Weismann’s theory of Heredity (1891). We now proceed to examine Weismann’s theory of germ-plasm, and as this in its various developments has now become a highly complex theory, we had best begin by marking out the lines on which the examination will be conducted. As I have already pointed out, the Weismannian system is not concerned only with the physiology of reproduction: it is concerned also—and in an even larger measure—with the doctrine of descent. The theory of germ-plasm as a whole is very much more than a theory of heredity; it is a new theory of evolution. The latter, indeed, is deduced from the former; but although the two are thus intimately related, they are nevertheless not mutually dependent. For the relationship is such that the new theory of evolution stands upon the basis supplied by the new theory of heredity, and although it follows from this that if the latter were disproved the former would collapse, it does not follow that if the former were to be found untenable the latter must necessarily be negatived. Hence, for the sake of clearness, and also for the sake of doing justice to both theories, we had best deal with them separately. The present chapter, then, Again, Weismann’s theory of heredity stands on his fundamental postulate—the continuity of germ-plasm; and also on a fact well recognized by all other theories of heredity, which he calls the stability of germ-plasm. But his sequent theory of evolution stands not only on this fundamental postulate, and on this well-recognized fact; it requires for its logical basis two further postulates—viz., that germ-plasm has been perpetually continuous “since the first origin of life,” and unalterably stable “since the first origin of sexual propagation.” That these things are so, a very few words will be sufficient to prove. Any theory of heredity which supposes the material of heredity to occupy a more or less separate “sphere” of its own, is not obliged further to suppose that this material has always been thus isolated, or even that it is now invariably so. There have been one or two such theories prior to Weismann’s, and they were founded on the well-known fact of congenital characters being at any rate much more heritable than are acquired characters. But it has not been needful for these theories to assume that the “continuity” thus postulated has been perpetually unbroken. Even if it has been frequently to some extent interrupted, all the facts of heredity could be equally well comprised under such theories—and this even if it be supposed that acquired characters are but rarely, or never, transmitted to progeny. For, in as far as the continuity may have been interrupted, it does not follow that the acquired characters (body-changes), which by Similarly as regards the postulate of the stability of germ-plasm as absolute. It is enough for all the requirements of Weismann’s theory of heredity that the material basis of heredity should present a merely high degree of stability, such as the facts of atavism, degeneration, &c. abundantly prove that it possesses. For his sequent theory of evolution, however, it is necessary to postulate this stability as absolute “since the first origin of sexual reproduction.” Otherwise there would be no foundation for any of the It may not be immediately apparent that Weismann’s theory of heredity is not per se concerned with either of these two additional postulates of the continuity of germ-plasm as perpetual, and the stability of germ-plasm as absolute; while both are logically necessary to his further theory of evolution. On this account, and also for the sake of clearness in all that is to follow, we had best begin by comparing his theory of heredity with those of his principal predecessors—Darwin and Galton. For the purposes of this comparison we may start by again alluding to the fact, that even in the multicellular organisms reproduction is not confined to the sexual methods. Many kinds of invertebrated animals will reproduce entire organisms from the fragments into which a single organism has been chopped: plants of various kinds can be propagated indefinitely by cuttings, grafts, and buds, or even by leaves, as we have already observed in Chapter I. Now, when the whole organism is thus reproduced from a severed portion of somatic-tissue, it reproduces its sexual elements. Whence, then, in such cases are these elements derived? Obviously they are not derived immediately from the sexual organs—or even from the sexual cells—of their parents: they are derived from the somatic-cells of a single parent, if we choose to retain this term; and therefore, as Strasburger pointed out soon after Weismann’s theory was published, it seems as if such facts are in themselves destructive of the theory. How, then, does Weismann Moreover by thus allowing, in his second essay on Heredity, that germ-plasm need not be restricted to the specially sexual cells, but in some cases, at any rate Lastly, as De Vries has pointed out But this is precisely what the theory of pangenesis supposes; so that I see no reason why these ultimate particles of germ-plasm should not be regarded as “gemmules,” so far as their size, number, and function are concerned. In point of fact, they differ from gemmules only in respect to their origin: they are not particles derived from somatic-cells of the preceding generation, but particles derived from germ-plasm of the preceding generation. Or, to state the difference in another form, if we regard the sexual elements as constituting the physiological centre of the organism, then the theory of germ-plasm supposes these ultimate carriers of heredity to originate at this centre, and then to travel centrifugally; while the theory of pangenesis This point of difference, however, arises from the deeper ones, which—having now exhausted the points of agreement—we must next proceed to state. If, as we have seen, “formative material” and “germ-plasm” agree in being particulate; in constituting the material basis of heredity; in being mainly lodged in highly specialized, or germinal, cells; in being nevertheless also distributed throughout the general cellular tissues, where they are alike concerned in all processes of regeneration, repair, and a-sexual reproduction; in having an enormously complex structure, so that every constituent part of the future organism is already represented in them by corresponding particles; in being everywhere capable of a virtually unlimited multiplication, without ever losing their hereditary endowments; in often carrying these endowments in a dormant state through a number of generations, until at last they reappear again in what we recognize as reversions to ancestral characters;—if in all these most important respects the two substances are supposed to be alike, it may well appear at first sight that there is not much room left for any difference between them. And, in point of fact, the only difference that does obtain between them admits of being stated in two words,—Continuity, and Stability. Nevertheless, although thus so few in number, these two points of difference are points of great importance, as I will now proceed briefly to show. If the substance which constitutes the material basis of heredity has been perpetually continuous, in Touching the second difference, or that which arises from the absolute stability of germ-plasm, it will be remembered how from this character there arises another important chain of consequences. Namely, individual variations of the congenital kind can only be due to admixtures of different masses of germ-plasm in every act of sexual fertilization; natural selection is therefore dependent, for the possibility of its working, upon the sexual methods of propagation; hence, natural selection is without any jurisdiction among the unicellular organisms, where the Lamarckian factors hold exclusive sway; and hence, Thus we see that the two points of difference between germ-plasm and gemmules are not merely of great importance as regards the particular problem which is presented by the phenomena of heredity: they are of still greater importance as regards the general theory of evolution. For if these two qualities of perpetual continuity and absolute stability can be proved to belong to the material basis of heredity, the entire theory of evolution will have to be reconstructed from its very foundation—and this quite apart from the more special question as to the transmission of acquired characters. Therefore we shall presently have to consider these two alleged qualities with the care that they demand, as having been seriously suggested by so eminent a naturalist as Professor Weismann. But, before proceeding to do so, I must briefly compare his theory with that of Mr. Galton. “Stirp” resembles both “germ-plasm” and “gemmules” in all the respects which have above been named as common to the two latter. But it differs from gemmules and further resembles germ-plasm in all the following particulars. It is derived from the stirp of proceeding generations, and constitutes the sole basis of heredity. Only a part of it, however, is consumed in each ontogeny—the residue being handed over to “contribute to form the stirps of the offspring,” where it undergoes self-multiplication So far, then, there is not merely resemblance, but virtual identity, between the theories of stirp and germ-plasm. Disregarding certain speculative details, the coincidence is as complete as that between a die and its impress. But although the two theories are thus similar in logical construction, they differ in their interpretations of biological fact. That is to say, although Galton anticipated by some ten years all the main features of Weismann’s theory of heredity The conclusion to be drawn from the foregoing arguments is, that we might almost reserve our belief that the structural [i. e., “somatic”] cells can react on the sexual elements at all, and we may be confident that at the most they do so in a very faint degree; in other words, that acquired modifications are barely, Seeing, then, that Galton did not undertake to deny a possibly slight influence of somatic-tissues on the hereditary qualities of stirp, it follows that he did not have to proceed to those drastic modifications of the general theory of descent which Weismann has attempted. Stirp, like germ-plasm, is continuous; but, unlike germ-plasm, it is not necessarily or absolutely so. Again, stirp, like germ-plasm, is stable; yet, unlike germ-plasm, it is not perpetually or unalterably so. Hence we hear nothing from Galton about our having to explain the unlikeness of our children to ourselves by variations in our protozoan ancestors; nor do we meet with any of those other immense reaches of deductive speculation which, in my opinion, merely disfigure the republication of stirp under the name of germ-plasm. Now, I allude to these, the only important points of difference between stirp and germ-plasm, for the sake of drawing prominent attention to the fact that it makes a literally immeasurable difference whether we suppose the material basis of heredity to be perpetually continuous and unalterably stable, or whether we suppose that it is but largely continuous and highly There is, then, a vast distinction between any theory of heredity which postulates the material of heredity as highly stable and largely continuous, and Weismann’s theory, which postulates this material as absolutely stable and perpetually continuous. But we must next take notice that Weismann himself has not kept this distinction in view with the constancy which we should have expected from so forcible a thinker. On the contrary, although in the construction of his theory of evolution he never fails to press the postulates of absolute stability and perpetual continuity to their logical conclusions in the various doctrines above enumerated (pp. 57-58), when engaged on his more special theory of heredity he every now and then appears to lose sight of the distinction. Indeed, he occasionally makes such large concessions with regard to both these postulates, that, were they to be entertained, the occupation of his critics would be gone: his theory of heredity would become converted into Galton’s, while his theory of evolution would vanish altogether. It is 1. The case where impoverished nutrition of the body has the effect of simply starving its germinal material. This is not a case where either the continuity or the stability of such material is affected. Its full efficiency as “formative material” may indeed be thus deteriorated to any extent, so that the progeny may be to any extent puny or malformed; but this will not necessarily cause any such re-shuffling of its “molecules” as will thereafter result in a permanent phylogenetic change. At most it will affect only the immediate offspring of poorly nourished parents; and natural selection will always be ready to eliminate such inefficient individuals. This case I will always hereafter call the case of nutritive congenital changes. 2. The case where germinal material is influenced by causes which do effect a re-shuffling of its “molecules,” so that a permanent phylogenetic change does result. Observe, in this case, it does not signify whether the causes arise from external conditions of life, from any action of the soma on its own germinal material, or from so-called “spontaneous” changes on the part of such material itself. But the one cause which has not been concerned in producing an hereditary modification of this class is the mixture 3. Lastly, we have the case of the Lamarckian factors. This precisely resembles case 2, save that the congenital changes produced are still more “specialized.” For while in the preceding case the re-shuffling before mentioned may have produced a congenital change of any kind, in the present case the congenital change produced must be of one particular kind—viz., a reproduction by heredity of the very same modification which occurred in the parents. “The fathers have eaten sour grapes, and the children’s teeth are set on edge.” This would be an extreme example of “use-inheritance,” and so of case 3. But if the fathers had eaten sour grapes, and the children, instead of having their teeth set on edge, were to be born with a wryneck or a squint, then we should have a good example of case 2. In order, then, to mark the important distinction between these two cases, I will hereafter call the highly specialized changes due to the Lamarckian factors—supposing such changes to be possible—representative congenital changes. These several distinctions being understood, I will proceed to furnish the two quotations from Weismann, which are respectively illustrative of his concessions touching his two fundamental postulates, as previously explained. We may fairly attribute to the adult organism influences which determine the phyletic development of its descendants. For the germ-cells are contained in the organism, and the It will be perceived that Weismann himself here very clearly draws all the distinctions between cases 1, 2, and 3, as above explained. Therefore it becomes the more remarkable that he should not have perceived how radically inconsistent it is in him thus to entertain as “possible” congenital variations belonging to the case 2. For, as we have now so fully seen, the theory of germ-plasm (as distinguished from that of stirp) cannot entertain the possibility of an hereditary and specialized change of any kind as thus produced by external conditions of life: should such a possibility be entertained, there must obviously be an end to the absolute stability of germ-plasm, and a consequent collapse of Weismann’s theory of evolution. Either germ-plasm is absolutely stable, or else it is but highly stable. If it is absolutely stable, individual variations of an hereditary kind can occur only as results of sexual admixtures of germ-plasm, and Weismann’s theory of evolution is established. But if germ-plasm is not absolutely stable (no matter in how high a degree it may be so) Again, if we are to examine Weismann’s theory of heredity, we must similarly ignore such a passage as the following, where he represents that he is similarly prepared to surrender his still more fundamental postulate of the perpetual continuity of germ-plasm. After remarking that some of his own experiments on the climatic varieties of certain butterflies raise such difficulties against his whole theory of heredity that even now “he cannot explain the facts otherwise than by supposing the passive acquisition of characters produced by the direct influence of climate,” he goes on to remark more generally—“We cannot exclude the possibility of such a transmission occasionally occurring, for, even if the greater part of the effects must be attributed to natural selection, there might be a smaller part in certain cases which depends on this exceptional factor Now, it must be particularly noted that in this passage Weismann is speaking, not as in the previous passage, of specialized congenital characters, but of representative congenital characters. In other words, he here entertains the possibility which in the passage previously quoted he very properly rejects—namely, “that changes of the organism which result from It is, indeed, impossible not to admire the candour of these admissions, or to avoid recognizing the truly scientific spirit which they betoken. But, at the same time, one is led to doubt whether in making them Professor Weismann has sufficiently considered their full import. He appears to deem it of comparatively little importance whether or not acquired characters can sometimes and in some degrees influence the hereditary qualities of germ-plasm, provided he can show that much the larger part of the phenomena of heredity must be ascribed to the continuity of germ-plasm. In other words, he seems to think that it matters but little whether in the course of organic evolution the Lamarckian factors have played but a very subordinate part, or whether they have not played any part at all. Moreover, I have heard one or two prominent followers of Weismann give public expression to the same opinion. Therefore I must repeat that it makes a literally immeasurable difference whether we suppose, with Galton, that the Lamarckian factors may sometimes and in some degrees assert themselves, or whether we suppose, with the great bulk of Weismann’s writings and in accordance with the logical requirements of his theory, that they can never possibly occur in any degree. The distinctive postulate of his theory of heredity, and one of the two fundamental doctrines on which he founds his further theory of evolution, is, that the physiology of sexual reproduction cannot admit of any inversion of the relations between “germ-plasm” and “somatic idio-plasm After these tedious but necessary preambles, we may now proceed to examine Professor Weismann’s postulate as to the perpetual continuity of germ-plasm, with its superstructure in his theory of heredity—reserving for the next chapter our examination of his further postulate touching the absolute stability of germ-plasm, with its superstructure in his theory of evolution. The evidence which Weismann has presented in favour of his fundamental postulate of the perpetual continuity of germ-plasm may be conveniently dealt The general reasoning is directed to show, (1) that there is no evidence of the transmission of acquired characters; (2) that the theory of pangenesis is “inconceivable”; and, (3) that the alternative theory of germ-plasm is amply conceivable. Now, to the best of my judgement, not one of these propositions is borne out by the general reasoning in question. But as the latter is almost entirely of an a priori character, and also of a somewhat abstruse construction, I think the patience of any ordinary reader will be saved by relegating this part of our subject to an Appendix. Therefore, remarking only that any one who cares to look at Appendix I ought, in my opinion, to perceive that there is no real evidence against the transmission of acquired characters to be derived from Weismann’s general reasoning in this connexion, I will at once proceed to consider the evidence which he has adduced in the way of particular facts. In the first place, as one result of his brilliant researches on the Hydromedusae, he has found that the generative cells occur only in certain localized situations, which, however, vary greatly in different species, though they are always constant for the same species. He has also found that the varying situations in different species of the localized or generative areas correspond, place for place, with successive stages in a process of gradual transposition which has occurred in the phylogeny of the Hydromedusae. Lastly, he has found that in each ontogeny these successive The second line of direct evidence in favour of the continuity of germ-plasm which Weismann has adduced is, that in the case of some invertebrated animals the sexual apparatus is demonstrably separated as reproductive cells (or cells which afterwards give rise to the reproductive glands) at a very early period of ontogeny—so early indeed, in certain cases, that this separation constitutes actually the first stage in the process of ontogeny. Therefore, it is argued, we may regard it as antecedently improbable that the after-life of the individual can in any way affect the congenital endowments of its ova, seeing that the ova have been thus from the first anatomically isolated from all the other tissues of the organism. The third and only other line of direct evidence is, that organisms which have been produced parthenogenetically, Taking, then, these three lines of verification separately, none of them need detain us long. For although the fact of the migration of germ-cells becomes one of great interest in relation to Weismann’s theory after the theory has been accepted, the fact in itself does not furnish any evidence in support of the theory. In the first place, it tends equally well to support Galton’s theory of stirp; and therefore does not lend any special countenance to the theory of germ-plasm—or the theory that there cannot now be, and never can have been, any communication at all between the plasm of the germ and that of the soma. In the second place, the fact of such migration is not incompatible even with the theory of pangenesis, or the theory which supposes such a communication to be extremely intimate. There may be many other reasons for this migration of germ-cells besides the one which Weismann’s theory supposes. For example, the principle of physiological economy may very well have determined that it is better to continue for reproductive purposes the use of cells which have already been specialized and set apart for the execution of those purposes, than to discard these cells and transform others into a kind fitted to replace them. Even the theory of pangenesis requires to assume a very high degree of specialization on the part of germ-cells; and as it is the fact of such specialization alone which is proved by Weismann’s observations, I do not see that it constitutes any criterion between his theory of heredity and that of Nor does it appear to me that the second line of evidence is of any more value. In the first place, there is no shadow of a reason for supposing that an apparently anatomical isolation of germ-cells necessarily entails a physiological isolation as regards their special function—all “physiological analogy,” indeed, being opposed to such a view, as is shown in Appendix I. In the second place, there is no proof of any anatomical isolation, as we may likewise see in that Appendix. In the third place, the fact relied upon to indicate such an isolation—viz., the early formation of germ-cells—is not a fact of any general occurrence. On the contrary, it obtains only in a comparatively small number of animals, while it does not obtain in any plants. In the Vertebrates, for example, the reproductive cells are not differentiated from the somatic cells till after the embryo has been fully formed; while in plants their development constitutes the very last stage of ontogeny. In the fourth place, the argument, even for what it is worth, is purely deductive; and deductive reasoning in such a case as this—where the phenomena Those instances of early separation of sexual from somatic cells, upon which I have often insisted as indicating the continuity of the germ-plasm, do not now appear to be of such conclusive importance as at the time when we were not sure about the localization of the plasm in the nuclei. In the great majority of cases the germ-cells are not separated at the beginning of embryonic development, but only in some of the later stages.... It therefore follows that cases of early separation of the germ-cells afford no proof of a direct persistence of the parent germ-cells in those of the offspring. The last line of direct evidence, or that derived from the alleged non-variability of parthenogenetic organisms, is, as Professor Vines has shown, opposed to fact. Therefore, in his later writings, Weismann has abandoned this line of evidence also. Upon the whole,then, we must conclude with regard to the fundamental postulate of perpetual continuity, that there is actually no evidence of a direct kind in its favour. And, as Weismann’s arguments of an indirect kind are dealt with in Appendix I, it remains only to state such evidence per contra as, to the best of my judgement, appears valid. The fundamental proposition which we have been considering, and to the further consideration of which we have now to proceed, is, in effect, that germ-plasm differs from stirp in having been perpetually restricted to a “sphere” of its own, “since the first origin of life.” Criticism, therefore, must be directed to show that the “sphere” in question has not been proved But I am now about to argue that there is evidence against the proposition. For I am about to argue, not only as heretofore that for anything Weismann has shown to the contrary there may be a certain amount of reciprocal action between the sphere of germinal-substance and the sphere of body-substance; but that, as a matter of fact, there is a certain amount of such reciprocal action. Without laying undue stress on the intimate “correlation” that subsists between the reproductive organs and all other parts of the organism, I nevertheless Here, however, is a stronger class of facts. It has not unfrequently been observed, at any rate in mammals, that when a female has borne progeny to a male of one variety, and subsequently bears progeny to a male of another variety, the younger progeny presents a more or less unmistakable resemblance to the father of the older one. Now, this is a fact to which Weismann has nowhere alluded; and therefore The facts with regard to plants are these. When one variety fertilizes the ovules of another, not unfrequently the influence extends beyond the ovules to the ovarium, and even to the calyx and flower-stalk, of the mother plant. This influence, which may affect the shape, size, colour, and texture of the somatic-tissues of the mother, has been observed in a large number of plants belonging to many different orders. The details of the matter have already been dealt with by Darwin, in the eleventh chapter of his work on Variation, &c.; and this is what he says. The italics are mine. The proofs of the action of foreign pollen on the mother-plant have been given in considerable detail, because this action is of the highest theoretical importance, and because it is in itself a remarkable and apparently anomalous circumstance. That it is remarkable under a physiological point of view is clear, for the male element not only affects, in accordance with its proper function, the germ, but at the same time various parts of the mother-plant, in the same manner as it affects the same parts in the seminal offspring from the same two parents. We thus learn that an ovule is not indispensable for the reception of the influence of the male element. Darwin then proceeds to show that this direct action of the male element on the somatic tissues of another organism is not so rare or anomalous as it at first sight appears; for in the case of not a few flowers it comes into play as a needful preliminary to fertilization. Thus, for instance:— GÄrtner gradually increased the number of pollen grains until he succeeded in fertilizing a Malva, and has proved that many grains are first expended in the development, or, as he expresses it, in the satiation, of the pistil and ovarium. Again, when one plant is fertilized by a widely distinct species, it often happens that the ovarium is fully and quickly developed without any seeds being formed; or the coats of the seeds are formed without any embryo being developed therein. So much, then, in proof of the direct action of the male element on the somatic-tissues of another organism. It remains to show that a similar action may be exercised by this element on the somatic tissues of its own organism. This has been proved by Hildebrand, who found “that in the normal fertilization of several Orchideae, the action of the plant’s own pollen is necessary for the development of the ovarium; and that this development takes place not only long before the pollen tubes have reached the ovules, but even before the placentae and ovules have been formed”; so that with these orchids the pollen acts directly on their own ovaria, as a preliminary to the formation of the ovules which are subsequently to be fertilized. It is to be regretted that Professor Weismann has not given us his opinion upon this whole class of facts, for assuredly they appear directly to contradict his theory. The theory is, “that the germ-plasm Hitherto we have been considering certain very definite facts, which seem to prove that the germinal elements are able directly to affect the somatic-tissues. We have next to consider such facts as seem to prove the opposite side of a reciprocal relationship—viz., that the somatic-tissues are able directly to affect the germinal elements. And here there are two distinct lines of evidence to be distinguished. Firstly, in certain cases—exceptional it is true, but this does not signify—somatic-tissues have been found capable of modifying the hereditary endowments of germinal elements by means of simple grafting. This line of evidence has also been disregarded both by Weismann and his followers; but it is nevertheless an important one to consider. For, if it be the case that the somatic-tissues of an organism A, by being merely grafted on-those of organism B, can so affect the germinal elements of B as to cause their offspring to resemble A—or, contrariwise, if the somatic-tissues of A can thus act on B—then, although it may not be properly said that any “acquired characters” have been transmitted from A to the progeny of B, (or vice versa,) such an a-sexual transmission of alien characters, in its relation to the theory of germ-plasm, is scarcely less awkward than are certain facts which they appear to prove. Secondly, that acquired characters may be transmitted Now, the force of this first line of evidence will become apparent, if we reflect that the only way in which the facts can be met by Weismann’s theory, would be by supposing that the somatic germ-plasms which are respectively diffused through the cellular tissues of the scion and the graft become mixed in some such way as they might have been, had the hybrid been due to seminal propagation instead of to simple grafting. But against this, the only interpretation of the facts which is open to the theory, there lies the following objection, which to me appears insuperable. Where sexual cells are concerned there is always a definite arrangement to secure penetration of the one by the other, and we can see the necessity for such an arrangement in order to effect an admixture of their nuclear contents, where alone germ-plasm is supposed by Weismann’s theory to reside. But in tissue-cells, which have not been thus specialized, it would be difficult to believe that nuclear contents can admit of being intimately fused by a mere apposition of cell-walls. For not only are the nuclear contents of any two such cells thus separated from one another by two cell-walls and two masses of “cytoplasm”; but it is not enough to suppose that in order to produce a graft-hybrid only two of these somatic-cells need mix their nuclear contents, as we know is all The third line of evidence against this theory—i.e., the evidence in favour of the transmission of acquired characters—is to constitute the subject-matter of future chapters. Therefore it will here be sufficient to adduce only one fact of this kind. And I select it because it is one that has been dealt with by Weismann himself. In one of his more recent statements he says:— The distinguished botanist De Vries has proved that certain constituents of the cell body—e. g., the chromatophores of Algae—pass directly from the maternal ovum to the daughter organism, while the male germ-cells generally contain no chromatophores. Here it appears possible that a transmission of somatogenetic variation has occurred Now although, as Weismann goes on to observe, Passing on, then, to higher levels of organization, and therefore to higher degrees of representation, I shall endeavour to show that this burden of proof cannot be discharged. For I shall endeavour to show, not merely, as just shown, that there ceases to be any a priori reason for drawing arbitrary limits with respect either to levels of organization or to degrees of representation, but that, as a matter of fact, there are no such limits as the passage above quoted assigns. On the contrary, I believe there is as good evidence to prove the not unfrequent |