No aspect of old naval warfare is so difficult for the modern reader to visualize, perhaps, as that which displays the essential weakness of the sailing warship: its impotence in a calm. It was a creature requiring for its activities two elements, air and water. Ruffle the sea with a breeze, and the sailing ship had power of motion towards most of the points of the compass; withdraw the winds, and she lay glued to the smooth water or rolling dangerously in the heavy swell, without power either of turning or translation. For centuries this weakness told heavily against her and in favour of the oar-propelled vessel, particularly in certain latitudes. Through many years, indeed, the two types held ascendancy each in its own waters; in the smooth stretches of the Mediterranean the oar-driven galley, light, swift, and using its sharp ram or bow-cannon as chief means of offence or defence, was a deadly danger to the becalmed sailing ship; in the rougher north Atlantic the sailing ship, strong, heavy, capacious, and armed for attack and defence only along its sides, proved far too fast and powerful for the oar-driven rival. Progress—increase of size, improvement in artillery, the development of the science of navigation—favoured the sailing ship, so that there came at last the day when, even in the Mediterranean, she attained ascendancy over the galley. But always there was this inherent weakness: in a dead calm the sailing ship lay open to attack from a quarter where her defence lay bare. Ninety-nine times out of a hundred, perhaps, she could move sufficiently to beat off her attacker by bringing her broadsides to bear. The hundredth, she lay at the mercy of her adversary, who could, by choosing his range and quarter of attack, make her temporary inferiority the occasion of defeat. For this military reason many attempts were made to supplement sails with oars. But oars and sails were incompatible. § The oar was in many ways an objectionable form of power. It was very vulnerable, its presence made manoeuvring at Many attempts were therefore made, not only to substitute animals for men, for the work of propulsion, but to apply power in a manner more suitable than by the primitive method of levers: oars or sweeps. The paddlewheel was thought of at a very early date; a Roman army is said to have been transported into Sicily by boats propelled by wheels moved by oxen, and in many old military treatises the substitution of wheels for oars is mentioned.131 In 1588 Ramelli, engineer-in-ordinary to the French king, published a book in which was sketched an amphibious vehicle propelled by hand-worked paddlewheels: “une sorte de canot automobile blindÉ et percÉ de meurtriÈres pour les arquesbusiers.” In 1619 Torelli, Governor of Malta, fitted a ship with paddles, and in it passed through the Straits of Messina against the tide. But Richelieu, to whom he offered his invention, was not impressed with its value.132 Before this, Blasco de Garoy, a Spanish captain, had exhibited to the Emperor Charles V, in 1543, an engine by which ships of the largest size could be propelled in a calm: an arrangement of hand-operated paddlewheels. In Bourne’s Inventions and Devices, published in 1578, is the first mention of paddlewheels (so far as we know) in any English book. By the placing of certain wheels on the outside of the boat, he says, and “so turning the wheels by some provision,” the boat may be made to go. And then he proceeds to mention the inversion of the paddlewheel, or the paddlewheel which is driven, as distinguished from the paddlewheel which drives. “They make a watermill in a boat, for when that it rideth at an anker, the tide or stream will turn the wheels with great force, and these mills are used in France,” etc. It is possible, indeed, that this was the prior form, and that the earliest paddlewheel was a mill and not primarily a means of propelling the vessel. Early in the seventeenth century the mechanical sciences began to develop rapidly and as the century advanced the flood of patents for the propulsion of ships increased. “To In Bushnell’s Compleat Shipwright, published in 1678, a proposal was made for working oars by pivoting them at the vessel’s side and connecting their inboard ends by longitudinal rods operated by cranks geared to a centre-line capstan. But the disadvantages of oars so used must have been apparent, and there is no evidence that this invention was ever put into practice. The obvious alternative was the paddlewheel, and though that device had been known and used in a primitive form long before the seventeenth century, it was continually being reinvented (especially in the ’nineties) and tried by inventors in various countries. Denis Papin turned his original mind to the solution of this problem. A paper on the subject written by him in Germany in 1690 is of interest. Discussing the use of oars from ships’ sides he notes that, “Common oars In France it has been widely claimed that Papin actually engined a boat and propelled it over the waters of the Weser by the force of steam. His biographer states that on the 24th September, 1707, Papin “embarquait sur le premier bateau À vapeur toute sa fortune.”135 But the statement is not correct. The misconception, like that which assigned to the Marquis of Worcester the invention of a steam-propelled vessel, was doubtless due to the fact that the inventor was known to be engaged in the study of the steam engine and of ship-propelling mechanism. The two things, though distinct in themselves, were readily combined in the minds of his admirers. It is generally agreed to-day, we think, even by his own countrymen, that Papin, though he may claim the honour of having first suggested the application of steam to ship propulsion, never himself achieved a practical success. In the meantime Savery in England had produced his successful engine. In his case, too, the claim has been made that he first proposed steam propulsion for ships. But in his Miner’s Friend this able mechanician showed that he recognized The first detailed scheme for applying steam-power to ship propulsion was contained in the patent of Jonathan Hulls, in 1736. Though great credit is generally given to this inventor (who has even been dubbed the father of steam navigation), it does not appear that in reality he contributed much to the advancement of the problem; which was, indeed, still waiting on the development of the steam engine. Hulls’ notion, explained in a pamphlet which he published in 1737, was to connect the piston of a Newcomen engine by a rope gearing As before remarked, the whole problem of steam propulsion waited upon the development of the steam engine. In the meantime the application of convenient forms of man power received considerable study, especially in France. In Bouguer’s TraitÉ du Navire the problem was investigated of propulsion by blades or panels, hinged, and folding when not in use against the vessel’s sides; and in 1753 the prize offered by the Academy of Sciences for an essay on the subject was won by Daniel Bernouilli, for a plan on those lines. Euler proposed paddlewheels on a transverse shaft geared like Savery’s, by mortice wheels to a multiple capstan. Variations of this method were proposed by other writers and inventors, and some of the best intellects in France attacked the problem. But nothing definite resulted. The most valuable result of the discussion was the conclusion drawn by M. Gautier, a professor of mathematics at Nancy, that the strength of the crew was not sufficient to give any great velocity to a ship. He proposed, therefore, as the only means of attaining that object, the In the course of time the problem marched forward to a solution. The first great improvement in the steam engine which rendered it adaptable to marine use was the invention by Watt of the “double impulse”; the second, Pickard’s invention of the crank and connecting-rod. By virtue of these two developments the steam engine was made capable of imparting to a shaft a continuous rotary motion without the medium of noisy, brittle or inefficient gearing. As soon as engines having this power were placed on the public market attempts were made to mount them in boats and larger vessels; steam navigation was discerned as a possibility. § Of the many efforts which were made at the end of the eighteenth century to apply steam power to the propulsion of ships a striking feature is their complete independence from each other and from the results of prior experience and research. Little information is available as to the results of various experiments which were known to be carried on in France at this time, and, with all respect, it is improbable that they contributed in any way to the subsequent evolution of the steam vessel. The AbbÉ Darnal in 1781, M. de Jouffroi in 1782, and M. Desblancs in 1802 and 1803, proposed or constructed steamboats. M. de Jouffroi is said to have made several successful attempts on the Saone at Lyons; but the intervention of the Revolution put an end to his undertakings. In Britain a successful attempt to apply the steam engine to the paddlewheel was made in 1788. In that year three men, combining initiative, financial resource, and a large measure of engineering ingenuity, proved the possibility of steam propulsion in an experiment singularly complete and of singularly little effect on subsequent progress. In the summer of ’87 a wealthy and inventive banker, Mr. Patrick Miller of Dalswinton, Edinburgh, had been making experiments in the Firth of Forth with a double vessel of his own invention, sixty feet long, which, when wind failed for sailing, was set in motion by two paddlewheels. These paddlewheels were fitted between the two hulls of the vessel and were worked by men, by means No further attempt was made in Great Britain until 1801, when Lord Dundas engaged Symington to make a series of experiments on the substitution of steam power for horse towage of barges on the Forth and Clyde canal: experiments which resulted in the Charlotte Dundas. In this celebrated vessel a double-acting Watt engine, with its 22-inch diameter cylinder mounted horizontally on the deck, actuated, through a simple connecting-rod and a crank with a 4-foot throw, a paddlewheel which was carried in a centre-line recess at the stern. In March, ’03, Symington in the Charlotte Dundas towed two 70-ton vessels nineteen miles against a strong head wind in six hours. Success seemed assured to him. His reputation was already high, and now an invitation came from the Duke of Bridgewater for eight similar tow-boats to ply on his canal. But the inventor’s hopes were disappointed. The Duke died suddenly, and the governing body of the Forth It was in America that the most persistent and continuous development took place, quite independently of efforts elsewhere and almost contemporaneously with those above described. America, whose geographical conditions made water transport relatively far more important than it was in Great Britain, lent a ready ear to the schemes of inventors. In John Fitch, whose original idea was a steamboat propelled by means of an endless chain of flat boards, afterwards experimented with an arrangement, “borrowed no doubt from the action of Indians in a canoe,” of paddles held vertically in frames mounted along the sides of the boat and operated by cranks. In 1786 a boat thus equipped made a successful trial on the Delaware, and in the following year a larger boat, fitted with a horizontal double-acting engine with a 12-inch cylinder and a 3-foot stroke, giving motion to six paddles on each side, was publicly tried on the same river. The speed attained was very small. At last in 1790, still protected by a patent which granted him a temporary monopoly in steamboat building, Fitch succeeded in building a boat which was an undisputed mechanical success. Discarding the paddle-frame and adopting a beam engine to drive paddle-boards at the stern, he produced a steamboat which, after being tested and credited with eight knots’ speed on a measured mile in front of Water Street, Philadelphia, in the presence of the governor and council of Pennsylvania, ran two or three thousand miles as a passenger boat on the Delaware before being dismantled. It was a considerable achievement. But the excessive weight and space absorbed by the machinery prevented the boat from being a financial success; and, after a journey to France, then distracted by the Revolution, Fitch returned home to America and ended his days a disappointed and a broken man. Nevertheless, the work he did was of service to others. He proved that the ponderous nature of the machinery was the greatest obstacle to the propulsion of small craft by steam, and from his failure deduced the conclusion, on which later inventors were able to build, that the solution of the problem lay in the scale: that, “it would be much easier to carry a first-rate man-of-war by steam at an equal rate than a small boat.”139 James Rumsey, a Virginian, carried out in 1775 the first practical trials of water-jet propulsion, a small boat of his plying the Potomac at a small speed by means of a steam pump which sucked in water at the bow and threw it out at the stern. But as he felt himself obstructed in further experiments by the An individual of extraordinary qualities had now turned his attention to the problem of steam propulsion. In that same year a young American artist, Robert Fulton, who had come to England to work under the guidance of his countryman Benjamin West, wrote to Lord Stanhope informing him of a plan which he had formed for moving ships by steam. Lord Stanhope, well known as a scientific inventor, had recently been experimenting with a vessel fitted with a 12-horse-power engine of Boulton and Watt’s working a propeller which operated like the foot of an aquatic bird. A correspondence ensued. Fulton, whose self-confidence equalled his originality, illustrated by drawings and diagrams his ideas on the subject. At first, he said, he thought of applying the force of an engine to an oar or paddle which, hinged on the counter at the stern, by a reciprocating motion would urge the vessel ahead. But on experimenting with a clockwork model he found that, though the boat sprang forward, the return stroke of the paddle interfered with the continuity of the motion. “I then endeavoured,” he wrote, “to give it a circular motion, which I effected by applying two paddles on an axis. Then the boat moved by jerks; there was too great a space between the strokes. I then applied three paddles, forming an equilateral triangle to which I gave a circular motion.” These paddles he proposed to place in cast-iron wheels one on each side of the boat and mounted on the same shaft at some height over the waterline, so that each wheel would “answer as a fly and brace to the perpendicular oars.” And he stated that he found, from his experiments with models, that three or six oars gave better results than any other number. From which it is clear that the paddlewheel was evolved by Fulton from the simple paddle independently of suggestion received from previous inventors. Some time was to elapse before the results of his experiments were utilized. Attracted by the boom in canal construction then in vogue Fulton devoted his mind to that subject; though in this connection the idea of steam-propelled boats still occupied him, as is shown by a letter he wrote in ’94 to Messrs. Boulton and Watt, asking for an estimate of costs It was in this year that an introduction to an influential compatriot, himself an experimenter in steam propulsion, gave Fulton the opportunity to display his talents to their mutual advantage. Chancellor Livingston, U.S. Minister to France, was aware of the enormous advantages which would accrue to America (and to the happy inventor) if steam propulsion could be achieved economically. With Fulton’s aid he decided on building an experimental steam vessel in France, with a view to transferring to America for commercial enterprise the perfected results of their labour. A partnership was formed, the work proceeded; but the experimental steamboat, whose scantlings were unequal to supporting the weight of the 8-horsepower machinery placed on board, sank at her moorings in a storm. A second boat, stronger and bigger, attained complete success. Fulton promptly wrote to Messrs. Boulton and Watt asking them to export to America a 24-horse-power engine complete with all accessories, in accordance with his sketches; and with a brass air-pump suitable for working in salt water. Then, going himself to England, he visited Messrs. Boulton and Watt and gleaned what information he could as to the properties of their machinery; studied the newly published results of Colonel Beaufoy’s experiments on ship form and fluid resistance; and journeyed to Scotland to visit Symington and see the famous Charlotte Dundas. Armed with this knowledge, with all the experience of Rumsey and Fitch, and with the data from his own trials, Fulton brought to a successful solution the problem of steam propulsion on a commercial scale. It has been remarked The Clermont, a flat-bottomed wall-sided craft 166 feet in length and only 18 feet in beam, steamed at a speed of five knots from New York to Albany, in August, 1807; to the surprise of thousands of spectators who knew her as “Fulton’s folly,” and whose shouts of derision gave place to silence, and then to a chorus of applause and congratulation. Many of the Fulton had so far built steam vessels only for commercial traffic. He now came near to revolutionizing naval warfare with them. In 1813, in the middle of the war with this country, he presented to the President his plan for a steam-propelled armoured warship for coast defence, a design of an invulnerable § In the meantime progress had been made on this side of the Atlantic. Stimulated by Fulton’s commercial successes, Thomas Bell of Helensburgh built in 1812 a vessel of thirty tons’ burden named the Comet, successfully propelled by a 3-horse-power engine which worked a paddlewheel on each beam. This “handsome vessel” was intended to ply between Glasgow and Greenock, to sail by the power of wind, air, and steam; and so it did, with fair financial success, with a square sail triced to the top of a tall smoke-stack: the first passenger steamer to ply in European waters. Shortly afterwards steam vessels were built which pushed out to the open sea. In 1815 the Argyle, built on the Clyde and renamed Thames on being purchased by a London company, made a voyage from Greenock to London which was the subject of much comment. On making the Cornish coast after a stormy run south, boats were seen by those on board making towards her with all possible speed in the belief that she was on fire! All the rocks commanding St. Ives were covered with spectators as she entered the harbour, and the aspect of the vessel, we are told, “appeared to occasion as much surprise amongst the inhabitants, as the ships of Captain Cook must have produced on his first appearance among the islands of the South Seas.” Next The success of the Thames led to the immediate building of other and larger steamers. In ’17 the son of James Watt purchased a 94-foot boat, the Caledonia, fitted her with 28-horse-power machinery driving 10-foot paddlewheels, and for a pleasure trip proceeded in her up the Rhine as far as Coblentz. From this time onwards steam navigation for commercial purposes progressed rapidly. In 1818 a steamboat made regular voyages at sea; the Rob Roy, 90 tons, built by Denny of Dumbarton, with engines of 30 horse-power made by Napier, plied regularly between Holyhead and Dublin. In the same year the Savannah, a ship of 350 tons’ burden built and fitted with auxiliary steam machinery at New York, crossed the Atlantic, partly under steam; her paddlewheels with their cast-iron frame and axletree successfully withstanding heavy weather. In ’21 the postmaster-general introduced a steam service for the mails at Dover and Holyhead; and in the following year there were steamboats running between London and Leith, and other seaports. The experience of the Holyhead packets was of special value, as it proved that steam vessels could go to sea in weather which would keep sailing vessels in harbour. Soon after this the question was raised of employing steam power to shorten the passage between England and the East, as well as of the navigation by steam of the great Indian rivers. Steam superseded sails in the government mail service between Falmouth, Malta and Corfu; everywhere commercial enterprise was planning new lines of steamships and new possibilities of ocean travel. In ’25 a By this time the great question of steam as applied to naval ends had arrived to agitate the Admiralty. In ’22 M. Paixhans discharged his revolutionary treatise at the French nation, advocating, with a wealth of argument, a navy of steam-propelled warships armed with a few shell guns. Six years later a warning echo reverberated through Whitehall. Captain Sir John Ross published a volume on “Steam Navigation, with a System of the Naval Tactics peculiar to it,” in which, though his name was not mentioned, the arguments of M. Paixhans were set forth from an opposite point of view. The two books, starting with the same arguments, arrived at diametrically opposite conclusions. While Paixhans claimed that steam power offered important advantages to France, the English writer reached the gratifying conclusion that the change which steam would effect in naval affairs might be rendered favourable to this country. For coast defence alone steam vessels would be invaluable. The colonies would be safer from piracy. Passages, at present difficult or dangerous, would be made with speed and safety. Incidentally, an entirely new system of tactics would be evolved by the coming of steam; each ship-of-the-line would be escorted by a steam vessel, to tow her into position, and concentration of force would be obtained by such means as, harnessing two steamers to one sailing ship, so as to tow one half of the fleet to a position of vantage over the enemy. After the main action the steamers would themselves attack each other; and so on. Both French and English writers agreed that there would be a reversion to the ancient warfare of the galleys; the steamer, whose paddlewheels lent themselves readily to a pivot gun armament and to great powers of manoeuvring, would always attack like a bull, facing the enemy, its bows presenting one or more large and well-protected cannon. Sir John Ross regarded the steamer, however, essentially as an auxiliary. M. Paixhans took a more sanguine view. “At this moment,” he wrote in May, ’22, “the English admiralty are building two steam vessels, each of thirty horsepower, one at Portsmouth and one at Plymouth, for tugging sailing ships held up by contrary winds. They commence by But the views of Sir John Ross did not find favour at the Admiralty. In the presence of the revolution the authorities continued to steer a policy of passive resistance to all changes and methods which might have the effect of depreciating existing naval material; and Lord Melville himself penned, as a reply to the Colonial Office to a request for a steam mail service between two Mediterranean ports, the principle which guided the Board. They felt it their bounden duty (he wrote in 1828) to discourage, to the utmost of their ability, the employment of steam vessels, as they considered that the introduction of steam was calculated to strike a fatal blow at the naval supremacy of the Empire.144145 So far, then, new methods of propulsion had not been greeted with enthusiasm. Yet to the First Lord himself was due the utilization of steam for minor purposes in the navy. In spite of the non-success of Lord Stanhope’s experimental “ambi-navigator” ship in 1795, Lord Melville in 1815 caused the three-masted schooner Congo, designed for a surveying expedition to the river of that name, to be fitted with paddlewheels and machinery by Boulton and Watt, expressly to try it in a ship-of-war. This machinery was so large and ponderous that, not only did it usurp one-third of the space aboard the ship, but brought her down so deep as only to give four knots through the water. It was all removed again before she sailed, and sent to Chatham for use in the dockyard. In the following year we find Mr. Brunel in correspondence with his lordship on the question of steam navigation. Brunel wrote quoting evidence to the effect that paddlewheels could be made “From this period may be dated the introduction of steam navigation into the English navy. Lord Melville was now so fully convinced of the great utility which the naval service would derive from it, that he ordered a small vessel to be built at Deptford, by Mr. Oliver Lang, to be called the Comet, of the burthen of 238 tons, and to have engines of 80 horse-power. She was built accordingly and ready for sea in 1822.”146 As a matter of fact, the first steamer actually brought into H.M. service was the Monkey, built at Rotherhithe in 1821; and she was followed by the more powerful Sprightly, built at Blackwall by Messrs. Wigram and Green in ’23. Gradually the use of these paddlewheel tugs extended, their tonnage and horse-power increased, and the Surveyor of the Navy and his master shipwrights began to divert their talents to a consideration of the small steamers. For the reason stated by Lord Melville, steamers were at this time tolerated only for towing and other subsidiary duties; authority poured cold water on the idea of utilizing them as ships-of-war; and if steam could have been dispensed with altogether, everyone would have been the better pleased. Even at this period the idea of using manual labour, applied in an effective manner, for towing and bringing into position sailing warships had not been altogether abandoned. In 1802 the transport Doncaster had been propelled at a slow speed in Malta harbour by the invention of a Mr. Shorter: a screw propeller rigged over the stern. In 1820 experiments were made at Portsmouth with paddlewheels manually worked, and in ’29 Captain C. Napier took his ship Galatea out of Portsmouth Harbour by use of paddlewheels geared to winches By 1830 steam navigation had made significant strides along the lines of commercial development. In that year a service of steam mail boats started to run at regular intervals between Falmouth and Corfu, covering the distance in about one-fourth of the time which had been taken by the sailing packets; a Dutch government steamer, the CuraÇoa, built in England, had since ’27 been running between Holland and the East Indies; and already the Indian Government had built an armed steamer, designed as the forerunner of others which were to connect Bombay with Suez and thus to place India in more direct communication with England. The navy was still represented only by paddle-tugs. With a change of administration, however, came a change in Admiralty policy. The new Board took a distinctly progressive view. It was agreed that, if foreign powers initiated the building of steam war-vessels, this country must build as well, and not only as well but better: a policy tersely summed up by Admiral Sir T.M. Hardy in his saying, “Happen what will, England must take the lead.” Certain objections to steam vessels as naval units which had hitherto held a vogue were now seen to be ill-founded or baseless. In particular it was discovered, not without surprise to many, that steamers could be manoeuvred without difficulty. A paddlewheel steamer, the Medea, gained her commander considerable credit from the skill with which she was navigated from the Thames into the basin at Woolwich dockyard, which proved that steamers could be steered and manoeuvred better than But small progress was made. One reason alleged was that the shape of hull which the Surveyor had made peculiarly his own was ill-adapted for steam machinery. “Nothing more unpropitious,” observed a later writer, “for Sir William Symond’s mode of construction than the introduction of steam can be conceived. His sharp bottoms were the very worst possible for the reception of engines; his broad beam and short length the most unfavourable qualities that could be devised for steam propulsion. As much as he could, he adhered to his principles.... Rather than yield to the demands of the new power, he sacrificed the armaments of his vessels, kept down the size of their engines, and recklessly exposed the machinery to shot should they go into action.”149 There doubtless was something in this criticism. And yet, as we have seen, experience in America led to a form of hull for paddle steamers in many respects approaching that condemned as being favoured by the Surveyor! Another and more valid reason for the slow progress made lay in the inherent unsuitability of the paddlewheel steamer as a substitute for the large sailing warship. Not only did the paddlewheels offer a large and vulnerable surface to destruction by enemy shot, but the wheels and their machinery could not be embodied in a ship design without interference with its sails and sailing qualities and, still more, without serious sacrifice of broadside armament. The machinery monopolized a large section of the midship space, the huge wheels covered the sides and interfered with the training of those guns for which room remained. The problem of arming steam-vessels was novel and difficult of solution. The guns must be few and therefore powerful. Hence it appeared that paddlewheel steamers, notwithstanding the advantages they possessed of speed and certainty of motion, could only sustain a small concentrated armament, consisting of the heaviest and most Year after year the size of steamers grew.150 And as with size the cost of construction and maintenance increased, the question pressed itself more and more clearly—what was the naval utility of such expensive and lightly armed vessels? Numerous attempts were made to produce a form of paddlewheel steamer which would carry a broadside armament comparable with that which a sailing vessel of the same burthen Still the steam war-vessel was not satisfactory. Her machinery usurped the weight and space required for armament, her cumbrous paddlewheels were far too exposed to damage by shot or shell. And how to surmount these difficulties and reconcile the conflicting requirements of artillery and motive power, was a problem which cost the country years of unsuccessful experiments and millions of money. “It was,” said Dahlgren, “the riddle of the day.” § The problem was solved by the adoption of the screw propeller. Since Archimedes’ day the screw had been known in the form of a pump, and in two familiar objects—the smoke-jack and the windmill—the principle of the driven screw had been for centuries widely employed. In connection with ship propulsion the screw appears to have been tried at an early date, like the Marquis of Worcester’s water-wheel, in the form of a mill. Among the machines and inventions approved by the Royal Academy of Sciences of Paris between the years 1727 and 1731 is one described as a screw, suspended in a framework between two boats, which when acted upon by the current was intended to warp the vessels upstream, the motion of the screw being transmitted to a winch barrel on which a tow-rope was wound. But so far as is known no attempt had been made at this date to use the screw directly as a propeller. In 1768 its use in this form was suggested in a work entitled ThÉorie de la Vis d’Archimede.152 And shortly after, as we have already seen, Bramah in England and Bushnell in America In 1825 a premium was offered by the Admiralty for the best plan of propelling vessels without paddlewheels; and a plan proposed by Commander S. Brown, R.N., was deemed sufficiently promising for trial: a two-bladed screw propeller placed at the bow of a vessel and actuated by a 12-horsepower engine. But though exhibiting advantages this form of the invention did not survive. Captain Ericsson, a Swedish army officer who had come to London and established himself as a civil engineer, had a contemporary success with a boat fitted with two large-bladed propellers each 5 feet 3 inches in diameter. So successful was he, indeed, that he invited the Board of Admiralty to take a trip in tow of his novel craft; a trip which had important and unexpected results on the subsequent progress of steam navigation. One summer day in ’37 the Admiralty barge, in which were the Surveyor and three other members of the Board, was towed by Ericsson’s screw steamer from Somerset House to Limehouse and back at a speed of 10 knots. The demonstration was a complete success, and the inventor anticipated some further patronage of his invention. But to his chagrin nothing was asked of him, and to his amazement he was subsequently informed that the proposal to propel warships by means of a screw had been pronounced impracticable. Never, perhaps, in the whole history of mechanical progress has so signally wrong a decision been made, never has expert opinion been so mistaken. Engineers and shipbuilders all failed to realize the possibilities of the screw. The naval authorities who, in the face of their personal experience, dismissed the project as impracticable (owing to some anticipated It was in America, we have seen, that progress in steam navigation was of the greatest interest to the public, and it was by Americans that the disabilities of the paddlewheel were most keenly appreciated. Two witnesses of the trial of Ericsson’s boat saw and admitted the advantages of the new method: Mr. Ogden, an engineer who had been U.S. consul at Liverpool for some years, and Captain Stockton, U.S.N. The latter appreciated the military advantages of screw propulsion and was soon its enthusiastic advocate. Under his influence and encouragement Ericsson threw up his engagements in London and went to America. “We’ll make your name ring on the Delaware,” said Captain Stockton to him at a dinner in his honour given at Greenwich. The prediction was fulfilled. In the course of time Ericsson saw his propeller applied on a large scale, not only to mercantile craft but in the American navy. Early in ’37 Captain Stockton had ordered an iron vessel to be built by Messrs. Laird, of Birkenhead, and fitted with a screw. In the following year she was launched, and in the spring of ’40, after giving demonstration on the Thames of the great towing power of her propeller, she left for America for service as a tug on the big rivers. On this work one of the great advantages of the screw was realized: the immunity with which the screw vessel could work in drift ice, when paddlewheel steamers were perforce laid up. In the meantime, fortunately, Pettit Smith’s successes had not been without their effect on opinion in this country. A But in spite of all prepossessions against it the screw had won a decisive victory over its rival. So striking were the results recorded by the Archimedes, that a decision was made in December, 1840, to change the Great Britain, an Atlantic liner then under construction, from paddlewheel to screw propulsion. In two ways she was a gigantic experiment: she was the first large ship to be built of iron, and it was now proposed to fit her with a screw. Mr. Brunel took all the responsibility for advising the adoption of both these revolutionary features; the result was a splendid testimony to his scientific judgment, boldness of enterprise, and “confident reliance on deductions from facts ascertained on a small scale.” The best form of screw having been determined, it still remained to compare the screw propeller with the paddlewheel. Accordingly the Alecto, a paddlewheel sloop of similar lines to the Rattler, was selected as the protagonist of the older form of propulsion, while the Rattler herself represented the screw. Naval opinion was still completely divided on the great question, while in the competing sloops the utmost emulation existed, each captain advocating his own type of propeller. The speed trials took place, and showed the Rattler to have an undoubted advantage. The paddlewheel, however, laid claim to a superiority in towing power. So a further competition was ordered, as realistic as any, perhaps, in the history of applied science: nothing less than a tug-of-war between Paddle and Screw, those two contending forms of steam propulsion! Lashed stern to stern and both steaming ahead full power, one evening in the spring of ’45 the two steamers struggled for mastery. And as Rattler slowly but surely pulled External affairs now lent a spur to screw propulsion. In ’44 the French navy came under the reforming power of the ambitious Prince de Joinville, and from this year onwards the attitude of France to this country became increasingly hostile and menacing. The thoughts of the French were turned toward their navy. No sooner had de Joinville been placed in command than schemes of invasion were bruited in this country; and the public viewed with some alarm the altered problems of defence imposed on our fleets by the presence in the enemy’s ports of a steam-propelled navy. Sanguine French patriots sought to profit by the advent of the new power. A pamphlet appeared in Paris claiming to prove that the establishment of steam navigation afforded France the very means by which she could regain her former level of naval strength. The writer, using the same arguments as Colonel Paixhans had used in ’22, reviewed the effect of steam power on the rival navies, and pointed to the Duke of Wellington’s warnings in parliament of the defencelessness of the English coasts and to his statement that if Napoleon had possessed steam power he would have achieved invasion. These cries of alarm, said the writer, should trace for France her line of policy. She should emulate the wise development of steam propulsion as practised by Great Britain. “We think, England acts; we discuss theories, she pursues application. She creates with activity a redoubtable steam force and reduces the number of her sailing ships, whose impotence she recognizes.... Sailing vessels have lost their main power; the employment of Faced with the probability that our rivals would pursue some such progressive and challenging policy as outlined by the pamphleteer, the Admiralty acted rapidly. Before the Rattler trials were complete a decision was made favourable to the screw propeller, and an order was made for its wide application to warships built and building. It was resolved, on the advice of Sir Charles Napier, that the screw should be regarded solely as an auxiliary to, and in no way as in competition with, sail power. The Arrogant was laid down, the first frigate built for auxiliary steam power; and screws driven by engines of small horse-power were subsequently fitted to other ships with varying degrees of success. Two important features were specified for all: the machinery was required to be wholly below the water-line, and the screw had to be unshippable. Engines were now required for Block Ships and for sea-going vessels. So the principal engineers of the country were called together and were asked to produce engines in accordance with the bare requirements given them. A variety of designs resulted. From the experience obtained with this machinery two important conclusions were quickly drawn: firstly, that gearing might be altogether dispensed with; secondly, that no complex contrivance was necessary for altering the pitch to enable engines to work advantageously under varying conditions, the efficiency of the screw varying very little whether part of the ship’s velocity were due to sail power or whether it were wholly due to the screw.158 And here it may not be amiss to note, in relation to a nation’s fighting power, the significant position assumed by naval material. In land warfare a rude measure of force could always However we may have deserved the eulogy of the French writer in respect of developing the paddlewheel war steamer, the development of screw propulsion in the next decade was marked by a succession of failures and a large outlay of money on useless conversions and on new construction of poor fighting value, most of which could have been avoided. Had our methods been less tentative and more truly scientific the gain would have been undoubtedly very great; we should have laid our plans on a firmer basis and arrived at our end, full screw power, by a far less circuitous route than that actually taken. In this respect France had the advantage of us. Although a decision had been made to maintain the full sail power of our ships and install screw machinery only as an auxiliary motive power, attempts were naturally made to augment so far as possible the power exerted by the screw; and within a short time new ships were being fitted with machinery of high power, in an endeavour to make the screw a primary means of propulsion. The results were disappointing. As the power increased difficulties thickened. The weight of the machinery grew to be excessive, the economy of the comparatively fast-running and short-stroke engines proved to be low, and the propulsive efficiency of the screws themselves grew unaccountably smaller and smaller. So poor were the results obtained, indeed, that in the case of a certain ship it was demonstrated that, by taking out the high-power machinery and substituting smaller engines an actual gain in speed was obtained, with the reduced displacement. The first screw ship in which an attempt was made to obtain full power with the screw was the Dauntless, of 1846. Although a frigate of beautiful lines she was considered a comparative failure. It was agreed that, equipped with paddlewheels and armed with guns of larger calibre, she would have constituted a faster and more powerful warship than, with her 580-horse-power engines, her 10 knots of speed, and her 32-pounder guns, she actually was. Part of the trouble was due to the unsuitability of our ships’ lines for screw propulsion. It has already been noted that, owing to the carriage of heavy weights at their extremities, war vessels were always given very full bows and sterns. In For several years, however, the policy of the Admiralty remained the same: the screw was regarded solely as an auxiliary. The French, on the other hand, took a less compromising line of action. After waiting for some time and watching our long series of experiments, they convened in 1849 a grand EnquÊte Parliamentaire: a commission which, primed with the latest information as to British naval material, was to decide on what basis of size, number, armament and means of propulsion future French warships should be built. For two years the commission sat sifting evidence. And then it recommended screw propulsion of the highest power for all new ships, as well as the conversion of some existing classes to auxiliary screw power. England had fitted her ships with screws capable of giving them small speed; France must fit hers with screws of greater power. Speed, said the commission, is an element of power. Superior speed is the only means by When the Crimean War brought the two navies together as allies in ’54 the full effect of the new policy of the French had not yet been made apparent. Some apprehension existed in this country as to the adequacy and efficiency of our navy, when compared directly with that of France. But from then onwards this country became aware of the increasing hostility of the French public and government; speeches were made, and letters appeared in the press of both countries, which tended to fan the flames of fear and suspicion.159 It was not till ’58, however, that general attention was drawn to the great strides which the French navy had made in recent years, and to the skilful way in which its position, relative to that of its great rival, had been improved. An article entitled “The Navies of England and France” appeared in the Conversations Lexicon of Leipsic, and caused a great sensation. Reprinted in book form, with a long analysis and with a mass of information about the French, English and other navies and arsenals,160 this notorious article brought apprehension to a head. Though written by no friendly critic, it was in most respects an accurate presentment of the respective navies and of their condition. The analysis of Hans Busk, while ostensibly exposing its bias and its inaccuracies, in effect confirmed the main contentions of the German article; in addition his book gave in spectacular columns a summary of the units of the rival navies, which gave food for thought. The article itself professed to show how much France had benefited by the bold and scientific manner in which she had handled the problem of naval construction since the coming of steam. Other factors were discussed, the forms of ships, the Paixhans system of armament, problems of The means was steam power. But the much-talked-of invasion was never to be attempted. Other events intervened, other developments took place, which reduced the tension between the two great naval powers and removed for an indefinite time the danger, which the Leipsic article disinterestedly pointed out, of war under novel and unprecedentedly terrible conditions: with shell guns and wooden unarmoured steam warships. |