ENTOMOTAXY.

Previous

Under this term may be considered the preparation of insects for the cabinet.

CARE OF PINNED AND MOUNTED SPECIMENS.

Insect Pins.—In mounting insects for the cabinet, expressly made entomological pins should be used. These come from three different sources: KlÄger pins, made by Hermann KlÄger, Berlin, Germany; Karlsbad pins, made by one or several firms in Karlsbad, Bohemia, Austria; and Vienna pins, made by Miller, Vienna, Austria.[4] These three kinds of pins have each their own slight advantages and disadvantages, so that it is difficult to say which is the best. All have the disadvantage that the pinned specimens are liable to be ruined by verdigris, and to obviate this japanned (“black”) insect pins are made by KlÄger and Miller. These black pins are, however, much softer than the “white” pins, and therefore more difficult to handle. A pin of 35 millimeters in length will be found most convenient for pinning all insects excepting the larger Lepidoptera and other heavy-bodied insects, for which a longer pin may advantageously be used. According to the different degrees of fineness, the pins are numbered from No.00 (the finest in the trade) to No.7 or 8, but the numbers used by the different manufacturers do not correspond with each other. In experience, pins of Nos. 1, 2, 3, and 4 (KlÄger numbers) are more often needed than the others. The long pins of the finer numbers (Nos. 0 and 00) are difficult to handle in the collection and, for this reason, not to be recommended.

For many small insects, especially Microlepidoptera and Microdiptera, which must be pinned, even the finest ordinary insect-pins are too large, and two special makes of pins are in use for this purpose. The “elbow pin” (formerly made and sold by Dr.Kuenow, of KÖnigsberg, Prussia, Germany) consists of a piece of fine silver wire, pointed at one end, and with a coil loop at the other end, into which a longer pin (No.3 or No.4) is thrust. This pin is illustrated in Fig.94. Still more satisfactory are the “Minutien-Nadeln” (pins for minute insects) manufactured by Mr.Miller, of Vienna, Austria, and which consist of a straight piece (about 14mm. long) of extremely fine steel wire which is pointed at one end, and which is used in connection with a piece of pith or cork. The mode of using this pin is shown in Fig.101. These fine and elbow pins may be obtained either “white” or japanned.

Fig. 94.—Insect
mounted on
“elbow-pin.”

“Many English entomologists use short pins, very much like those of ordinary make, and my late friend Walsh never gave up the custom, and most vehemently opposed the use of what he ridiculed as ‘long German skewers.’ But the only advantage that can possibly be claimed for the short pins is that they are less apt to bend, consequently more easily stuck into the bottoms of boxes, and require less room; while, compared with the long pins, they have numerous disadvantages. Long pins admit of the very important advantage of attaching notes and labels to the specimen; render it more secure from injury when handled, and from museum pests in the cabinet; and on them several rows of carded duplicates may be fastened, one under the other, so as to economize room.”

I have seen few old collections in better condition than that of the late E. Mulsant, of Lyons, France; and he used iron wire, cut slantingly, of the requisite length—a common custom in France. These wires bend so easily and have such dull points that they require much more careful manipulation than the pins, and the claim made for them that they do not verdigris would, perhaps, be offset by their rusting in moist climates or near the sea. Silver wire or silver-plated wire is also used.

Preparation of Specimens.—Upon the return from an excursion the specimens should be prepared for the collection as soon as practicable. If they have been collected in the forenoon they should be mounted the same evening, and those collected during an afternoon or evening excursion should be mounted the following morning, or, at any rate, before they get dry and brittle. Even specimens collected in alcohol should be attended to as soon as possible.

Specimens are taken from the collecting bottle, spread out on a sheet of white blotting paper and cleaned from adhering impurities either with a soft dry brush, or, in the case of species with hard covering, by washing them with chloroform or ether or benzine where necessary. Theoretically the best way of mounting would be to pin all specimens, since the under side with its important characters then remains free for examination. Pins adapted for pinning even the smallest insects have been described above, but this pinning is such a delicate operation and requires so much time that considering the large number of small specimens that may be collected on a single short excursion it is next to impossible to carry out this method, and therefore only the larger specimens need be pinned and the smaller may be glued onto the paper points described later. If the work is done with proper care all insects can be prepared for the cabinet so that both the upper and under surface of the specimen may be examined without further manipulation.

see caption

Fig. 95.—Method of pinning and
labeling Coleoptera (original).

Pinning.—“Insects should be pinned through the middle of the thorax, when, as is more generally the case, this portion (the mesothorax) is largely developed. Beetles (Coleoptera) and Bugs (Hemiptera), should, however, be pinned, the former through the right elytron or wing-cover (Fig.95), and the latter through the scutel or triangular piece behind the thorax, the pin issuing between the middle and hind legs (Fig.96). The specimens look very pretty with all the legs neatly spread out, but for practical purposes it is better to let them dry in the natural, partly bent position. It is a saving of time and space, and the limbs are not so apt to break. The legs must also not reach too far downward or they will interfere with the proper labeling and the secure pinning of the specimen in the cabinet. Moreover, the antennÆ and legs must be brought into such position that they will not obstruct the view of any important part of the undersurface. The pin should always project about half an inch above the insect to facilitate handling, and uniformity in this regard will have much to do with the neat appearance of the collection. In pinning very large and heavy insects on a No.4 or No.5 pin, it is a good plan to first flatten the pin by a few blows of a hammer, in order to prevent the specimen from subsequently turning round on the pin.”

see caption

Fig. 96.—Method
of pinning
Hemiptera (original).

In pinning specimens which have a flat or nearly flat undersurface and short legs (as in many Coleoptera and Hemiptera and some Hymenoptera, e.g. the Saw-flies) the specimens are laid on a piece of cork and held in place there with the fingers or with a forceps. The pin is then pushed through the insect at the proper point, care being taken not to strike one of the legs or coxÆ, and that the pin passes through the specimen in a vertical direction.

After the pin has been pushed through the specimen it is taken out of the cork and the specimen is pushed up to its proper height. This can be done either by holding the specimen between the fingers or by placing it on the upper edge of a thick book. A piece of cardboard provided with a small hole may also be used for this purpose. The perforations in ordinary sheet-cork, or the lapel of one's coat, will answer the same purpose. In pinning Lepidoptera or Hymenoptera the specimen should lie lightly in the angle formed by the thumb and first two fingers of the left hand and the pin be carefully thrust through at the proper angle. In pinning all insects the pin should be so inserted that the insect is nearly at right angles with the pin, the posterior end being slightly depressed.

Mounting on Points.—Most insects which are too small to be pinned on a No.2 pin may be fastened to cardboard by means of gum tragacanth, gum shellac, or any good glue. It is not always easy to determine whether to pin a medium specimen or to glue it to a triangle. Pinned specimens are more secure, and not so apt to fall or be knocked off, but they are liable to become corroded by verdigris and ultimately lost, especially in families the larvÆ of which are endophytous or internal feeders. It is better to glue wherever there is doubt. A drop of corrosive sublimate added to the water in which the gum tragacanth is dissolved will indefinitely prevent its souring, but should not be used where the gum is to come in contact with the pin, as it inclines the latter to verdigris. In such cases a little spirits of camphor mixed with the gum tragacanth is best. Shellac should be dissolved in alcohol and this requires some time. This glue is not affected by moisture, and if it is desired to remove the specimens, they must be immersed in alcohol until the shellac is again dissolved.

A number of different kinds of glue are used by entomologists. The requirements of a good glue are that it be colorless, and, what is of greater importance, that the specimens adhere firmly to the paper points so that there is little or no danger of their being jarred off. Those glues which are readily soluble in cold or lukewarm water are perhaps more convenient than those which require alcohol or chloroform for dissolving. Gum arabic and gum tragacanth have the disadvantage that they are more liable to attract mites and are more brittle, so that they do not hold specimens as well as some of the liquid glues that are on the market. Spalding's glue answers a very good purpose, as also the preparation known to European entomologists as Leprieur's gum. White bleached shellac, while requiring alcohol to dissolve it, has the advantage that a very minute quantity suffices. In olden times the method employed was simply to glue the specimen by the ventral side to the middle of a quadrangular piece of cardboard, which was then pinned on a No.3 or No.4 insect pin. This method is still in vogue with English entomologists, but can not be recommended except for mounting duplicates. Much better are the small isosceles triangles which, before mounting the specimen, are pinned through near the base on a No.2 or No.3 insect pin. Only the best and finest cardboard should be used for this purpose, since that of poor quality is liable to be broken while passing the pin through it and will yellow with age. “Reynolds's Superfine Board,” which may be ordered through any dealer in artist's supplies of Devoe&Co., Fulton street, New York City, is perhaps the best for this purpose. Some of the neatest mounting which I have had done by any of my agents or assistants is by Mr.Albert Koebele, who has used mica or gelatine instead of cardboard, the object being not only to show the whole of the under side of the specimen, but to obscure less of the light from the labels and to render the triangles less conspicuous in the cabinet. These have been in use in the museum collection only for the last two or three years, and whether they will eventually tend to corrode the pins is not yet settled. Mica and isinglass are also used for the same purpose. The points used in mounting may easily be cut by hand to a convenient size, say one-fourth of an inch (6–8mm) long by one-sixteenth or less at the base, and tapering to a point. The point may be narrower or wider to accommodate insects of different sizes.

For cutting these triangles or points, various forms of punches similar to the appended figure (Fig.97) known to the trade as conductor's punches may be used, and points thus cut are to be preferred to those made by other means, on account of the greater uniformity secured.

An experienced hand, however, will cut these points very rapidly and accurately with a pair of shears, and most collectors use no special instrument for this purpose.

see caption

Fig. 97.—Insect punch for cutting triangles
or points (original).

The punches mentioned may be obtained of the manufacturers[5] of such instruments at from $2 to $3. Care should be observed in ordering to state explicitly the length, width at base and point, or, what is better, to inclose sample of the size of point it is desired to cut; but above all, to state that the block of paper to be cut out is the result desired, and that the instrument should cut clean and even, with no ragged edges.

For mounting different forms and sizes the fastidious collector uses four or five sizes of points, but for all practical purposes one to cut a card point not less than 1.3mm at the base and prolonged as nearly as possible to a point, and another a trifle wider at the base, say 1½ or 1?mm and with a point about 1½mm in width will suffice.

see caption

Fig. 98.—Points for mounting insects (original).

For mounting most long-bodied insects, e.g., StaphylinidÆ and ElateridÆ, an oblong card say 1½mm in width is desirable. With a little care these may be cut with sufficient uniformity with scissors. Seven and one-half millimeters may be taken as a standard of length, as this is about the size used by the majority of our best collectors. Shorter points, say 6mm or one-quarter inch long, are sometimes preferred, where economy of space is a desideratum.

A series of four points of different sizes for mounting insects is shown in the accompanying illustration. The sharp-pointed one, a, is designed for the minutest forms and the larger points for large insects. The largest should be mounted on points of a nearly rectangular shape, shown at d. The dimensions of these points as adopted by most entomologists, are as follows:—

Length. Breadth. Point.
a 7.5mm. 1.5mm. .0mm.
b 7.5 1.5 .4
c 7.5 1.5 .6
d 7.5 1.6 1.6
see caption

Fig. 99.—Insect mounted
on cardboard triangle.

The point or triangle should be mounted on the pin and directed to the left, the height from the top of the pin varying somewhat with the specimen, but averaging about one-half an inch. The insect is then glued to the point with the head pointed forward. In the case of Coleoptera and Hymenoptera, and in fact of most insects, the specimen is mounted with the back uppermost, but in the case of the smaller Hymenoptera it is advisable to mount some of the specimens, at least, on the left side (see Fig.99). This directs the legs toward the pin, as a matter of safety, prevents their being broken in handling, and also gives opportunity for subsequent examination of the back, side, and venter of the specimen. Coleopterists always mount specimens on the venter, and in the case of a correctly mounted specimen the whole underside of the body should be available for examination except the right half of the metasternum, as shown in figure 100.

see caption

Fig. 100.—Method of gluing
beetle on paper point
(original).

In mounting minute insects a few precautions are necessary. The beginner usually uses too much glue or shellac, and the result is that the mounted specimens are more or less covered with the fluid, so as to render them unfit for examination. If, on the other hand, too little of the glue is used, the specimens are not securely fastened to the paper point, and are liable to be jolted off by the slightest jar. Before mounting specimens the legs and antennÆ must be brought into the proper position by means of a brush or with a dissecting needle, so that they may easily be seen. A supply of paper points should always be at hand, and after selecting one of the proper size for the specimen, with an acute tip for a very small specimen and with a more obtuse point for a larger one, a small quantity of glue is applied to the tip by means of a pointed stick, such as a toothpick, the amount varying with the size of the specimen. The tip of a moistened brush may be used to transfer the specimen to the point, or one will soon become dextrous enough to do this without the aid of the brush. The specimens are then allowed to dry in a horizontally placed box. If the drying box is placed in a vertical position the specimens, especially long-bodied ones, are liable to topple over before the glue has become firm.

see caption

Fig. 101.—Cecidomyiid
mounted on pith
(original).

Delicate flies and Microlepidoptera, which it will not do to fasten with mucilage, may first be mounted on the fine pins described above and these thrust into oblong or triangular bits of pith or cork, which are mounted on larger pins as shown in Figures 101 and 102. This affords a very satisfactory method of mounting, particularly as the different sexes may be brought together on the same bit of pith, or the adult and puparium in Diptera, as shown at Figure 101. Strips of stout cardboard with the pins run through the narrow edge may also be used. The method of mounting minute Hymenoptera and Diptera and other insects on a bent wire, mentioned above, is illustrated at Figure 94. This method has not proved so satisfactory, as the wires are apt to become loose on the pin.

see caption

Fig. 102.—Microlepidoptera
mounted on pith
(original).

see caption

Fig. 103.—Method of
mounting duplicates
(original).

Mounting Duplicates.—If the collector finds more specimens of a rare species than he cares to have in his collection, the excess may be mounted as duplicates. If the species happens to be of a large size the specimens are pinned in the ordinary way, but if small enough to be gummed, there is a most convenient method of rapidly mounting the specimens so that they may be sent through the mail with much less risk of getting broken or knocked off than if glued on paper points, and will also take up very little room in the duplicate boxes. It consists in gluing the specimens in a transverse row on a strip of white card paper with one of the glues soluble in water, care being taken that between the individual specimens some space be left, and further that the heads and antennÆ do not project beyond the edge of the paper. The width of the paper strip must be somewhat greater than the length of the specimen, so that below the latter there is sufficient room for inserting a pin through the paper. After the glue has become dry the row of specimens is cut with scissors into several smaller rows of convenient size, so that on each of these rows there are two or three or more specimens, according to the size of the species. A locality label is pushed high up on a No.3 or No.4 pin, and one of the mounted rows of specimens is then pinned and pushed up near the locality label; a second row is then pinned and pushed near the first row, and the same process continued with the third row and so on. A single pin will thus bear five or six rows, and in giving away or sending away specimens the lowest row is taken from the pin and repinned for mailing. The accompanying figure (Fig.103) illustrates the mounting of a moderate-sized species in rows of two specimens each. This method of mounting duplicates may be adopted not only for Coleoptera, but also for Heteroptera, Homoptera (excepting AphididÆ and allied families), smaller Orthoptera, and Hymenoptera. It is, however, impracticable for Lepidoptera, Diptera, and most Neuroptera.

Temporary Storage of Specimens.—If the entomologist is prevented from mounting his captures soon after returning from an expedition, or if, on extended collecting trips, time does not offer for this purpose, specimens of almost all orders except the Lepidoptera, Orthoptera, and Neuroptera may be placed in a small, tightly closing pill box, care being taken to keep the larger specimens apart from the small ones. In this way specimens will keep for an indefinite period, provided they are properly packed. In the case of the traveling collector, where the material is to be carried from point to point at great risk of breaking, specimens should be packed very carefully to prevent any shaking or rattling about in the boxes. This may be done by placing a round piece of soft paper on the top of the specimens in the pill box. This paper should be gently pressed down and the empty space above filled with other layers of paper or with cotton. The packing of specimens between cotton is not recommended, as it is a difficult and tedious task to afterwards free them from the adhering fibers. Layers of soft paper or, yet better, velvet, are preferable.

see caption

Fig. 104.—Method of preserving Diurnal
Lepidoptera in paper envelopes.
(After Kiesenwetter.)

Envelopes for Lepidoptera, etc.—On an extended trip, it will be found impracticable to mount and prepare insects requiring cumbersome apparatus for spreading, as Lepidoptera or Neuroptera, and a very excellent plan consists in folding the wings of the insect so that the lower surfaces come together and then placing it in a triangular envelope, as shown in the accompanying illustration. The collector should be provided with a quantity of paper of the requisite dimensions for making these envelopes, and specimens, as they are taken from the collecting bottle, may be rapidly inclosed in them, labeled, and packed away in a tight wooden (not tin) box containing a supply of naphthaline, the specimens thus occupying the minimum of space. Specimens secured in this way may be kept without further manipulation indefinitely or until time is found to relax and set them. This is also an excellent method of sending diurnal Lepidoptera and Dragon-flies through the mails and is preferable in some respects to mailing spread specimens.

see caption

Fig. 105.—Spreading board for Lepidoptera.

see caption

Fig. 106.—Needle
for spreading
insects.

Directions for Spreading Insects.—“For the proper spreading of insects with broad and flattened wings, such as butterflies and moths, a spreading board or stretcher is necessary. One that is simple and answers every purpose is shown at Fig.105. It may be made of two pieces of thin whitewood or pine board, fastened together by braces at the ends, but left wide enough apart to admit the bodies of the insects to be spread; strips of cork or pith, in which to fasten the pins, may then be tacked or glued below so as to cover the intervening space. The braces must be deep enough to prevent the pins from touching anything the stretcher may be laid on, and by attaching a ring or loop to one of them the stretcher may be hung against a wall, out of the way. For ordinary-sized specimens I use boards 2 feet long, 3 inches wide, and ? inch thick, with three braces (one in the middle and one at each end) 1½ inches deep at the ends, but narrowing from each end to 11/6 inches at the middle. This slight rising from the middle is to counteract the tendency of the wings, however well dried, to drop a little after the insect is placed in the cabinet. The wings are held in position by means of strips of paper (Fig.105) until dry. For stretching the wings and for many other purposes, a handled needle will be found useful. Split off, with the grain, a piece of pine wood 3 or 4 inches long; hold it in the right hand; take a medium-sized needle in the left hand; hold it upright with the point touching a walnut table, or other hard-grained wood, and bring a steady pressure to bear on the pine. The head of the needle will sink to any required distance into the pine, which may then be whittled off, and you have just the thing you want (Fig.106). To obtain uniformity in the position of the wings, a good rule is to have the inner margins of the front wings as nearly as possible on a straight line. When the specimens are thoroughly stiff and dry, they should be taken from the stretcher and kept for several weeks in the drying box before being permanently placed in the cabinet. The drying box is simply a box of any required dimensions, containing a series of shelves on which to pin the specimens, and without a solid back or front. The back is covered on the inside with fine gauze and on the outside with coarser wire, and the door in front consists of a close-fitting frame of the same material, the object being to allow free passage of air, but at the same time to keep out dust and prevent the gnawings of mice and other animals. The shelves should be not less than 2 inches deep, and if made in the form of a quadrangular frame, braced with two cross-pieces on which to tack sheet cork, they will serve for the double purpose of drying spread specimens and for the spreading of others, as there are many insects with long legs which are more conveniently spread on such a board, by means of triangular pieces of stiff cardboard braces or ‘saddles,’ than on the stretcher already described. Two of these braces are fixed on the setting board, by means of stout pins, at sufficient distances apart to receive the body between them. The wings are then spread upon them and kept in place until dry by means of additional braces. In the case of bees, wasps, etc., the pin may be thrust well into the cork or pith so that the wings may be arranged in the proper position and braced and supported by strips of stout cardboard. This method is especially recommended in the case of the Fossorial wasps, the legs of which, if mounted in an ordinary spreading board, can not be properly arranged.

In spreading Lepidoptera I have used, in the place of a number of paper strips pinned across the wings, blocks of glass of various sizes to hold the wings in position. My method of mounting, with a large amount of material on hand to be attended to, consists in pinning a row on the spreading-board and fixing the wings in position with spreading needles, fastening them with a single narrow strip of paper placed next the body. The entire spreading-board is filled with specimens in this way, a single long strip of paper on either side answering to keep the wings of all the specimens in position. Then, instead of pinning additional strips to hold the wings flat and securely in position, the pieces of glass referred to are used, placing them on the wings of the insect. With the use of glass the spreading-board must always be kept in a horizontal position and must never be disturbed. The advantage of the glass is that the wings can be seen through it and more truly adjusted.

Spreading-boards may be made as described above, or it may be of advantage, when a good deal of work is to be done, to adopt a somewhat different method. Five or six spreading-boards may be made together, forming a sort of shelf. A number of these shelves may be constructed and the whole combined in a case with a screen cover to exclude insects. The individual shelves may be arranged with grooves to slide on tongues in the side of the case. A screen-covered case for spreading-boards is always desirable, as the insects are otherwise very liable to be eaten by roaches or other insects. A spreading-case of the form described is shown at Fig.107.

see caption

Fig. 107.—Spreading-case (original).

see caption

Fig. 108.—Spreading apparatus for Microlepidoptera
(original).

A new Apparatus for Spreading Microlepidoptera.—For the spreading of Microlepidoptera my assistant, Mr.Theo. Pergande, has devised an apparatus, represented in the accompanying illustration, which he finds very convenient. It consists of a small spreading-block represented at B and the support with attachment shown at A. The former is made in a long strip of the shape shown in the illustration, having a square groove, c, cut in the top. Over this is glued a thin strip of wood, b, say ? inch thick, and a narrow slit is sawed in the center of this above, cutting through into the groove c. This is then sawed up into pieces of uniform length, say 1½ to 2 inches, and the block is completed by the insertion of a rectangular strip of pith or cork into the groove. The Micro is pinned on a short black pin, and the pin is thrust down into the narrow opening made by the saw and is held firmly by the pith or cork. This block is then slid into the groove in the setting-board A, which narrows slightly from e, and pushed along until firmly secured (d). The operator can then rest his hands and arms on either side of the support, and, if necessary, bring a large hand lens over the object by means of a support with ball-and-socket joint shown at e. The wings may thus be easily and accurately arranged and fixed in position with pins or strips of paper, as in the ordinary mounting of such insects. Two or three specimens may be mounted on each of these blocks. The construction of the support is indicated in the annexed drawing. One side is attached by clamps, shown enlarged at f, which afford means of adjusting the width of the slit in which the small sawed blocks slide and correct the shrinking or swelling which may take place in moist or dry seasons. The advantage of the apparatus is that the operator has the setting block firmly fixed before him and has both hands free to manipulate the wings of the insect in addition to having the lens in a convenient position, the use of which is necessary in the preparation of the very minute forms.

Spreading Microlepidoptera.—The mounting of Microlepidoptera is about the most delicate work in entomotaxy, and I can not do better than quote the explicit directions given by Lord Walsingham on the subject.

Returning to camp I put a few drops of liquid ammonia on a small piece of sponge and place it in a tin canister with such of the boxes as do not contain the smallest species, and put these and the remainder away until morning in a cool place. In the morning I prepare for work by getting out a pair of scissors, a pair of forceps, my drying-box containing setting-boards, a sheet of white paper, and some pins.

First, I cut two or three narrow pieces of paper from 3 to 6 lines wide, or rather wider, according to the size of the largest and smallest specimens I have to set. I then double each of these strips and cut it up into braces by a number of oblique cuts. Now I turn out the contents of the canister and damp the sponge with a few drops of fresh ammonia, refilling with boxes containing live insects. Those which have been taken out will be found to be all dead and in a beautifully relaxed condition for setting. Had the smallest specimens been placed in the canister over night there would have been some fear of their drying up, owing to the small amount of moisture in their bodies.

If the weather is very hot there is some danger of killed insects becoming stiff while others are being set, in which case it is better to pin at once into a damp cork box all that have been taken out of the canister, but under ordinary circumstances I prefer to pin them one by one as I set them.

Taking the lid off a box, and taking the box between the finger and thumb of the right hand, I roll out the insect on the top of the left thumb, supporting it with the top of the forefinger and so manipulating it as to bring the head pointing toward my right hand and the thorax uppermost. Now I take a pin in the right hand and resting the first joint of the middle finger of the right against the projecting point of the middle finger of the left hand to avoid unsteadiness, I pin the insect obliquely through the thickest part of the thorax, so that the head of the pin leans very slightly forward over the head of the insect. After passing the pin far enough through to bring about one-fourth of an inch out below,[6] I pin the insect into the middle of the groove of a setting board so that the edge of the groove will just support the under sides of the wings close up to the body when they are raised upon it. The board should be chosen of such a size as will permit of the extension of the wings nearly to its outer edge. The position of the pin should still be slanting a little forward. The wings should now be raised into the position in which they are intended to rest, with especial care in doing so not to remove any scales from the surface or cilia of the wings. Each wing should be fastened with a brace long enough to extend across both, the braces being pinned at the thick end, so that the head of the pin slopes away from the point of the brace; this causes the braces to press more firmly down on the wing when fixed. The insect should be braced thus: The two braces next the body should have the points upwards, the two outer ones pointing downwards and slightly inwards towards the body, and covering the main portion of the wings beyond the middle. AntennÆ should be carefully laid back above the wings, and braces should lie flat, exercising an even pressure at all points of their surface. The fore wings should slope slightly forwards so that a line drawn from the point of one to the point of the other will just miss the head and palpi. The hind wings should be close up, leaving no intervening space, but just showing the upper angle of the wing evenly on each side. I can give no more precise directions as to how this desirable result may most simply and speedily be attained; no two people set alike. Speed is an object; for I have often had to set twelve dozen insects before breakfast. A simple process is essential, for a man who is always pinning and moving pins, and rearranging wings and legs, is sure to remove a certain number of scales and spoil the appearance of the insect, besides utterly destroying its value. I raise each of the fore wings with a pin, and fix the pin against the inner margin so as to keep them in position while I apply the braces. Half the battle is really in the pinning. When an insect is pinned through the exact center of the thorax, with the pin properly sloped forward, the body appears to fall naturally into its position on the setting board, and the muscles of the wings being left free are easily directed and secured; but if the pin is not put exactly in the middle it interferes with the play of the wings. Legs must be placed close against the body or they will project and interfere with the set of the wings. Practice, care, and a steady hand will succeed. When all the insects that have been killed are set the contents of the canister will be found again ready, twenty minutes being amply sufficient to expose to the fumes of ammonia. Very bright green or pale pink insects should be killed by some other process, say chloroform, as ammonia will affect their colors.

Insects should be left on the setting boards a full week to dry; then the braces may be carefully removed and they may be transferred to the store box.

In my own experience I have found that a touch or two of the chloroform brush on the pill-box containing small moths is sufficient to either kill or so asphyxiate them that they can easily be mounted. I have also found that strips of corn pith or even of soft cork, with grooves cut into them, are very handy for the pinning and spreading, and that by means of a small, broad-tipped, and pliable forceps the smallest specimens can be deftly arranged in the groove and kept in place until pinned. In fact, for all persons who have not very great experience and dexterity this method is perhaps more to be recommended than that of holding them between the thumb and fingers. Where chloroform is used either to kill or deaden specimens, it is important that after they are once spread and in the drying box they should be subjected to an additional asphyxiation, as the larger species may revive and are apt to pull away from the holding strips, and thus rub off their scales.

Microlepidoptera, together with Microhymenoptera and Diptera may be conveniently pinned on fine, short pins, and these thrust into an oblong bit of cork or pith. This form of mounting has already been described and is represented in figure 102. The neatest mounting of Microlepidoptera which I have seen is the work of my assistant, Mr.Albert Koebele, who mounts these insects on an oblong strip of pith. This is very light and presents no difficulty in pinning. The strips may be made of considerable length and both sexes may be pinned on the same block (see Fig.103). Most Lepidoptera present on the under surface an entirely different aspect from that on the upper surface, and, in such cases, it is a good plan to mount a number of specimens obversely.

Relaxing.—It will frequently be desirable to re-spread insects which have been incorrectly mounted, or to spread specimens which have been collected and stored in papers, or pinned and allowed to dry without being prepared for the cabinet. Such specimens may be relaxed by placing them in a tight tin vessel half filled with moist sand to which a little carbolic acid has been added to prevent molding. Small specimens will be sufficiently relaxed to spread in twenty-four hours. Larger specimens require from two to three days. More rapid relaxing may be caused by the use of steam, and a flat piece of cork with the specimens laid or pinned thereon and floated on the top of hot water in a closed vessel constitutes an excellent relaxing arrangement.

Inflation of the LarvÆ of Lepidoptera.—The larvÆ of Lepidoptera preserved in alcohol are excellent for anatomical and general study, but are not very suitable for use in economic displays. This means of preservation also has the disadvantage of not generally preserving the natural color and appearance of the specimens. These objections may be avoided, however, by the dry method of preserving larvÆ, viz, by blowing or inflation. The process may be described as follows: The larva may be operated upon alive, but should preferably be first killed by dipping in chloroform or alcohol, or in the cyanide bottle. It is then placed on a piece of blotting paper and the alimentary canal caused to protrude from one-eighth to one-fourth of an inch, by rolling a pencil over the larva from the head to the posterior extremity. The protruding tip is then severed with a sharp knife or pair of dissecting scissors, and the contents of the abdomen are forced out by passing a pencil, as before, a number of times over the larva. Great care should be exercised in expressing the fluids not to press the pencil too strongly against the larva or to continue the operation too long, as this will, especially in delicate larvÆ, remove the pigment from the skin, and the specimen when dried will show discolored spots and be more or less distorted. The larva should be moved from place to place on the blotting paper during the operation, so as not to become soiled by its own juices. A straw, or a glass tube drawn to a point at the tip, is then inserted in the protruding portion of the alimentary canal. If a straw is used the larva may be fastened to it by thrusting a pin through the wall of the canal and the straw. In the case of the glass tube the alimentary canal can be caused to adhere by drying for a few minutes and this operation may be hastened and the fastening made more secure by touching the point of union with a drop of glue. The straw or glass tube is then attached to a small rubber bag, previously inflated with air, the ordinary dentist's or chemist's gas bag answering admirably for this purpose. The larva is now ready for drying, and for this purpose a drying oven is required into which it is thrust and manipulated by turning it from side to side, to keep it in proper shape and dry it uniformly until the moisture has been thoroughly expelled. An apparatus which I have found very convenient for this purpose is represented at Fig.109. It consists of a tin box with mica or glass slides, e, to allow the larva to be constantly in sight. It has also a hinged top, b, which may be kept closed or partly open, or entirely open, as may be necessary, during the operation. The ends of the box are prolonged downward about 5 inches, forming supports for it, g. Beneath it is placed an alcohol lamp, f, which furnishes the heat. In the end of the box is a circular opening, d, for the introduction of the larva, and this may be entirely or partly closed by a sliding door, a. It will be found of advantage to line the bottom of the box (inside) with a brass screen of very fine mesh to distribute and equalize the heat. This apparatus can be very easily made by any tinsmith and will answer every purpose.

see caption

Fig. 109.—Drying oven for the inflation of larvÆ (original).

The larvÆ of Microlepidoptera or young larvÆ may be dried without expressing the body contents, and will keep, to a great extent, their normal shape and appearance. The method consists in placing them on a sand bath, heated by an alcohol lamp. The vapor generated by the heat in the larvÆ inflates them and keeps the skin taut until the juices are entirely evaporated. They may then be glued at once to cardboard and pinned in the cases.

In the mounting of large inflated larvÆ I have adopted the plan of supporting them on covered copper wire of a size varying with the size of the larva. A pin is first thrust through a square bit of cork and the wire brought tightly about it and wrapped once or twice, compressing the cork and giving a firm attachment to the pin. The wire is then neatly bent to form a diamond-shaped loop about one-sixth of an inch in length and again twisted loosely to the end—the length of the twisted portion about equalling that of the larva to be mounted. This is then either thrust into the blown skin of the larva through the anal opening, the larva being glued to the wire by the posterior extremity, or the larva is glued to the wire by the abdominal legs and venter, thus resting on the wire as on a twig. This style of mounting is illustrated in Pl. I. With a little experience the operator will soon be able to inflate the most delicate larvÆ and also the very hairy forms, as for instance Orgyia leucostigma, without the least injury, so that the natural colors and appearance will be preserved.

Another very good method, and still safer, is to blow with straw, cut the straw square off at the anus, and then preserve the thoroughly dried and blown specimen in a glass tube of about the same length and diameter as the larva. This arrangement in conjunction with the tube holder, which will be described further on, is one of the most satisfactory for the preservation of inflated larvÆ.

For the biological-display collection, larvÆ may be blown in various natural positions, to be subsequently fastened on leaf or twig or in burrows which they have occupied. Fastened to artificial foliage in which nature is imitated as much as possible, such blown larvÆ are quite effective.

Stuffing Insects.—Large larvÆ may sometimes be satisfactorily preserved for exhibition purposes by stuffing them with cotton. The method consists simply in making a small slit with the dissecting scissors or a short scalpel between the abdominal prolegs, and removing the body contents. Powdered arsenic or some other preservative should be put in the body of the larva with the cotton used in stuffing it, and the slit closed by a few stitches, when the larva may be dried and mounted on a twig or leaf. This method of stuffing with cotton is also applicable in the case of certain large-bodied insects which, if mounted and put away without preparation, would be liable to decompose, as, for instance, the larger moths, grasshoppers, etc. A slit can be made in the center of the abdomen or near the anus beneath, and the body contents removed and replaced with cotton. Stuffing in this way with cotton is of especial advantage in the case of certain of the large endophytous insects which grease badly. The cut will not be noticed after the insect has dried, or it may be closed by a stitch or two.

Dry Preservation of Aphides and other soft-bodied Insects.—Difficulty has always been experienced in preserving soft-bodied insects, particularly Aphides, in a condition serviceable for subsequent scientific study. Kept in alcohol or other antiseptic fluid, they almost invariably lose much of their normal appearance, and many of the important characteristics, especially of color, are obscured or lost. The balsam mount is also unsatisfactory in many respects, as the body is always more or less distorted and little can be relied upon except the venation and the jointed appendages. A method of preserving soft-bodied insects by means of the sudden application of intense heat was communicated to the Entomologische Nachrichten, Vol. iv, page 155, by Herr D. H. R. von Schlechtendal. It is claimed for this method that the Aphides and other soft-bodied insects can be satisfactorily preserved in form and coloring, the success of the method being vouched for by a number of well-known German entomologists, Kaltenbach, Giebel, Taschenberg, Mayr, and Rudow. A condensed translation of the method employed by Schlechtendal is given by J. W. Douglas in the Entomologists' Monthly Magazine for December, 1878, which I quote:

The heat is derived from the flame of a spirit or petroleum lamp. Above this is placed a piece of sheet-tin, and over this the roasting proceeds. A bulging lamp cylinder, laid horizontally, serves as a roasting oven. In this the insect to be dried, when prepared as directed, and stuck on a piece of pith, is to be held over the flame; or the cylinder may be closed at the lower end with a cork, which should extend far inwards, and on this the insect should be fastened; the latter mode being preferable because the heat is more concentrated, and one hand is left free. The mode of procedure varies according to the nature of the objects to be treated. For the class of larger objects, such as Hemiptera, Cicadina, and Orthoptera, in their young stages of existence, the heat must not be slight, but a little practice shows the proper temperature required. If the heat be insufficient, a drying up instead of a natural distention ensues. The insect to be roasted is to be pierced by a piece of silver wire on the under side of the thorax, but it is not to be inserted so far as to damage the upper side, and the wire should then be carried through a disk of pith, placed beneath the insect, on which the legs should be set out in the desired position. But with some objects, such, for instance, as a young Strachia, the drying proceeds very quickly, so that if distention be not observed then the heat is too great, for the expansion of the air inside will force off the head with a loud report; also, with softer, thicker PentatomidÆ care must be taken to begin with a heat only so strong that the internal juices do not boil, for in such case the preparation would be spoiled. It is of advantage to remove the cylinder from time to time, and test, by means of a lens, if a contraction of the skin has taken place on any part; if so, the roasting is to be continued. The desired hardness may be tested with a bristle or wire.

For Aphides the living Aphis is to be put on a piece of white paper, and at the moment when it is in the desired position it is to be held over the flame, and in an instant it will be dead and will retain the attitude. Then put it, still on the paper, into the oven; or, still better, hold it over the heated tin, carefully watching the drying and moving the paper about in order to prevent it getting singed. The roasting is quickly accomplished in either way, but somewhat slower out of the oven especially in the larger kinds, such as Lachnus. If the paper turn brown it is a sure sign that caution is requisite. To pierce these brittle preparations for preservation is hazardous, and it is a better way to mount them with gum on card, placing some examples on their back.

For CecidomyidÆ, AgromyzidÆ, CynipidÆ, and other small insects liable to shrink, yet containing but little moisture, such as PoduridÆ, PediculidÆ, PsyllidÆ, etc., another method is adopted. Over the insect, mounted on a wire, etc., as above directed, a thin chemical reagent glass or glass rod, heated strongly at one end, is held, and the heat involved is generally sufficient to bring about the immediate drying and distention, but if the heat be too little the process must be repeated; and, although by this method the danger of burning is not obviated, yet the position of the legs is maintained much better than by the aforesaid roasting.

LarvÆ of all kinds, up to the size of that of Astynomus Ædilis, even when they have long been kept in spirits, may be treated successfully by the roasting method; but with these objects care must be taken that the heat is not too strong or else the form will be distorted. For small larvÆ it is preferable to use a short glass, in order better to effect their removal without touching the upper part, which becomes covered with steam, and contact with which would cause the destruction of the preparation. LarvÆ of Coleoptera, which contain much moisture or have a mucous surface, must lie on a bed of paper or pith in order to prevent adhesion and burning, and these may be further avoided if the cylinder be slightly shaken during the process, and the position of the object be thereby changed.

Many Aphides and Coccids are covered with a waxy secretion which interferes very materially with their easy examination. Mr.Howard has overcome this difficulty by the following treatment:

“With Aphides and Coccids which are covered with an abundant waxy secretion which can not be readily brushed away, we have adopted the plan of melting the wax. We place the insect on a bit of platinum foil and pass it once over the flame of the alcohol lamp. The wax melts at a surprisingly low temperature and leaves the insect perfectly clean for study. This method is particularly of use in the removal of the waxy cocoon of the pupÆ of male CoccidÆ, and is quicker and more thorough than the use of any of the chemical wax solvents which we have tried.” (Insect Life, I, p. 152.)

Mounting Specimens for the Microscope.—The study of the minuter forms of insect life, including Parasites, Thysanura, Mallophaga, the newly hatched of most insects, etc., requires the use of the microscope, and some little knowledge of the essentials of preparing and mounting specimens is needed. The subject of mounting the different organs of insects and the preparation for histological study of the soft parts of insects opens up the immense field of microscopy, the use of the innumerable mounting media, the special treatment of the objects to be mounted, staining, section-cutting, and many other like topics, a full description of which is altogether out of place in the present work. Anyone desiring to become thoroughly versed in the subject should consult some of the larger manuals for the microscopist, of which there are many. For the practical working entomologist, however, a knowledge of all these methods and processes is not essential, and in my long experience I have found that mounting in Canada balsam will answer for almost every purpose. The softer-bodied forms will shrink more or less in this substance, and it is frequently necessary to make studies or drawings of them when freshly mounted; or, if additional specimens are preserved in alcohol, they will supplement the mounted specimens and the material may be worked up at the convenience of the student. The materials for the balsam mounts may be obtained of any dealer in microscopical supplies. They consist of glass slides, 3 inches by 1 inch, thin cover-glasses of different dimensions, and the prepared balsam. The balsam is put up very conveniently for use in tin tubes. A sufficient quantity is pressed out on the center of the glass slide, which has previously been made thoroughly clean and dry, the insect is removed from the alcohol, and when the excess of liquor has been removed with bibulous paper, it is placed in the balsam, the limbs and antennÆ being arranged as desired by the use of fine mounting-needles. A cover-glass, also made thoroughly clean and dry, is then placed over the specimen and pressed gently until the balsam entirely fills the space between the cover and the glass slide. The slide should then be properly labeled with a number referring to the notes on the insect, preferably placed on the upper edge of the slide above the cover-glass, and also a label giving the number of the slide and the number of the slide box. On the opposite end of the slide may be placed the label giving the name of the specimen mounted and the date. If a revolving slide table is employed to center the mounts, the appearance of the slide may be improved by adding a circle of asphalt or Brunswick black. With the balsam mounts, however, this sealing is not necessary. The slide (Fig.110) should then be placed in a slide case with the mount uppermost, and should be kept in a horizontal position to prevent sliding of the cover-glass and specimen until the balsam is thoroughly dried. For storing slides I have found very convenient the box shown at Fig.111. It is constructed of strong pasteboard and is arranged for holding twenty-six slides. The cover bears numbers from 1 to 26, opposite which the name of each insect mounted, or the label on the slide, may be written. This box when not in use is kept in a pasteboard case, on which may be placed the number of the box. These slide cases may be stored in drawers or on shelves made for the purpose. In mounting specimens taken from alcohol it is advisable to put a drop of oil of cloves upon them, which unites with the balsam and ultimately evaporates. The occurrence of minute air bubbles under the cover-glass need occasion no uneasiness, for these will disappear on the drying of the balsam.

Fig. 110.—Balsam mount, showing method of labeling, etc. (original).

In mounting minute Acarids or mites it has been found best to kill the insects in hot water, which causes them to expand their legs, so that when mounted these appendages can readily be studied. If mounted living, the legs are almost invariably curled up under the body and can not be seen. This method may also be used in the case of other minute insects. Some insects, such as minute Diptera, are injured by the use of hot water, and for these dipping in hot spirits is recommended.

see caption

Fig. 111.—Slide case, showing method of labeling case and of numbering and labeling slides (original).

In the mounting of Aphides the same difficulty is avoided in a measure by Mr.G.B.Buckton, author of “A Monograph of the British Aphides,” by first placing a few dots of balsam on the glass slide, to which the insect is transferred by means of a moistened camel's-hair brush. The efforts of the insect to escape will cause it to spread out its legs in a natural position and a cover glass may then be placed in position and a drop of the balsam placed at the side, when, by capillarity, it will fill the space between the slide and cover glass and the limbs will be found to have remained extended. If three or four drops of the balsam are put on the glass the wings may also be brought down and caught to them so that they will remain expanded in shape for examination.

Preparing and Mounting the Wings of Lepidoptera.—The student of Lepidoptera will frequently find it necessary in the study of the venation of wings to bleach them or denude them of their scales in some way. Various methods of bleaching and mounting the wings of these insects have been given, and a few of them may be briefly outlined.

The simplest and quickest, but perhaps the least satisfactory, method is to remove the scales with a camel's-hair brush. This will answer for the larger forms and where a very careful examination is not required. For more careful examination and study the wings are first bleached by the action of some caustic solution and then mounted in balsam for permanent preservation. Chambers's method for Tineina, Tortricina, Pyralidina, and the smaller moths generally, is as follows: The wing is placed on a microscopic slide in from 3 to 4 drops of a strong solution of potash, the amount varying according to the size of the wing. A cover of glass is then placed in position on the wing as in ordinary mounting.

The quantity of liquid should be sufficient to fill the space beneath, but not sufficient to float the cover glass. The mount is then placed over an alcohol flame, removing it at the first sign of ebullition, when the wing will be found denuded, if it be a fresh specimen. An old specimen, or a larger wing, will require somewhat more prolonged boiling. The fluid is drawn off by tilting the glass or with bibulous paper, and the potash removed by washing with a few drops of water. The cover glass is then removed and the wing mounted either on the same slide in balsam or floated to another slide, or at once accurately sketched with the camera lucida. Permanent mounting, however, is always to be recommended.

The Dimmock method of bleaching the wings of Lepidoptera, given in Psyche, Vol. i, pp. 97–99, is as follows: He uses for bleaching a modification of the chlorine bleaching process commonly employed in cotton bleacheries, the material for which is sold by druggists as chlorate of lime. The wings are first soaked in pure alcohol to dissolve out the oily matter, which will act as a repellant to the aqueous chlorine solution. The chlorate of lime is dissolved in 10 parts of water and filtered. The wings are transferred to a small quantity of this solution and in an hour or two are thoroughly bleached, the veins, however, retaining a light brown color. If the bleaching does not commence readily in the chlorine solution the action may be hastened by previously dipping them in dilute hydrochloric acid. When sufficiently decolorized the wings should be washed in dilute hydrochloric acid to remove the deposit of calcic carbonate, which forms by the union of the calcic hydrate solution with the carbonic dioxide of the air. The wings are then thoroughly washed in pure water and may be gummed to cards or mounted on glass slides in Canada balsam, first washing them in alcohol and chloroform to remove the moisture. If either of the solutions known as eau de labaraque and eau de javelle are used in place of the bleaching powder, no deposit is left on the wings and the washing with acid is obviated. This process does not dissolve or remove the scales, but merely renders them transparent, so that they do not interfere with the study of the venation.

Prof. C. H. Fernald (American Monthly Microscopical Journal, i, p. 172, 1880), mounts the wings of Lepidoptera in glycerin, after having first cleared them by the Dimmock process. After bleaching and washing, the wings are dried by holding the slides over an alcohol flame, and a drop of glycerin is then applied and a cover glass put on at once. By holding the slide again over the flame until ebullition takes place the glycerin will replace the air under the wings and no injury to the structure of the wings will result, even if, in refractory cases, the wing is boiled for some little time. The mount in this method must be sealed with some microscopic cement, as asphalt or Brunswick black.

A method of mounting wings of small Lepidoptera for studying venation, which I have found very convenient, is thus described by Mr.Howard in Insect Life, Vol. i, p. 151:

“Some years ago we used the following method for studying the venation of the wings of small Lepidoptera. We have told it since to many friends, but believe it has not been published. It is in some respects preferable to the so-called ‘Dimmock process,’ and particularly as a time-saver. It is also in this respect preferable to denudation with a brush. The wing is removed and mounted upon a slide in Canada balsam, which should be preferably rather thick. The slide is then held over the flame of an alcohol lamp until the balsam spreads well over the wing. Just as it is about to enter the veins, however, the slide is placed upon ice, or, if in the winter time, outside the window for a few moments. This thickens the balsam immediately and prevents it from entering the veins, which remain permanently filled with air and appear black with transmitted light. With a little practice one soon becomes expert enough to remove the slide and cool it at just the right time, when the scales will have been rendered nearly transparent by the balsam, while the veins remain filled with air. We have done this satisfactorily not only with TortricidÆ and TineidÆ, but with Noctuids of the size of Aletia and Leucania. The mounts are permanent, and we have some which have remained unchanged since 1880. Prof. Riley had for some years before this been in the habit of mounting wings in balsam, in which of course the scales cleared after a time.”

Prof. John B. Smith recommends a modification of the Dimmock process of bleaching the wings of Lepidoptera, publishing it in Insect Life, Vol. i, pp. 291, 292, as follows:

“By the Dimmock process the wings are first acted upon by a saturated solution of the chloride of lime, chlorine being, of course, the bleaching agent. Afterward they are washed in water to which hydrochloric acid has been added, to get rid of the slight deposit of lime. The process is a slow one for thickly scaled, dark-colored insects, and it occurred to me to try a mixture of the chloride and acid, liberating the chlorine gas. The method was absolutely successful, the wings decolorizing immediately and being ready for the slide within two minutes. In fact, very delicate wings can scarcely be taken out quick enough, and need very little acid. The advantage is the rapidity of work and the certainty of retaining the wings entire, the chloride of lime sometimes destroying the membrane in part before the bleaching is complete. The disadvantage is the vile smell of the chlorine gas when liberated by the combination of the two liquids. For quick work this must be endured, and the beauty and completeness of the result are also advantages to counterbalance the discomfort to the senses.”

For further special directions for mounting, for microscopic purposes, different insects and the different parts of insects, representing both the external chitinous covering and the internal anatomy, the student is referred to special works.

Footnotes:

[4] In North America, KlÄger pins and Karlsbad pins can be obtained through Mr. JohnAckhurst, 78 Ashland Place, Brooklyn, N. Y., and possibly also through Messrs. Blake&Co., 55 North Seventh street, Philadelphia, Pa. The Vienna pins and the Minutien-Nadeln have to be ordered direct through the manufacturer, Mr.Miller.

[5] Montgomery&Co., 105 Fulton street, New York City.

[6]This applies to the use of short pins, which should subsequently be connected through strips of pith with longer pins. For some of the larger micros the long pins may be used directly and a different spreading board employed.

PRESERVATION OF ALCOHOLIC SPECIMENS.

Apparatus and Methods.—The collections of most value, especially to our various agricultural colleges and experiment stations will be largely of a biologic and economic character, and the interest attaching to a knowledge of the life history of insects will induce many collectors to build up independent biologic collections. Very much of this biological material will be alcoholic, and though many immature states of insects may be preserved by dry processes, still the bulk must needs be kept in liquid. This material may, when not abundant, be kept with the general systematic collection, but experience has shown that it is better to make a separate biological collection, and this is recommended especially for State institutions where the collections may be expected to attain some considerable proportions. In the case of such collections it is very desirable to adopt some method of securing the vials in such a manner that they can easily be transferred from one place to another and fastened in the boxes or drawers employed for pinned insects. For directions in this regard I reproduce from an article on the subject in Insect Life, Vol. ii, pp. 345, 346, which was republished, with slight changes, from my annual report for 1886 as Honorary Curator.[7]

Vials, Stoppers and Holders.—The vials in use to preserve such specimens as must be left in alcohol or other liquids are straight glass tubes of varying diameters and lengths, with round bottom and smooth even mouth. The stoppers in use are of rubber, which, when tightly put into the vial, the air being nearly all expelled, keep the contents of the vial intact and safe for years.

Various forms of bottles are used in museums for the preservation of minute alcoholic material. I have tried the flattened and the square and have studied various other forms of these vials; but I am satisfied that those just described, which are in use by Dr.Hagen in the Cambridge Museum, are, all things considered, the most convenient and economical. A more difficult problem to solve was a convenient and satisfactory method of holding these vials and of fastening them into drawers or cases held at all angles, from perpendicular to horizontal. Most alcoholic collections are simply kept standing, either in tubes with broad bases or in tubes held in wooden or other receptacles; but for a biologic collection of insects something that could be used in connection with the pinned specimens and that could be easily removed, as above set forth, was desirable. After trying many different contrivances I finally prepared a block, with Mr.Hawley's assistance, which answers every purpose of simplicity, neatness, security, and convenience. It is, so far as I know, unique, and will be of advantage for the same purpose to other museums. It has been in use now for the past six years, and has been of great help and satisfaction in the arrangement and preservation of the alcoholic specimens, surpassing all other methods for ease of handling and classifying.

The blocks are oblong, one-fourth of an inch thick, the ends (c c, Fig.112) beveled, the sides either beveled or straight, the latter preferable. They vary in length and breadth according to the different sizes of the vials, and are painted white. Upon the upper side of these blocks are fastened two curved clamps of music wire (b b), forming about two-thirds of a complete circle. The fastening to the block is simple and secure. A bit of the wire of proper length is first doubled and then by a special contrivance the two ends are bent around a mandrel so as to form an insertion point or loop. A brad awl is used to make a slot in the block, into which this loop is forced (e, Fig.112,5), a drop of warm water being first put into the slot to soften the wood, which swells and closes so firmly around the wire that considerable force is required to pull it out. Four pointed wire nails (d d d d), set into the bottom so as to project about one-fourth inch, serve to hold the block to the cork bottom of the case or drawer in which it is to be placed. The method of use is simple and readily seen from the accompanying figures, which represent the block from all sides.

The advantages of this system are the ease and security with which the block can be placed in or removed from a box; the ease with which a vial can be slipped into or removed from the wire clamps; the security with which it is held, and the fact that practically no part of the contents of the vial is obscured by the holder—the whole being visible from above.

The beveled ends of the block may be used for labeling, or pieces of clean cardboard cut so as to project somewhat on all sides may be used for this purpose, and will be held secure by the pins between the block and the cork of the drawers.

see caption

Fig. 112.—Vial holder; 1, block, with vial, beveled on all sides; 2, do., beveled only on ends; 3, block, end view; 5, do., section; 4, 6, do., side views; a, block; b, spring-wire clamps; c, beveled ends of block; d, pointed wire nails; e, point of insertion of clamp. (Lettering on all figures corresponds.)

The use of rubber stoppers in this country was first instituted by Dr.H.A.Hagen in connection with the Cambridge biological collection, and he has made some very careful records to determine the durability of such stoppers. From an examination of some seven thousand vials with rubber stoppers, two-thirds of which had been in use for from ten to twelve years, he comes to the conclusion that less than one in a thousand gives out every year after twelve years' use, and in the first six years probably only one out of two thousand. Stoppers of large size keep much longer than those of small size. American rubber stoppers are all made of vulcanized India rubber and have the disadvantage of forming small crystals of sulphur about the stopper, which become loosened and attach themselves to the specimens. It is supposed that pure rubber-stoppers used for chemical purposes would not present this disadvantage, which may be obviated, however, or very much reduced, if the stoppers are washed or soaked, preferably in hot water, for an hour or two at least.

If stoppers are stored for a considerable time and exposed to the air they become very hard and unfit for use, and Dr.Hagen has drawn attention to a method recommended by Professor W.Hemple, of Dresden, Saxony, of preventing them from becoming thus hardened. He says that to keep rubber stoppers or rubber apparatus of any sort elastic, they should be stored in large glass jars in which an open vessel containing petroleum is placed. This treatment prevents the evaporation of the fluids which are fixed in the rubber in the process of vulcanization. It is better also to keep the light from the jar. To soften stoppers which have already become hardened, they should be brought together in a jar with sulphuret of carbon until they are pliable and afterward kept as recommended above.

In the use of the rubber stopper the novice may find some difficulty in inserting it in a vial filled with alcohol. The compression of the alcohol, or alcohol and air when the vial is not completely filled, forces the stopper out, and this is true whether of rubber or cork. If a fine insect pin is placed beside the cork when this is thrust into the bottle, the air or liquid displaced by the cork will escape along the pin and the latter may then be removed and the cork remains securely in position.

If cork stoppers have been used the vials may be stored in large quantities together in jars filled with alcohol. This will prevent evaporation of the alcohol from the vials, and the specimens may be preserved indefinitely. This is only desirable in the storage of duplicate specimens and unarranged material and is not recommended as a substitute for the use of the rubber stopper. With cork stoppers evaporation can be in a measure prevented if the cork is first anointed with the petroleum preparation known as vaseline. This substance is practically unaffected at ordinary temperature and is sparingly soluble in cold alcohol. Experiments with it have shown that at ordinary spring and summer temperatures there is no appreciable loss of alcohol from vials and jars.

My old method of keeping alcoholic specimens, which I abandoned for the method outlined above, was fairly serviceable, inexpensive, and warrants description.

I had special folding boxes constructed resembling in exterior appearance a large insect box. The bottom of the box was solid and was made by gluing together two 1½-inch planks.

Holes extending nearly through the lower plank and of various sizes to accommodate vials of different diameters were bored as closely together as the wood justified without splitting or breaking.

The holes were numbered consecutively and the vials when placed in them were numbered to correspond; the box also had its number, and in the notes the vial was referred to by number of box and vial thus, 3/73 (box 3, vial 73). The vial should project one-half to 1 inch above the hole, and should be loose enough to provide for the swelling of the wood in moist weather.

To protect the vials a cover having a depth of about 1½ inch was hinged to the back and secured in front by hook-and-eye fastenings.

This method of storing vials is satisfactory enough for private collections, but for larger public collections is not so suitable.

see caption

Fig. 113.—The Marx tray for alcoholic specimens (original.)

see caption

Fig. 114.—Vials used
in the Marx tray (original.)

A rather convenient and inexpensive method of storing vials is that used by Dr.Marx. In this method the vials are stored in a wooden frame, shown at Fig.113. The top piece of the tray into which the vials are thrust has a cork center, in which holes corresponding to the size of the vials are made with a gun-wad punch. The outer end of the tray bears a label or labels describing the material in the tray. The vials used by Dr.Marx are of thinner glass than those which I recommend and flare slightly at the top, as shown in the accompanying illustrations. They are made in various sizes to accommodate larger and smaller specimens. A vial thrust into the hole punched in the cork rests on the bottom piece of the tray, the flange or neck preventing it from sliding through. These trays are arranged on shallow shelves in a case or cabinet, especially constructed for the purpose and a large quantity of material may be stored by their use in small compass. The use of the cork center piece in the upper part of the tray is not a necessity, and a wooden piece may be used in which holes are bored with a bit of proper size.

Preserving Micro-larvÆ in Alcohol.—The following is quoted from Packard's “Entomology for Beginners,” for which it was translated from the “Deutsche Ent. Zeitg.,” 1887, Heft I:

see caption

Fig. 115.—Method of preserving minute larvÆ etc.
(After Dewitz.)

“Dr.H.Dewitz mounts the larvÆ and pupÆ of Microlepidoptera, and also the early stages of other small insects, in the following way: The insects are put into a bottle with 95 per cent alcohol. Many larvÆ turn black in alcohol, but boiling them in alcohol in a test tube will bleach them. They may then be finally placed in glass tubes as small and thin as possible, varying from 0.003 to 0.006 meter in diameter, according to the size of the insects. About 0.07 meter's length of a tube is melted over a spirit lamp, and the tube filled three-quarters full with 95 per cent alcohol, the insects placed within and the contents of the tube heated at the end still open, and then closed by being pulled out with another piece of glass tubing. After the glass has been held a few minutes in the hand until it is slightly cooled off, the end closed last is once more held over the lamp so that the points may be melted together, and this end of the glass may be finished. During the whole time from the closure of the tube until the complete cooling of the glass it should be held obliquely in the hand, so that the alcohol may not wet the upper end, for if the tube is too full it is difficult to melt it, as the steam quickly expanding breaks through the softened mass of glass. The tube may be mounted by boring a hole through a cork stopper of the same diameter as the glass. The stopper is cut into the shape of a cube, a strong insect pin put through it, and the glass tube inserted into the hole. It can then be pinned in the insect box or drawer, near the imago, so that the free end of the glass may touch the bottom, while the other end stands up somewhat; while to keep the tube in place the free end resting on the bottom may be fastened with two strong insect pins. The specimens thus put up can easily be examined with a lens, and if they need to be taken out for closer examination the tube can be opened and closed again after a little practice.”Preservative Fluids.—The principal liquids in which soft-bodied insects may be successfully preserved are the following:

Alcohol.—As indicated in the foregoing portions of this work, alcohol is the standard preservative used for soft-bodied specimens, and may be used either full strength or diluted with water. Diluted alcohol should always be first used with larvÆ, since the pure alcohol shrivels them up. The weak spirits can afterwards be replaced by strong, for permanent preservation.

Alcohol and White Arsenic.—The method of preserving insects recommended by LaboulbÈne and quoted in Packard's Entomology for Beginners, consists in plunging the insects in the fresh state into a preservative liquid, consisting of alcohol with an excess of the common white arsenic of commerce. The larva placed in this mixture absorbs .003 of its own weight, and when removed and pinned is safe from the attacks of museum pests. This liquid is said not to change the colors, blue, green or red of beetles, if they are not immersed for more than twenty-four hours. This treatment is applicable to the orders Coleoptera, Hemiptera, and Orthoptera. If the insect is allowed to stay in this mixture for a considerable time, say three or four weeks, and then removed and dried, it becomes very hard and brittle and can not be used for dissection or study, but makes a good cabinet specimen. The white deposit of arsenic which will appear on drying can be washed off with alcohol.

Alcohol and Corrosive Sublimate.—The same author recommends another preparation consisting of alcohol with a variable quantity of corrosive sublimate added, the strength of the solution varying from 100 parts of alcohol to 1 part of corrosive sublimate for the strongest, to one-tenth of 1 part of sublimate in 100 parts of alcohol for the weakest. The insects are allowed to remain in this mixture not longer than two hours before drying. The last-described preparation is said to preserve the specimens from mold. Both of these solutions are very poisonous and should be used with care.

Two Liquids to preserve Form and Color.—Professor Packard also quotes the formula of A. E. Verrill for preserving insects in their natural color and form. Two formulas are given; the first consists of 2½ pounds of common salt and 4 ounces of niter dissolved in a gallon of water and filtered. The specimens should be prepared for permanent preservation in this solution by being previously immersed in a solution consisting of a quart of the first solution and 2 ounces of arsenite of potash in a gallon of water. Professor Packard gives also the formula of M. H. Trois for preserving caterpillars, for which it is claimed that the colors of the caterpillars are preserved perfectly, even when exposed to strong light. The formula for this solution is as follows:

Common salt grams 2.35
Alum do. 55
Corrosive sublimate centigrams 18
Boiling water liters 5

Allow the liquid to cool and add 50 grains of carbolic acid, and filter after standing five or six days.

Glycerin.—Glycerin, either pure or mixed with water or alcohol, is frequently used to preserve the larvÆ of delicate insects. It preserves the color and form better than alcohol, but particularly in the case of larvÆ, it causes a softening of the tissues which renders them unfit for study.

The Wickersheim Preserving Fluid.—This valuable preserving fluid has been known for some time, but is not very commonly used, on account of frequent disappointment due to the difficulty attending its preparation. It is claimed for it that animal or vegetable bodies impregnated with it will retain their form, color, and flexibility in the most perfect manner. The objects to be preserved are put in the fluid for from six to twelve days, according to their size, and then taken out and dried in the air. The ligaments remain soft and movable, and the animals or plants remain fit for anatomical dissection and study for long periods, even years. It is said to be especially valuable for the preservation of larvÆ and soft-bodied insects. In order to perfectly preserve the colors, it is necessary to leave the specimens in the fluid, or, if they are taken out, they should be sealed up in air-tight vials or vessels. The formula for the fluid is as follows:

Dissolve 100 grams alum, 25 grams common salt, 12 grams saltpeter, 60 grams potash, 10 grams arsenious acid in 3,000 grams boiling water. Filter the solution, and when cold add 10 liters of the liquid to 4 liters of glycerin and 1 liter of methyl alcohol.

Footnote:

[7] Annual Report of the Smithsonian Institution for 1886, Part II, Report of the National Museum, pp. 182–186. Washington, 1890.

LABELING SPECIMENS.

General Directions.—It matters little how much care and pains have been taken in the preparation and mounting of specimens, they will have little value unless accompanied by proper labels giving information as to locality and date of collection, name of collector, and a label or number referring to notebooks, if any biological or other facts concerning them have been ascertained. There should be pinned to the specimen labels referring to, or giving all the information obtainable or of interest concerning it. A somewhat different style of label will be found necessary in the case of the two forms of collections described in the foregoing pages, namely, the biological or economic collection, and the systematic collection. For the former, numbers may be attached to the specimens which will refer to the notes relating to the specimen or species. For the latter, in most cases, all necessary information may be recorded and made available by written or printed labels attached directly to the specimens. In most cases, however, I find a combination of these two systems convenient and desirable. The numbering system is very simple, and is the one which I have followed in all the species for which I have biological or other notes. It consists in giving each species, as it comes under observation, a serial number which refers to a record in a notebook. With this number may be combined, if convenient, the date of rearing or collection of the specimen, and also the locality and food-plant if known. The vast number of species represented in a systematic collection renders the numbering system entirely out of place and inadequate, and the labeling system alone is generally available. If it becomes necessary in the systematic collection to refer to food-plants or life-history or any other fact of interest, the numbering system should be used, and I recommend that the numbers be written in red ink on the labels, to distinguish at a glance the numbers referring to biological notes from other numbers that will occur in the collection.

Labels for pinned Specimens.—The following labels should be employed in the collection: (1) Locality label, which should be as explicit as possible. (2) Date of capture, which is very useful and sometimes quite important in various ways. It indicates at what time additional specimens of some rare species may be secured, and greatly assists in elaborating the life history of the species, and in other cases assists in the correct determination of closely allied insects, which differ chiefly in habit or date of appearance. (3) A label to indicate the sex. This label has recently acquired greater importance than formerly, on account of the value of the sexual differences in the distinction of species. The well-known signs for male, female, and worker, printed in convenient form, are well adapted for collections. (4) The name of the collector. This label is of less value, but sometimes becomes important in determining the history of the specimen or the exact place of capture. The name of the species is not necessarily attached to all the specimens in a collection, and ordinarily will be placed with the first specimen in a series in the cabinet. This and other labeling of insects in cabinet is discussed in another place. Other labels are useful to indicate type specimens, namely, those of which descriptions have been drawn up and published, and which should be designated by a special label written by the author himself. Determinations by an authority in a special group should be indicated, and the labels placed on specimens by such an authority should not be removed.

It will not be found necessary to use a separate label for each of the data indicated above, and a single label may be made to combine many of them, as, except for the specific names of the insects themselves (which should always be on the lowermost label), most other words will bear abbreviation, especially localities and dates. “A combination label, which has given general satisfaction to all to whom it has been communicated, is a two-line label printed in diamond type, on heavy writing paper. The upper line consists of the name of the locality, e.g., ‘Washngtn’ (a name consisting of more than eight letters to be abbreviated), and the lower line has at the right-hand corner ‘DC’ (interpunctuation and spacing to be avoided so as to save space). This leaves on the second line sufficient room for inserting the date, which can be quickly and neatly written with ink if the labels are printed in columns of ten or more repetitions. The label thus combines locality with date of capture. Or the upper line reads ‘Arizona’ and the lower line ‘Morrison,’ the label thus combining locality with the name of the collector.”[8]

In general I indorse the system of labeling suggested in the above condensation from Mr.Schwarz, but there is no particular disadvantage, and in fact many advantages, in special cases, in a larger label or in folded labels. Particularly in visiting large foreign collections I have found it convenient to use large labels of thin paper which will contain a good deal of information closely written in pencil and bear folding several times, so as not to occupy more than the ordinary label space when pinned to the specimens. This involves detaching the label when the specimen or species comes to be studied, but this additional labor is insignificant compared with the large amount of valuable information which in time is thus brought together in condensed availability for the student; for brief notes of opinions of experts, of comparison with types, of special studies, of reference to descriptions, etc., may thus be all brought together. Where there is not room to indicate the authority for a determination on the upper side of a label, I also find it convenient to do so on the lower side.

see caption

Fig. 116.—Cabinet for apparatus used in mounting and labeling. (Original).

Labeling alcoholic Specimens.—Alcoholic specimens, including alcoholic biologic material and collections of Arachnida and Myriapoda, are well adapted to the labeling system, as the vials are always of sufficient size to allow the insertion of one or more labels large enough to contain a pretty full record of the specimen. The label may consist of a number referring to notes, or of a number together with the other data indicated for the systematic collection. The label in my experience is preferably written in pencil, which, in alcohol, is practically permanent. Waterproof inks are sometimes used, and of these the oak-gall ink is undoubtedly the best. Dr.George Marx, in labeling his Arachnida, uses onion-skin paper and waterproof ink, such as Higgins's drawing ink. There is some danger, in placing a label in a vial, of its settling against the specimen and injuring it. This, however, can generally be avoided if a little care is used. The label may be long and narrow and folded lengthwise so as to occupy one side only of the vial, or short and inserted in such manner that it will pass around the inside of the vial, where it will be held by the natural adhesion to the glass in the upper portion of the vial, as shown at Fig.114.

Cabinet for Apparatus.—The work of preparation of insects for the cabinet may be greatly facilitated if a convenient case is provided with drawers and compartments for the keeping of pins of different sizes, labels, braces, implements, tweezers, dissecting apparatus, and the like, with microscopical supplies—slides, cover glasses, mounting media, etc. I present a photograph of a cabinet of this sort used in my earlier work and found very convenient and serviceable (Fig.116).

Footnote:

[8] E. A. Schwarz, Proc. Ent. Soc., Wash., II, No.1, 1891.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page