CHAPTER I HISTORICAL

Previous

Chlorine, although one of the most widely distributed elements known to chemists, is never found in the free condition in nature; it exists in enormous quantities in combination with sodium, potassium, calcium, magnesium, etc. As sodium chloride, common salt, it occurs in practically inexhaustible quantities in sea water together with smaller quantities of other chlorides. In mineral form, enormous deposits of sodium chloride are found in Galicia, Transylvania, Spain, in England (particularly in Cheshire), and in sections of North America. The most important deposits of potassium chloride are those at Stassfurt, Germany, where it occurs either in the crystalline condition as sylvine or combined with magnesium chloride as carnallite.Chlorine was discovered by the Swedish chemist Scheele in 1774, but he, like Lavoisier and his pupil Berthollet, who declared it an oxygenated muriatic acid, was unaware of the elemental nature of the new substance. Sir Humphrey Davy investigated this body in 1810 and definitely proved it to be an element; Davy designated the element chlorine from the Greek ?????? = green.The first attempt to utilise chlorine, or its compounds, for bleaching purposes, appears to have been due to James Watt, who noticed the decolourising properties of chlorine during a visit to Berthollet. This attempt ended in failure because of the destructive effect on the fibres, but, in later trials, this was prevented by first absorbing the gas in a solution of fixed alkali. These experiments proved the possibility of bleaching by means of chlorine compounds but the high cost of soda made the process unprofitable, and it was not until Henry succeeded in preparing a combination with lime that could be reduced to a dry powder that this mode of chemical bleaching became a commercial success.

The manufacture of chloride of lime (hypochlorite of lime, bleaching powder, bleach) was taken up by Charles Tennant in 1799 at St. Rollox near Glasgow, and in 1800 about 50 tons were sold at a price of $680 (£139) per ton.

Chlorine is produced as a by-product in the manufacture of soda by the Leblanc process, but until 1865, when the British Alkali Act stopped the discharge of hydrochloric acid vapours into the atmosphere, the development of the bleaching powder industry was not rapid. The hydrochloric acid that was formerly discharged into the air as a waste product afterwards became a valuable asset that enabled the Leblanc process to successfully compete with the newer ammonia-soda process. In 1890 another competitor to the Leblanc process was introduced when caustic and chlorine were produced in Germany by electrolytic methods. After the successful development of this method in Germany, it was taken up in the United States of America and in 1912 more than 30,000 electrical horse-power were daily used in this industry. In 1914 the almost complete cessation of exports of bleach from Europe raised the price, which attained phenomenal heights in 1916 (cf. page 125), and stimulated the production of bleach both in the U. S. A. and Canada.

TABLE I.—BLEACH STATISTICS.
NORTH AMERICA

Year. Bleach Manufactured,
Short Tons.
Selling Price
Per 100 Lbs.
1904 19,000
1909 58,000
1914 155,000 $1.63
1915 180,000 [A] 2.63
1916 230,000 [A] 6.56
1917 260,000 [A] 2.44
[A] Estimated.

As a disinfectant, chlorine was first used about the year 1800 by de Morveau, in France, and by Cruikshank, in England, who prepared the gas by heating a mixture of hydrochloric acid and potassium bichromate or pyrolusite; this is essentially the same as the original mixture used by Scheele.

During the early part of the last century the efficacy of chlorine of lime as a disinfectant, and particularly as a deodourant, was well recognised and as early as 1854 an English Royal Commission used this substance for deodourising the sewage of London. A committee of the American Public Health Association reported in 1885 that chloride of lime was the best disinfectant available when cost and efficiency were considered.Eau de Javelle, first made by Percy at the Javelle works near Paris in 1792, is another chlorine compound that has enjoyed a considerable reputation as a disinfectant and deodouriser for over a century; it is essentially a mixture of sodium chloride and sodium hypochlorite.

The discovery of electrolytic hypochlorites dates back to 1859, when Watt found that chlorides of the fixed alkalies and alkaline earths yielded hypochlorites on being submitted to the action of an electrical current.

Until the middle of the last century disinfection was regarded as a process that arrested or prevented putrefactive changes but the nature of these changes was imperfectly comprehended and micro-organisms were not associated with them.In 1839 Theodor Schwann,[1] who might be regarded as the founder of the school of antiseptics, reported that “Fermentation is arrested by any influence capable of killing fungi, especially by heat, potassium arseniate, etc....”; but his results were not accepted by the adherents of the theory of spontaneous generation and it was not until the publication of the work of Schroder and Dusch[2] that Schwann’s views were even partially accepted. The final refutation to the spontaneous generation theory was given by the monumental researches of Pasteur who, in 1862, proved the possibility of preparing sterile culture media and demonstrated the manner in which they could be protected from contamination. Bacteria and other micro-organisms were shown to be responsible for the phenomena that had been attributed previously to the “oxygen of the air,” and from this period the development of bacteriology as a science proceeded rapidly.

The next important step, from the public health standpoint, was the discovery by Koch, in 1876, that a specific bacterium (B. anthracis) was the cause of a specific disease in cattle (anthrax or splenic fever). In 1882 Koch made a further advance by developing a solid culture medium which permitted disinfectants and antiseptics to be studied quantitatively with a greater degree of accuracy than had been possible previously.

Since 1845, when Semmelweiss succeeded in stamping out puerperal fever in Vienna, where it had been so long established as to be endemic, chlorine has been very generally employed in sanitary work and the conditions necessary for obtaining successful results have been partially elucidated. Baxter was the first to state that the disinfecting action depended more upon the nature of the pabulum than upon the specific organism present and this was confirmed later by Kuhn, Bucholtz, and Haberkorn. The latter found that urine consumed large quantities of chlorine before any disinfection occurred.One of the earliest preparations used in sanitary work was an electrolysed sea water, usually known as Hermite Fluid. This was introduced by M. Hermite in 1889 and was employed for domestic purposes and for flushing sewers and latrines. It was used at Brest for the dissolution of fÆcal matter and a prolonged trial was given to it at Worthing in 1894. The report of DuprÉ and Klein, who conducted the bacteriological examinations, was against the process, but Ruffer and Roscoe reported more favourably and further trials were carried out at Havre, l’Orient, and Nice. The Lancet (May 26, 1894) reported at length upon the Worthing experiments: it was found that during the electrolysis of the sea water, the magnesium chloride was also partially converted into hypochlorite, which then dissociated into magnesium hydrate and hypochlorous acid; the former deposited in the electrolyser and left the solution acid and unstable; urine was found to act upon it at once with a consequent loss in strength of over 50 per cent.Another electrolytic method was that of Webster,[3] who installed an experimental plant at Crossness, near London, in 1889. A low-tension direct current was passed between iron electrodes placed in the sewage and although the process was largely one of chemical precipitation, Webster noted the disinfecting value of the hypochlorite formed from the chlorides normally present in the sewage. He also directed the attention of sanitarians to the possibility of using sea water as a cheap source of chlorides and a plant based on this principle was erected in Bradford in 1890 and reported upon by McLintock.[4]Strong salt solutions were substituted for sea water by Woolf and the product was commercially known as “Electrozone.” A plant of this description was installed at Brewster, N. Y., in 1893[5] for chlorinating the sewage from a small group of houses. The sewage was discharged into a small creek which polluted Croton Lake. Successful results led to a similar treatment near Tonetta Creek.[6] This was apparently the first occasion on which the specific object was the destruction of bacteria.Electrozone was used at Maidenhead, on the Thames, in 1897 and the installation was reported upon by Robinson, Kanthack, and Rideal in 1898. Kanthack found that a dosage 3-3.6 p.p.m. reduced the organisms in a sewage effluent to 10-50 per c.cm. whilst Rideal found that about 18 p.p.m. of chlorine produced a condition of sterility in 1 c.cm.

Chloride of lime had previously been used in the London sewage as a deodourant by Dibden in 1884 but the treatment was not successful and was abandoned in favour of other oxidisers.

During the last decade of the twentieth century the use of bleach for the disinfection of both sewage and water received the attention of many well-known German sanitarians and many important results were obtained.

In the earlier experiments made at Hamburg, Proskauer and Elsner[7] obtained satisfactory results with 3-4 p.p.m. of chlorine on a clarified sewage with 10 minutes contact. Dunbar and Zirn (ibid.) used crude sewage and found that 17 p.p.m. of available chlorine were required to remove B. typhosus and cholera vibria with a contact period of two hours. A striking feature of all the German work on chlorination is the very high degree of purification aimed at: quantities as large as one litre were tested for specific organisms and in many of the experiments with sewage B. coli was found to be absent from a considerable percentage of the samples.

The importance of previously removing suspended matter, which could not be penetrated by the germicide, was emphasised by Schwartz[8] although it had been previously noted by Schumacher.

At the Royal Testing Station in Berlin, numerous experiments on sewage chlorination were made by Kranejuhl and Kurpjuivut.[9] The results were judged by the B. coli content, which was taken as an index of pathogenicity because this typical intestinal bacillus was found to be more frequent and less viable than the majority of the pathogenic organisms.

Other important work on this subject was carried out, in connection with the pollution of the Hooghly River, by a Bengal Government Commission in 1904; and by the State Board of Health of Ohio in co-operation with the Bureau of Plant Industry of the United States Department of Agriculture in 1907. The chlorination experiments of the latter were reported by Kellerman, Pratt, and Kimberly.[10]

The most valuable contribution to the disinfection of sewage was that of Phelps,[11] who critically examined the work of previous experimenters and directed attention to the unnecessary stringent standards adopted in European practice. His work at Boston in 1906, at Red Bank, N. J., and at Baltimore in 1907, demonstrated in an indubitable manner the economic possibilities of sewage chlorination. The dosages necessary for crude sewage and filter effluents were indicated and also the necessary contact periods. This work marks the commencement of a new era in sanitary science.The first occasion on which chlorine compounds were first used for the disinfection of water cannot be definitely ascertained. It has been stated to the author that bleach was used for treating wells as early as 1850 but this treatment was apparently made without definite knowledge of the destruction of micro-organisms.

In 1897, Sims Woodhead employed bleach solutions for the sterilisation of the distribution mains at Maidstone, Kent, subsequent to an epidemic of typhoid fever.The credit for the first systematic use of chlorine in water disinfection is due to A. C. Houston with whom McGowan was associated in the work carried out at Lincoln in 1904-1905.[12] The reservoirs, filters, and distribution system, owing to flood conditions, became infected with typhoid bacilli which caused a severe epidemic amongst the consumers. The storage and purifications works were thoroughly treated with a solution of “chloros” (sodium hypochlorite containing approximately 10 per cent of available chlorine) which was regulated to give an approximate dosage of 1 part per million. The bacteriological results were entirely satisfactory but many complaints were received that the treatment had imparted a mawkish taste to the water. This was attributed to the action of the alkaline chloros on the organic impurities in the water. It was also stated that the water injured plants, fish, and birds and extracted abnormal amounts of tannin from tea but no substantiating evidence was produced in support of these complaints. Houston made a continuous physiological test of the effect of the chlorinated water on small fish by suspending a cage of gold fish in the filter effluent chamber and also proved that the treatment had no appreciable effect on the plumbo-solvency of the supply.

Nesfield, of the Indian Army Medical Service,[13] reported in 1903 the results of numerous experiments on the destruction of pathogenic organisms by chlorine compounds and suggested their use in military work to prevent a recurrence of the appalling loss of life from water-borne diseases (especially enteric fever) such as took place during the Boer War. Nesfield proposed to use about 100 p.p.m. of available chlorine and to remove the excess after a contact period of 10 minutes. This work is especially interesting from the historical standpoint because it contains the first suggestion of the possibilities of compressed chlorine gas in steel cylinders.A few years later, electrolytic hypochlorite (oxychloride) was used at Guildford by Rideal and various chlorine compounds were tried on the water of the Seine and Vanne, in France, and at Middlekerke and Ostend, in Belgium. Experimental work on water chlorination was also reported by Thresh and by Moor and Hewlett.[14]

During the nineties many experiments on water chlorination were made by Traube, Sickenberger, Kauffman, Berge, Bassenge, and others. Traube[15] was able to completely sterilise water rich in bacteria in 2 hours by the addition of bleach equal to 1.06 p.p.m. of available chlorine. At the end of the contact period about 90 per cent of the added chlorine was unabsorbed and was destroyed by the addition of sodium bisulphite. Bassenge[16] followed up the work of Traube and that of Sickenberger and Kauffman, who had shown that it was possible to destroy cholera vibrio in Nile water by means of sodium hypochlorite. Bassenge used higher concentrations than Traube and found it possible to destroy B. typhosus and B. coli in ten minutes with 60-90 p.p.m. of available chlorine. The excess was destroyed by adding calcium bisulphite. Lode[17] experimented with waters seeded with B. coli, B. typhosus, and B. tetani and found, contrary to Traube, that 1-2 p.p.m. of chlorine did not sterilise in two hours. B. coli was usually destroyed by 4 p.p.m. of chlorine in ten minutes and even better results were obtained with B. typhosus and cholera vibrio: the former was destroyed in one hour by 1 p.p.m. and in ten minutes by 2 p.p.m.; the latter organism required 1-2 p.p.m. with a twenty-minute contact period. Lode noted that organic matter lowered the bactericidal activity of chlorine and recommended the use of 30 p.p.m. of chlorine to ensure rapid and complete sterilisation. Berge[18] used chlorine peroxide, generated by the action of hydrochloric acid on potassium chlorate, for the sterilisation of water and this process was afterwards used at Ostend at a plant having a capacity of about 1,300,000 gallons per day. The dosage was equal to 0.53 p.p.m. of available chlorine and coke filters were used to destroy the excess although they were not found to be indispensable as the free chlorine disappeared spontaneously. This process appears to have been tried on the Brussels supply and also for the treatment of a hospital supply at Petrograd.The object of German sanitarians seems to have been to obtain practically instantaneous sterilisation of water for the use of travellers and troops in the field. Until the commencement of the European War they did not have a high opinion of chlorination and generally regarded it as inefficient. Schumberg[19] expressed the opinion that no chemical method of disinfection could be absolutely relied upon, under all circumstances, to prove fatal to bacteria. Plucker[20] stated that several investigators, particularly Schuder, had shown that chlorine, even in the proportion of 40 p.p.m. did not invariably destroy cholera vibrio and B. typhosus; and that with smaller doses the destruction was still less complete. He also stated that the bacteriological experiments of American workers were open to criticism and that they employed antiquated methods.

By 1916 the German sanitarians appeared to have realised that their bacteriological standards were too stringent (Langer[21]) and that the process had proved its value in an indisputable manner.European practice, in the comparatively few instances in which it has been used, has been to employ large doses of chlorine and to remove the excess by chemicals or by filtration through special media. In 1916, however, London commenced to chlorinate a portion of its supply and the following year practically the whole supply was chlorinated. A dosage of approximately 0.5 p.p.m. is used and the bleach solution is added to the pre-filtered water. Worcester is also proposing to chlorinate the supply to maintain the purity of the water without extending the slow sand filtration plant.In North America, hypochlorite of soda and chlorine were used on the Jewell Filter at the Louisville Experimental Station in about 1896 by George W. Fuller and a year later they were used at Adrian by Jewell. The first commercial successful attempt was made by G. A. Johnson. In 1908 the Union Stock Yards Company of Chicago were proceeded against by the City of Chicago regarding the condition of the effluent of the Bubbly Creek filter plant. Copper sulphate had been previously used in conjunction with the filters but stock shippers complained that the water had a deleterious effect upon the animals consuming it. Johnson eliminated the copper treatment and substituted bleach which was added seven and a half hours previous to filtration, with a dosage of 1.5 p.p.m. The results were very satisfactory.

About the same time, Johnson and Leal commenced the treatment of the Boonton supply of Jersey City, N. J., consumed about 40 million gallons per day. The water was first treated with 36 pounds of bleach per million gallons (1.4 p.p.m. of available chlorine) but this quantity was gradually reduced until only 5 pounds per million gallons (0.2 p.p.m. of chlorine) were being used in April, 1909. The ability of the process to adequately purify water became the cause of a lawsuit and the decision of the Court was:

“From the proofs taken before me, of the constant observation of the effect of this device, I am of the opinion and find that it is an effective process which destroys in the water the germs, the presence of which is deemed to indicate danger, including the pathogenic germs, so that the water after this treatment attains a purity much beyond that attained in water supplies of other municipalities. The reduction and practical elimination of such germs from the water was shown to be substantially continuous.

“Upon the proofs before me, I find that the solution described leaves no deleterious substances in the water. It does produce a slight increase in the hardness but the increase is so slight as in my judgment to be negligible.

“I do therefore find and report that this device is capable of rendering the water delivered in Jersey City pure and wholesome, for the purposes for which it is intended and is effective in removing from the water those dangerous germs which were deemed by the decree to possibly exist therein at certain times.”[22]

During the next few years the use of hypochlorite in water purification, both alone and in conjunction with filtration, became very popular and in 1911 over 800 million gallons per day were treated in this manner. Amongst the users were some of the largest cities in North America, including Brooklyn, Albany, and New York City, N. Y., Cincinnati and Columbus, Ohio, Harrisburg, Philadelphia, Pittsburg, and Erie, Pa., Hartford, Conn., Nashville, Tenn., St. Louis and Kansas City, Mo., Montreal, P. Q., Toronto and Ottawa, Ont., Baltimore, Md., and Minneapolis, Minn. At present (1918) over 3,000 million gallons per day are being chlorinated in North America and more than 1,000 cities and towns are employing this process.

BIBLIOGRAPHY

[1] Schwann. Microskopische Untersuchungen Über die Übereinstimmung in der Textur und dem Wachstum der Tiere und Pflanzen. Berlin. 1839[2] Schroder and Dusch. Ann. der Chem. u. Pharm., 1854, 89, 232.[3] Webster. The Engineer. 1889, 67, 261.[4] McLintock. Brit. Med. Jour., 1890, 11, 498.[5] Eng. News. 1893, 30, 41.[6] Eng. Record. 1894, 29, 110.[7] Proskauer and Elsner. Vierteljahresschr. ger. Med. u. Öff. SanitÄtswesen. 1898, 16, Supp. Heft.[8] Schwartz. Gas. Eng., 1906, 29, 773.[9] Kranejuhl and Kurjuivut. Mitteilungen aus der KÖniglichen PrÜfungsanstalt fÜr Wasserversorgung und AbwÄsserbeseitigung zu Berlin, 1907, 9, 149.[10] Kellerman, Pratt, and Kimberly. Bull. 115, Bur. Plant Ind., U. S. Dept. of Agr., 1907.[11] Phelps. Water Supply Paper 229, Dept. of Int., U. S. Geo. Survey.[12] Houston and McGowan. 5th Rpt. Royal Commission on Sewage Disposal.[13] Nesfield. Public Health. 1903, 15, 601.[14] Moor and Hewlett. Rpt. of M. O. to L. G. B., 1909-10.[15] Traube. Zeit. f. Hyg., 1894, 16, 149.[16] Bassenge. Zeit. f. Hyg., 1895, 20, 227.[17] Lode. Archiv. f. Hyg., 1895, 24, 236.[18] Berge. Rev. d’Hyg., 1900, 22, 905.[19] Schumburg. Zeit. f. Hyg., 1903, 45, 125.[20] Plucker. J. Gasbeleucht., 1911, 54, 385.[21] Langer. Zeit. f. Hyg., 1916, 81, 296.[22] Johnson. Jour. Amer. Pub. Health Assoc., 1911, 1, 566.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page