It was pointed out at some length in the introduction that the toxicity of some drugs may not be the same for all forms of life. This observation was also made by some investigators who experimented with caffein on different species of animals. Thus Maurel55 stated that caffein is twice as toxic for the frog as for the rabbit when administered by mouth. FrÖhner's26 experiments, on the other hand, made on domestic animals, failed to show great differences in the toxicity of caffein. According to this observer, horses seem to be more susceptible than cattle, goats, and swine, the minimum toxic dose being the same for all of these, while the resistance of the dog to caffein is about midway between that of the horse and the other animals mentioned. It may be remarked, however, that FrÖhner made only 13 experiments. That these data are inadequate for the formation of any conclusions as to the toxicity of caffein is evident since the most striking effect of caffein observed in the work herein reported was the comparatively wide range of variation in the resistance of individuals of the same species to this drug. This was found to be the case even when the conditions of experimentation were approximately uniform, and was observed whatever the mode of administration of the drug employed. The toxicity for different individuals also varied in acute as well as in chronic intoxication. It is for this reason that the number of tests employed were often quite large, for no conclusions of any value could be drawn without averaging the results of a sufficiently large number of experiments. Furthermore, it is to be borne in mind that the action of a drug may differ according to the mode of its introduction into the body and that different species of animals may vary in this regard. This is especially true of some substances when given by mouth, the range Maurel's56 investigations are of interest in this connection, as his work embraces a systematic study of the toxicity of a large number of substances in the rabbit, pigeon, and frog when given by mouth, subcutaneously, intravenously, or when injected into the muscles. According to this investigator the range of variation of the toxicity of a substance is widest when given by mouth. Potassium sulphocyanid, for example, is about 2.5 times as toxic for the frog as for the rabbit when given by mouth. Quinin hydrobromid is three times as toxic for the frog as for the pigeon, while for the rabbit it is twice as toxic as for the pigeon. When given by hypodermic injection the toxic dose per kilo weight is practically the same for all three species. The difference of resistance according to the mode of administration is even more marked for spartein sulphate. When given by mouth the toxicity for the rabbit is six times as great as for the frog, but when injected subcutaneously the toxic dose is about the same for the rabbit and for the frog. The relation of the mode of administration to toxicity is further shown in the following substances: For the rabbit the minimum fatal dose per kilo of quinin hydrobromid is 1.5 grams administered by mouth, 0.5 gram when injected subcutaneously, and 0.07 gram by the intravenous path, while strychnin sulphate is twice as toxic administered intravenously as subcutaneously, and six times as toxic as when administered by mouth. The mode of introduction, however, does not always affect the toxicity of a substance. This is made evident by the action of strychnin on frogs in which, according to Maurel56, the toxic dose is the same whether given by mouth or injected into the subcutaneous tissues. This appears to hold true also for other animals as demonstrated by the experiments of Hatcher35 on the cat, in which he observed that strychnin is as readily absorbed from a full stomach as from the subcutaneous tissues. These findings are extremely interesting, especially in view of Maurel's57 work on the subject, according to which he finds that a substance is much less toxic when given by mouth than when administered by hypodermic injection or intravenously. That this generalization does not admit, however, of universal application is made evident by the work of various experimenters. Claude Bernard10 observed that curara is as poisonous for the pigeon when given by mouth as when injected subcutaneously, while Zalesky86 found that samandarin is more toxic for frogs when introduced into the stomach than by injection into the lymph sacs. Our experiments with caffein likewise show that Maurel's generalization does not always hold good, since it was found in experiments with gray rabbits that the minimum fatal dose is but moderately greater by mouth than by the subcutaneous path. Equally interesting is the observation of the writer, that in the guinea pig the difference in the toxicity between the subcutaneous and intraperitoneal injections is very slight, while in the cat the toxicity of caffein is the same whether given by mouth or injected into the subcutaneous tissues, and is markedly less when injected into the peritoneal cavity. The experiments on dogs show considerable variation of effective dose when given by mouth, but the interesting observation was made that the toxic dose by mouth may be smaller in some cases than the average dose by subcutaneous injection. If the resistance to caffein by subcutaneous injection of the different species of animals experimented upon in the present research be compared, it will be noticed that the gray rabbit or Belgian hare, which is more resistant than the other varieties employed, stands more caffein in proportion to the weight of the body than the other animals. Although the minimum fatal dose was found to be somewhat larger for the guinea pig than for the gray rabbit when caffein was injected intraperitoneally, it was on the contrary smaller by other paths of introduction, and approximated quite closely the minimum fatal dose for rabbits of the other varieties. Cats as well as dogs were found to be distinctly less resistant to caffein than the herbivora. There are a number of factors far more important than zoological differences which influence the toxicity of caffein. Some of these are age, season, and pathologic conditions. As these factors have already been dwelt upon in their appropriate places, further discussion might seem unnecessary, but owing to their importance in determining the action of a drug, emphasis is desirable. Especially is this the case with pathological conditions in relation to toxicity. While no positive proof of diminished resistance to caffein in pathological conditions was obtained by subjecting the suggestion to experimental test, it was observed in these experiments on rabbits that death occurred in some individuals after small doses which are usually not even toxic. The findings at autopsy indicate the presence of pathological conditions. The same was observed in some experiments on cats and dogs. It is extremely probable, therefore, that disease modifies the reaction of the organism to caffein as well as to other drugs.78 That the resistance to drugs may vary according to the age of the subject has been maintained by a number of pharmacologists. According to Guinard,30 young dogs, rabbits, and guinea pigs are very susceptible to morphin, resembling children in this regard. The effect of season on the toxicity of drugs has been discussed in the section on the experiments on guinea pigs, which were more resistant to caffein in the fall than in February and March. The effect of season seems to vary with the animal, but it may also differ with the substance employed. In Noe's65 studies on this subject cantharidin was found to be more toxic for the hedgehog in November than in July. The effect of season was different for morphin, as it was observed that the resistance of the hedgehog was greater at the end of the summer than earlier in the season. The relation of diet to toxicity of drugs has been studied by Hunt.39 His experiments indicate that this is an important factor in the resistance to acetonitril. The studies here reported on the effect of diet on toxicity of caffein in rabbits were confined to experiments with oats and carrots and do not show any modification of the resistance to caffein. The question of diet in chronic intoxication in dogs, however, suggests that in these animals diet may affect the toxicity of caffein, although the data on this subject are far from satisfactory. There is nevertheless sufficient evidence to suggest that a high protein diet for the adult dog tends to greater resistance of the animal to caffein and similarly the growing dog tolerates larger quantities of caffein on a milk diet than on a diet of meat. This brings us to a consideration of the behavior of caffein in chronic intoxication. Although in both rabbits and dogs absence of cumulation was evident, in other respects decided differences in the resistance to caffein were observed. While the rabbit tolerates more than twice the single dose of caffein per kilo for the dog, the result is quite different in repeated dosage of the drug, the rabbit succumbing to continued administration of much smaller doses of the drug than the dog. This is probably due to lesions of the gastro-intestinal canal caused by caffein which occasions loss of appetite much more readily in the rabbit than in the dog. The abundant energy reserve in the dog makes it possible for this animal to stand inanition much longer than the rabbit and other herbivora. The difference in the behavior of the rabbit and dog toward caffein is interesting as showing complete reversal of resistance in acute and chronic intoxication. From the |