The treatment of water with bleach alone has been largely supplanted by the liquid chlorine process but the following details will be of use on meeting conditions for which liquid chlorine cannot be used and also for the preparation of the hypochlorite solution required in the chloramine process. The essential features of a bleach installation are the solution or mixing tanks, storage tanks, piping system, discharge orifice or weir, and sludge drain. The general design of a hypochlorite plant is largely determined by the capacity but in all cases an effort should be made to avoid complicated details which may appear advantageous There is a considerable variation in the concentration of bleach solution made in mixing tanks at various works. Some operators use about one gallon of water per pound of bleach and mix the two to a cream by wooden paddles, revolving on a central axis, for 1-2 hours; the paddles are then stopped and the cream run out into the storage tanks and diluted to the required strength by passing water through the mixing tank. There are two objections to this method: (1) the addition of small quantities of water to bleach tends to gelatinisation which may protect lumps from the further action of water and (2) a stratification of the solution occurs in the storage tank unless agitation is used. Gelatinisation causes loss of available chlorine and stratification causes irregular dosage unless corrected by agitation, which necessitates power. Other operators mix the bleach and water to the final concentration in the mixing tank and discharge the contents into the storage tank, the intermittent process being repeated until the storage tank is full. Gelatinisation is avoided by using a low original concentration and as all batches are of equal density no stratification is produced. At Ottawa the bleach is crushed and, after weighing, dumped into a circular concrete tank provided with a hinged wooden lid. The stirring arrangement consists of a bronze shaft on which an aluminium impeller is fixed which revolves The concentration of solution necessarily depends upon local conditions but it is usually advisable to keep it below 2.5 per cent of bleach, which is equivalent to 0.85 per cent of available chlorine. The storage tanks should be provided with either glass gauges or float indicators to enable the orifice discharge to be checked up at periodical intervals. In the constant head method, the head is maintained by a bronze valve connected to a float made of glass or tinned copper. In many cases the orifice is a rectangular slot in a brass plate and is adjusted by means of a brass slide operated by a micrometer screw. Brass plates are not very suitable as they become corroded and so reduce the size of the orifice; if the incrustation is removed the orifice will discharge more than the calibration indicates. Needle valves are unsuitable for similar reasons. An example of an orifice feed box of the constant head type is shown in Fig. 2. A vertically arranged hard-rubber pipe passes though a hard rubber stuffing box in the bottom of the tank and has one or more orifices near its upper end. The area of the submerged portions of the orifices is controlled Fig. 3 shows the regulating mechanism of another apparatus of the constant head type. The orifice consists of a circular slot in a hard rubber disc and is regulated by means of a hand wheel which operates a hard rubber slide. The general arrangement of one of the variable head types is shown in Fig. 4. A constant head is maintained on the valve V by a float and cock operating in a lead- or porcelain-lined tank. The circular tapered orifice O, cut in glass, is situated in the flanged end of the iron casting C and the head, indicated on the gauge glass, is regulated by valve V. This arrangement is simple and reasonably accurate. The The volume of solution discharged by orifices of various dimensions is shown in Diagram XV, page 149. Diagram XVI, page 149, facilitates the calculation of the number of pounds of bleach required for any dosage. The solution discharged from the orifice box is carried to the point of application either in galvanised iron pipes of generous dimension or in rubber hose. Pumps may be used for raising the solution to a higher elevation but unless special material is used in their construction they corrode rapidly and cannot be kept in service. Whenever possible, a water injector should be used as it does not corrode and assists in maintaining the delivery pipes free from sludge. All delivery pipes should be duplicated and blown out regularly by water under pressure; they should also be protected from frost. The adjustment of the hypochlorite dosage can be automatically regulated in plants where the flow of the water to be treated is measured by a Venturi meter or other suitable For small plants, barrels have often been used as solution and storage vessels with, in some instances, fairly successful results. The bleach process, however, cannot be recommended for small installations because the chemical control necessary for successful operation is usually not available. One drum of bleach may suffice for several months operation and as the powder gradually loses strength, the dosage constantly diminishes and may jeopardise the safety of the supply. Liquid chlorine machines are much more suitable than hypochlorite installations for supplies having no chemical control. Bleach is being very extensively used for the sterilisation of the water used by the allied troops in France. The water supplies on the British front are all more or less subject to pollution and it is consequently necessary, to ensure adequate protection, to chlorinate all supplies with bleach. Other forms of chlorine have been tried but have not proved successful near the firing lines. The details of the technique employed cannot be given but it may be stated that the concentration of chlorine employed is always more than sufficient and that residual tastes and odours are regarded as secondary considerations. Treated water is always tested by the starch-iodide method and a bacteriological examination is frequently made by mobile laboratories. The points that require consideration are (1) the composition of the bleach; (2) concentration of available chlorine For analysis weigh out 5 grms. on a balance sensitive to 0.01 grm. and grind in a mortar with 50-70 c.cms. of water; wash into a 250 c.cm. flask and make the volume up to 250 c.cms.; shake. After allowing the sludge to settle remove 10 c.cms. by means of a pipette and titrate by one of the following methods: Bunsen’s Method. Add 10 c.cms. of a 5 per cent solution of potassium iodide and 0.5 c.cm. glacial acetic acid and titrate with sodium thiosulphate (24.8 grms. of the C.P. crystalline salt and 1 c.cm. of chloroform per litre) using a starch solution as indicator. Each cubic centimetre of thiosulphate used = 1.755 per cent of available chlorine (1 c.cm. N/10 sodium thiosulphate = 0.00355 grm. available chlorine). Penot’s Method. Dilute the hypochlorite solution with 15 c.cms. of water and titrate with a solution of N/10 sodium arsenite using starch-iodide paper as an external indicator. Each c.cm. of solution used = 1.755 per cent of available chlorine (1 c.cm. = 0.00355 grm. available chlorine). The use of an external indicator makes this process a slow one and to overcome this objection Mohr proposed the addition of an excess of sodium arsenite solution and then titrating with N/10 iodine solution after adding a few drops of starch solution. Griffen and Hedallen For a separate estimation of the chlorine present as chloride, chlorate, and hypochlorite the method given in Sutton’s Volumetric Analysis, 10th edition, page 178, should be followed. Storage Liquor. This is tested by any of the above methods. It has been proposed to determine the strength of the bleach solution by the use of a hydrometer but the results are not sufficiently accurate and the method cannot be recommended. If bleach is properly broken up and thoroughly agitated in the mixing tank at least 95 per cent of the available chlorine should be extracted. The efficiency of the extraction process is checked by comparing the tests of the storage liquor with those of the dry bleach and each batch of liquor should be tested daily. It is sometimes advisable to take two samples from each tank, one soon after a tank has been put into operation, and a second sample at the end of the run. Considerable differences are occasionally found between these samples and are due, either to inadequate agitation of the liquor in the storage tank, or inefficient mixing in the mixing tank. If the results are irregular the former is the more probable cause but if the second sample is invariably stronger the mixing tank operations should be investigated. The increased concentration of the second sample is due to unextracted bleach passing out of the mixing tank and gradually becoming leached as the tank contents are run off. If the bleach is lumpy and is not subsequently broken up, losses are almost inevitable. Hale By taking two samples daily from each tank discharged the author has been able to obtain an average annual efficiency on the Ottawa plant of 94 per cent., i.e. the solutions contained 94 per cent. of the available chlorine contained in the bleach. In making such checks it is necessary to keep a careful account of the stock of bleach to prevent labourers adding a few extra pounds of bleach to compensate for losses. Sludge forms an appreciable but unavoidable source of loss of material. When the sludge reaches the outlet of the hypochlorite pipe the sludge must be run to waste; otherwise it will pass over and tend to choke the dosage control apparatus. If the sludge is run into the same body of water that forms the source of supply, it must be discharged very slowly to prevent a possibility of over dosage and damage to fish life. With proper control, sludge losses can easily be kept under 2 per cent. and often under 1 per cent. The greatest source of unavoidable loss in hypochlorite plants is from deterioration of the bleach during storage; in warm climates this loss may exceed 10 per cent. In Ottawa where high temperatures are only experienced during the summer months the loss from this cause has averaged from 7-8 per cent. on the bleach stored during that period. The method used by the author for the estimation of free chlorine is as follows: place 500 c.cms. of the sample in a stoppered bottle, add 1 c.cm. of 5 per cent KI solution, 2 drops of conc. HCl and 1 c.cm. of starch solution and titrate with N/1000 sodium thiosulphate until colourless. The difficulty introduced by the opalescence of the liquid is overcome by pouring portions of the liquid into two Nessler tubes and adding a drop of thiosulphate solution to one and noting if any reduction of colour occurs on shaking; if the intensity of the colour is diminished, the contents of both tubes are poured back into the bottle and titrated until no further colour removal, as shown by the tubes, can be obtained. One c.cm. of N/1000 sodium thiosulphate = 0.07 p.p.m. of available chlorine when 500 c.cms. of water are used. Adams Phelps found that ortho-tolidine in acetic acid solution The author has found that this method gives excellent results except for coloured waters. The colouring matter in many waters diminishes in intensity on the addition of acids and is somewhat similar in tint to that produced by addition of o-tolidine. If the reaction is used qualitatively on coloured treated water and a comparison made with the untreated sample, a negative result, due to the reduction in colour produced by the acid being greater than the increase caused by the reagent, might be obtained when traces of free chlorine are present. Similar difficulties are encountered when quantitative comparisons are made against permanent standards. Benzidine (Wallis LeRoy The starch-iodide and o-tolidine reactions are affected by oxidising agents or reducible substances; nitrites and ferric salts are the compounds that are most likely to interfere and Ellms and Hauser[5] have found that these bodies do not affect the o-tolidine reaction to the same extent as the starch-iodide reaction. Very small quantities of nitrites (0.03 p.p.m. of N) and ferric salts (0.2 p.p.m. Fe) give a blue colouration with the starch-iodide reagent and for this reason it is always advisable, whenever possible, to make a control test on the untreated water. Nitrites are oxidised by free chlorine and consequently do not interfere with the estimation of it by the thiosulphate method; the influence of ferric salts can be overcome by substituting 3 c.cms. of 25 per cent phosphoric acid for hydrochloric acid (Winkler |
(i) | NaHSO3 + Cl2 + H2O = NaHSO4 + 2HCl. |
(ii) | Na2S2O3 + Cl2 = Na2S4O6 + 2NaCl. |
Sodium bisulphite is a very efficient “antichlor,” only 1.46 parts being required to remove 1 part of chlorine, but owing to its instability the action is uncertain. Sodium thiosulphate is a comparatively stable cheap salt, containing 5 molecules of water of crystallization, Na2S2O3·5H2O but 7 parts are necessary to remove 1 part by weight of chlorine.
“Antichlors” are used as aqueous solutions and the dosage controlled in the same manner as for bleach solutions.
The filter was operated under pressure and passed an average of 192,000 Imp. gallons per day, the rate being 32,000 Imp. gallons per square yard per day.
Water from the pre-filters (polarite and sand) was treated with bleach to give a concentration of 1 p.p.m. of available chlorine and passed through the De Chlor filter. The average bacteriological results obtained during the first six months operation were as follows:
Bacteria Per c.cm. Gelatine 3 Days at 20° C. | B. coli Index Per 100 c.cms. | |
Raw river water | 6,775 | 600 |
Water from pre-filters | 579 | 119 |
Water from De Chlor filter | 33 | Nil |
Free chlorine could not be detected by chemical tests in the filtered water which was also free from abnormal
The experimental filter was operated for nearly two years before being removed to permit the erection of larger units having a total capacity of one million Imp. gallons per day.