the new dwelling, having, as they suppose, made some inexplicable mistake which they cannot remedy, prevents them from feeling any hostility to the new queen which they find; they probably consider themselves as merely on sufferance, and feel that they should be grateful that no action is taken against them for their illegal entry, as generally happens in bee-experience.' Hence the writer adopts this device when he desires to exchange or substitute queens.

BÜchner, after alluding to this case, supplements it with the following:—

The wind threw down from the stand of a bee-master—a friend of the author's, whose name will soon become known—a straw beehive, the inmates of which were surprised in full work, and no small disorder in the interior was the result. The owner repaired the hive, put the loose comb back in its place, and replaced it in such a manner that the wind could not again catch it, hoping that the accident would have no further results. But when he examined the hive a few days later, he found that the bees had left their old home in the lurch, and had tried to enter other hives, clearly because they could no longer trust the weather, and feared that the terrible accident might again befall them.

Dr. Erasmus Darwin, in his 'Zoonomia,' asserts that bees, when transported to Barbadoes, where there is no winter, cease to lay up honey. In contradiction to this statement, however, Kirby and Spence say, 'It is known to every naturalist acquainted with the fact, that many different species of bees store up honey in the hottest climates, and that there is no authentic instance on record of the hive-bees altering in any age or climate their peculiar operations.'

On the other hand, more recent observation has shown that Dr. Darwin's statement is probably correct. For, according to a note in Nature,[66] European bees, when transported to Australia, retain their industrious habits only for the first two or three years. After that time they gradually cease to collect honey till they become wholly idle. In a subsequent number of the same periodical (p. 411) a correspondent writes that the same fact is observable with bees transported to California, but is obviated by abstracting honey as the bees collect it.

There seems to be no doubt that bees and wasps are able to distinguish between persons, and even to recognise those whom they are accustomed to see, and to regard as friends. Bee-masters who attend much to their bees, so as to give the insects a good chance of knowing them, are generally of the opinion that the insects do know them, as shown by the comparatively sparing use of their stings. Again, many instances might be quoted, such as that given by Guerinzius,[67] who allowed a species of wasp native to Natal to build in the doorposts of his house, and who observed that although he often interfered with the nest, he was only once stung, and this by a young wasp; while no Caffre could venture to approach the door, much less to pass through it.[68] This power of distinguishing between persons indicates a higher order of intelligence than we might have expected to meet with among insects; and, according to Bingley, bees will not only learn to distinguish persons, but even lend themselves to tuition by those whom they know. For he says, 'Mr. Wildman, whose remarks on the management of bees are well known, possessed a secret by which he could at any time cause a hive of bees to swarm upon his head, shoulders, or body, in a most surprising manner. He has been seen to drink a glass of wine with the bees all over his head and face more than an inch deep; several fell into the glass, but did not sting him. He could even act the part of a general with them, by marshalling them in battle array on a large table. Then he divided them into regiments, battalions, and companies, according to military discipline, waiting only for his word of command. The moment he uttered the word march! they began to march in a very regular manner in rank and file, like soldiers. To these, his Lilliputians, he also taught so much politeness that they never attempted to sting any of the numerous company which, at different times, resorted to admire this singular spectacle.'

Huber's observation, since amply confirmed, of bees biting holes through the base of corollas in order to get at the honey which the length of the corollas prevent them from reaching in the ordinary way, also seems to indicate a rational adjustment to unusual circumstances. For the bees do not resort to this expedient until they find from trial that they cannot reach the nectar from above; but having once ascertained this, they forthwith proceed to pierce the bottoms of all the flowers of the same species. From an interesting account by Mr. Francis Darwin[69] (unfortunately too long to quote) it appears that, even when the nectar may be reached from above, bees may still resort to the expedient of biting through corollas in order to save time.

In connection with biting holes in corollas I may quote an observation communicated to me by a correspondent, Sir J. Clarke Jervoise. Speaking of a humble-bee, he says: 'I watched him into the flower of a foxglove, and, when out of sight, I closed the lips of the flower with my finger and thumb. He did not hesitate a moment, but cut his way out at the further end as if he had been served the same trick before. I never did it.'

Bees are highly particular in the matter of keeping their hives pure, and their sanitary arrangements often exhibit intelligence of a high order.

The following is quoted from BÜchner (loc. cit., p. 248):—

Impure air within the hive is that which the bees must above all things fear and avoid, for with the pressure together of so many individuals in a comparatively small space, it would not only be directly harmful to individual bees, but would produce among them dangerous diseases. They therefore also never void their excrements within, but always outside the hive. While this is very easy to do in summer, it is, on the contrary, very difficult in the winter, when the bees sit close together and generally motionless in the upper part of the hive, and when, from impure air and foul evaporations, as well as from bad and insufficient food, dysentery-like diseases break out among them, and often carry off the whole community in a brief space of time. In such cases they utilise the first fine day to relieve themselves, and in the spring they take a long general cleansing flight. But they also know how to take advantage of special circumstances so as to perform the process of purification in the way least harmful to the hive. Herr Heinrich Lehr, of Darmstadt, a bee-keeping friend of the author, has sent the following communication:—During an epidemic of dysentery in winter, from which most of his hives suffered (as the bees were no longer able to retain their excrements), one hive suffered less than the others. Exact investigation showed that this hive was soiled all over at the back with the excrement of the bees, and that the inmates had here made a kind of drain. On this spot a little opening had been made by the falling off of the covering clay, which led directly to the upper part of the hive, where the bees were accustomed to sit together during the winter. This excellent opportunity, whereby they could reach in the shortest way an otherwise difficult object, and one rendered complicated by circumstances, did not escape them.

It sometimes happens that mice, slugs, &c., enter a beehive. They are then killed and covered with a coating of propolis. RÉaumur says[70] that he once saw a snail enter a hive in this way. The hard shell was an effective protection against the stings of the bees, so the insects smeared round the edges of the shell with wax and resin, fastening down the animal to the wall of the hive, so that it died of starvation or want of air. If the encasing of an animal (such as a mouse) with propolis is not sufficient to prevent its putrefaction, the bees gnaw away all the putrescible parts of the carcass and carry them out of the hive, leaving only the skeleton behind. The dead bodies of their companions are also carried out of the hive and deposited at a distance. There is no question about this fact (which it will be remembered is analogous to that already mentioned in the case of ants); according to BÜchner, however, bees not only remove their dead, but also, occasionally at least, bury them. But as he gives very inadequate evidence in support of this assertion, we may safely set it aside as insufficiently proven.

BÜchner, however, gives an admirable summary, and makes some judicious remarks on the well-known and highly remarkable habit which bees practise for the obvious purpose of ventilating their hives. As this account gives all the facts in a brief compass, I cannot do better than quote it:—

Very interesting, and closely connected with this characteristic of cleanliness, is the conduct of the so-called ventilating-bees, which have to take care that in summer or hot weather the air necessary for respiration of the bees in the interior of the hive is renewed, and the too high temperature cooled down. The latter precaution is necessary, not only on account of the bees working within the hive, to whom, as already said, a temperature risen beyond a certain point would be intolerable, but also to guard against the melting or softening of the wax. The bees charged with the care of the ventilation divide themselves into rows and stages in regular order through all parts of the hive, and by swift fanning of their wings send little currents of air in such fashion that a powerful stream or change of air passes through all parts of the hive. Other bees stand at the mouth of the hive, which fan in the same way and considerably accelerate the wind from within. The current of air thus caused is so strong that little bits of paper hung in front of the mouth are rapidly moved, and that, according to F. Huber, a lighted match is extinguished. The wind can be distinctly felt if the hand be held in front.

The motion of the wings of the ventilating bees is so rapid that it is scarcely perceptible, and Huber saw some bees working their wings in this way for five-and-twenty minutes. When they are tired they are relieved by others. According to Jesse, the bees in very hot weather, in spite of all their efforts, are unable to sufficiently lower the temperature, and prevent the melting of some of the wax; they then get into a condition of great excitement, and it is dangerous to approach them. In such a case they also try to mend matters by a number leaving the hive and settling in large masses on its surface, so as to protect it as much as possible from the scorching rays of the sun.

Although the described plan of ventilation is remarkable enough in itself, it is yet more remarkable in that it is clearly only the result of bee-keeping, and is evoked by this misfortune. For there could be no need of such ventilation for bees in a state of nature, whose dwellings in hollow trees and clefts of rocks leave nothing to be desired as to roominess and airiness, while in the narrow artificial hive this need at once comes out strongly. In fact, the fanning of the bees almost entirely ceased when Huber brought them into large hives five feet high, in which there was plenty of air. It follows, therefore, that the fanning and ventilating can have absolutely nothing to do with an inborn tendency or instinct, but have been gradually evoked by necessity, thought, and experience.

As the following observation on the cautious sagacity of wasps is, so far as I am aware, new, and as it certainly does not admit of mal-observation, I introduce it on the authority of a correspondent, the Rev. Mr. J. W. Mossman, who writes from Tarrington Rectory, Wragby. He found an apple in his orchard which had fallen from a tree in apparently good condition; but on taking it up observed that it was little more than a shell filled with wasps. Giving the apple a shake, he saw a wasp slowly emerging from a single small aperture in the rind:—

This aperture was sufficient, and only just sufficient, to admit of the ingress or egress of a single wasp. The circumstance which struck me as very remarkable was this—that the wasp did not make its way through the aperture with its head first, as I should have expected, but with its tail, darting out its sting to its utmost extent, and brandishing it furiously. In this manner it came out of the apple backwards. Then, finding itself in the open air upon the outer surface of the apple, it turned round, and without any attempt to molest me, flew off in the usual way. The moment this first wasp had emerged, the sting and tail of another was seen protruding. This, too, I watched with much interest, and exactly the same process was repeated as in the case of the first. I held the apple in my hand until some ten or a dozen wasps had made their exit in the same identical manner in each individual case. I then threw down the apple, inside of which, however, there were still apparently a good many wasps.

It seemed to me at the time, and I have always felt since, that the wasps coming out of the apple backwards, brandishing their stings as a defensive weapon against possible enemies, whom of course they were not able to see, was an evidence of what would be called thought and reflection in the case of human beings. It seems to me that these wasps must have reflected that if they came out of the narrow aperture in the apple, which was their only possible means of ready egress, in the usual manner, head first, they might be taken at a disadvantage by a possible enemy, and destroyed in detail. They, therefore, with great prudence and foresight, came out of the apple backwards, protecting themselves by means of their chief offensive and defensive weapons, their stings, which, according to their normal method of locomotion, would have been useless to them as long as they were making their exit.

With regard to the tactics displayed by hunting wasps I may quote the following cases:—

Mr. Seth Green, writing to the New York World of May 14, says that one morning when he was watching a spider's nest, a wasp alighted within an inch or two of the nest, on the side opposite the opening. Creeping noiselessly around towards the entrance of the nest the wasp stopped a little short of it, and for a moment remained perfectly quiet; then reaching out one of his antennÆ he wriggled it before the opening and withdrew it. This overture had the desired effect, for the boss of the nest, as large a spider as one ordinarily sees, came out to see what was wrong and to set it to rights. No sooner had the spider emerged to that point at which he was at the worst disadvantage than the wasp, with a quick movement, thrust his sting into the body of his foe, killing him easily and almost instantly. The experiment was repeated on the part of the wasp, and when there was no response from the inside he became satisfied, probably, that he held the fort. At all events, he proceeded to enter the nest and slaughter the young spiders, which were afterwards lugged off one at a time.

Mr. Henry Cecil writes as follows (Nature, vol. xviii., p. 311):—

I was sitting one summer's afternoon at an open window (my bedroom) looking into a garden, when I was surprised to observe a large and rare species of spider run across the window-sill in a crouching attitude. It struck me the spider was evidently alarmed, or it would not have so fearlessly approached me. It hastened to conceal itself under the projecting ledge of the window-sill inside the room, and had hardly done so when a very fine large hunting wasp buzzed in at the open window and flew about the room, evidently in search of something. Finding nothing, the wasp returned to the open window and settled on the window-sill, running backwards and forwards as a dog does when looking or searching for a lost scent. It soon alighted on the track of the poor spider, and in a moment it discovered its hiding-place, darted down on it, and no doubt inflicted a wound with its sting. The spider rushed off again, and this time took refuge under the bed, trying to conceal itself under the framework or planks which supported the mattress. The same scene occurred here; the wasp now appeared to follow the spider by sight, but ran backwards and forwards in large circles like a hound. The moment the trail of the spider was found the wasp followed all the turns it had made till it came on it again. The poor spider was chased from hiding-place to hiding-place, out of the bedroom, across a passage, and into the middle of another large room, where it finally succumbed to the repeated stings inflicted by the wasp. Rolling itself up into a ball the wasp then took possession of its prey, and after ascertaining it could make no resistance, tucked it up under its very long hind legs, just as a hawk or eagle carries off its quarry, when I interposed and secured both for my collection.

Mr. Belt, in his work already frequently quoted, gives the following account of a struggle which not unfrequently occurs between wasps and ants for the sweet secretion of 'frog-hoppers:'—

Similarly as, on the savannahs, I had observed a wasp attending the honey-glands of the bull's-horn acacia along with the ants; so at Santo Domingo another wasp, belonging to quite a different genus (Nectarina), attended some of the clusters of frog-hoppers, and for the possession of others a constant skirmishing was going on. The wasp stroked the young hoppers, and sipped up the honey when it was exuded, just like the ants. When an ant came up to a cluster of leaf-hoppers attended by a wasp, the latter would not attempt to grapple with its rival on the leaf, but would fly off and hover over the ant; then when its little foe was well exposed, it would dart at it and strike it to the ground. The action was so quick that I could not determine whether it struck with its fore-feet or its jaws; but I think it was with the feet. I often saw a wasp trying to clear a leaf from ants that were already in full possession of a cluster of leaf-hoppers. It would sometimes have to strike three or four times at an ant before it made it quit its hold and fall. At other times one ant after the other would be struck off with great celerity and ease, and I fancied that some wasps were much cleverer than others. In those cases where it succeeded in clearing the leaf, it was never left long in peace; for fresh relays of ants were continually arriving, and generally tired the wasp out. It would never wait for an ant to get near it, doubtless knowing well that if its little rival once fastened on its leg, it would be a difficult matter to get rid of it again. If a wasp first obtained possession, it was able to keep it; for the first ants that came up were only pioneers, and by knocking these off, it prevented them from returning and scenting the trail to communicate the intelligence to others.

Dr. Erasmus Darwin records an observation ('Zoonomia,' i., p. 183) which, from having since been so widely quoted, deserves to be called classical. He saw a wasp upon the ground endeavouring to remove a large fly which was too heavy for it to carry off. The wasp cut off the head and abdomen, and flew away with the thorax alone. The wind, however, catching the wings of this portion made it still too unwieldy for the wasp to guide. It therefore again alighted, and nipped off first one wing and then the other, when it was able to fly off with its booty without further difficulty.

This observation has since been amply confirmed. I shall quote some of the confirmatory cases.

Mr. R. S. Newall, F.R.S., in Nature, vol. xxi., p. 494, says:—

Many years ago I was examining an apple tree, when a wasp alighted on a leaf which formed a caterpillar's nest neatly rolled up. The wasp examined both ends, and finding them closed, it soon clipped a hole in the leaf at one end of the nest about one-eighth of an inch in diameter. It then went to the other end and made a noise which frightened the caterpillar, which came rushing out of the hole. It was immediately seized by the wasp, who finding it too large to carry off at once, cut it in two and went off with his game. I waited a little and saw the wasp come back for the other half, with which it also flew away.

Again, BÜchner (loc. cit., p. 297) gives the following account in the words of his informant, Herr H. LÖwenfels, who himself witnessed the incident:—

I here found a robber-wasp busied in lifting from the ground a large fly which it had apparently killed. It succeeded indeed in its attempt, but had scarcely raised its prey a few inches above the ground when the wind caught the wings of the dead fly, and they began to act like a sail. The wasp was clearly unable to resist this action, and was blown a little distance in the direction of the wind, whereupon it let itself fall to the ground with its prize. It now made no more attempts to fly, but with eager industry pulled off with its teeth the fly's wings which hindered it in its object. When this was quite done it seized the fly, which was heavier than itself, and flew off with it untroubled on its journey through the air at a height of about five feet.

BÜchner also records the two following remarkable observations, which from being so similar corroborate one another. The first is received from Herr Albert SchlÜter, who writing from Texas says that he there saw a cicada pursued by a large hornet, which threw itself upon its prey and seemed to sting it to death:—

The murderer walked over its prey, which was considerably larger than itself, grasped its body with its feet, spread out its wings, and tried to fly away with it. Its strength was not sufficient, and after many efforts it gave up the attempt. Half a minute went by; sitting astride on the corpse and motionless—only the wings occasionally jerking—it seems to reflect, and indeed not in vain. A mulberry tree stood close by, really only a trunk—for the top had been broken off, clearly by the last flood—of about ten or twelve feet high. The hornet saw this trunk, dragged its prey toilsomely to the foot of it, and then up to the top. Arrived thereat, it rested for a moment, grasped its victim firmly, and flew off with it to the prairies. That which it was unable to raise off the ground it could now carry easily once high in the air.

The other instance is as follows:—

Th. Meenan ('Proc. of the Acad. of Nat.,' Philadelphia, Jan. 22, 1878) observed a very similar case with Vespa maculata. He saw one of these wasps try in vain to raise from the ground a grasshopper it had killed. When all its efforts proved to be in vain, it pulled its prey to a maple tree, about thirty feet off, mounted it with its prize, and flew away from it. 'This,' adds the writer, 'was more than instinct. It was reflection and judgment, and the judgment was proved to be correct.'

Depriving bees of their antennÆ has the effect of producing an even more marked bewilderment than results from this operation in the case of ants. A queen thus mutilated by Huber ran about in confusion, dropping her eggs at random, and appeared unable to take with precision the food that was offered her. She showed no resentment to a similarly mutilated stranger queen that was introduced: the workers also heeded not the mutilated stranger; but when an unmutilated stranger was introduced they fell upon her. When the mutilated queen was allowed to escape, none of the workers followed.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page