The Courtship of the Cuttle-fish—The Sumptuous Cradle of the Argonaut—The Love-darts of the Snail—Hermaphrodites and the Dangers of Self-fertilization—Oysters and Beauty—Sex reduced to its Lowest Terms—Parthenogenesis and Virgin Birth—The Story of the Hive-bee—The Departure of the Queen—The New Queen and her Marriage-flight—The Celebration of the Nuptials and its Surprising Sequel—The Widowed Queen turns Executioner—The Queen as Mother—The Queen’s Daughters—Nursemaids’ Duties—Change of Work—The Drones and their Career—Food and Sex—The Bumble-bee and its Life-story. That the psychical emotions sway the goad of sexual instincts in the higher animals there can be no doubt; and there can be as little uncertainty that this stimulating and controlling factor gradually loses force as we descend in the scale of animal life. Just where it ceases it is impossible to say. A vague, nebulous intelligence doubtless persists after these more subtle emotions have ceased, and this, probably, in turn, gives place to purely instinctive behaviour. These various phases of the sexual problem grade one into the other. But they are all parts of a continuous sequence, beginning, apparently, in relatively simple responses to chemical interactions of the kind known as chemotaxis and ending with the passion This being so, one cannot but feel surprised at the discovery that, in certain groups of the animal kingdom one meets with a strange exception to this great rule. And this is furnished by the phenomenon of parthenogenesis, wherein sexual desire has been dethroned. Offspring result from Virgin births: parental care is non-existent. This anomalous condition must be regarded as an offshoot of the normal course of events traced in these pages, and not as a primitive condition. This interpretation seems to be shown clearly enough in that almost every case where parthenogenesis obtains, males, sooner or later, make their appearance—periodically or sporadically. Every stage between the normal, seasonal appearance of males and their entire suppression can be traced, and an analysis of these cases demonstrates unequivocally the uplifting character of the bi-sexual state, if only by the fact that the uni-sexual condition makes no demands on the parent, and does nothing to foster the growth of the higher emotions. No attempt need now be made to discover the origin of parthenogenesis. Let it be assumed, for the moment, that it is a condition derived from hermaphroditism, wherein each individual is monoecious or bi-sexual. In all dioecious or uni-sexual animals, that is to say, where the individuals composing the species are either male or These two groups are selected here because they, more than any others in like case, afford some extremely interesting gradations in this strange phenomena of what is to be regarded as the degeneration of sexual individuality, for each contains some members wherein the sexes are separate, and in these cases sexual desire is present in varying degrees. In some it is associated with very remarkable phenomena. Among the Mollusca the Octopuses afford one of the most striking illustrations of such phenomena. In these creatures one of the sucker-bearing arms is more or less completely transformed to subserve the ends of sexual congress. Without entering into the technical details of the changes, it will suffice to remark that it is modified in such a way as to allow the transference of the spermatozoa from the body cavity wherein they are formed, to the arm near, or at, the tip of which they are stored in a special sac or “spermatophore,” and such modified arms are said to be “hectocotylized.” This extraordinary modification attains its maximum development in the celebrated Argonaut, and one or two of the more typical Octopuses. In the Argonaut this arm does not make its Plate 41. SOME REMARKABLE METHODS OF “COURTSHIP.” 1. The female Argonaut and her egg-casket. 2 and 3. The male Argonaut and his “hectocotylized” arm. 4. A Cuttle-fish (OcyhÖe catenulata ?), showing the “hectocotylized” arm described in the text, and the “spermatophore” at the base of the long filament. [Face page 268. As a rule, among these animals the males are smaller than the females. In the case of the Argonaut there is a yet more striking difference, for the female possesses a very beautiful shell in which she carries her eggs. This The tender Nautilus who steers his prow, The sea-born sailor of his shell-canoe. and Pope bids us: Learn of the little Nautilus to sail, Spread the thin oar, and catch the driving gale. Sir Richard Owen years ago, however, dispelled these pretty fancies, though the facts are surely as wonderful as the fables they have replaced. They afford, too, one of the most striking secondary sexual characters to be met with among the Mollusca; nowhere else, indeed, among the members of this group is so strange a cradle to be met with. But little, unfortunately, is known of the behaviour of these animals, which are by far the most active of the Mollusca, and which also display no small degree of intelligence. Their eyes, which are of great size and complex structure, are undoubtedly far more effective organs of vision than are possessed by any other Molluscs. It is possible, therefore, that the sexes discover one another by sight; and it is certain that something in the nature There are facts in regard to the sexual relationships of some of the Snails that are in nowise less remarkable than those just related of the Octopus tribe. Unlike the Octopuses, the Snails are hermaphrodite, nevertheless sexual congress takes place as with unisexual species: the eggs of the one being fertilized by the spermatozoa of the other. During this process the orgasm of the sexual act appears to be brought about by stabbing one another by means of a little dart formed of carbonate of lime, the dart burying itself in the flesh and apparently promoting a pleasurable, tingling sensation in the course This remarkable instrument, which is known as a “Love-dart,” or Spiculum amoris, assumes a different form in each species in which it occurs. In some the shaft is ridged like a bayonet, as in the case of the Garden Snail, in others the form assumed is that of an awl. These darts are formed within a special receptacle, or “dart-sac,” but so far no explanation as to the origin of these remarkable structures has even been hinted at. They do not seem to have been derived by the modification of some pre-existing organ serving a different function, as wings, for example, are derived from walking limbs, or as lungs are derived from air-sacs. Their origin is as mysterious as their use: for they are not found in all Snails, though they occur in one or two Slugs—which are degenerate Snails. But no other Molluscs save the Snails and one or two of their immediate allies are so armed. The hermaphrodite conditions of these animals, as with other Mollusca in like case, present some knotty points for consideration, and especially in regard to the problem of sex-attraction. Where each individual is as much male as female, which is the dominating factor in desire, the maleness or the femaleness? Though each individual contains both ova and sperm cells, probably these ripen at different times, to avoid danger of self-fertilization. In this case the sex impulses are on the same footing as in the case of animals wherein the sexes are not thus combined. That is to say, the individual which is for the moment only potentially male mates with another for the moment only potentially Many of the Snails, like Helix nemoralis, are gaily coloured. Are these hues, these bands of black and yellow, the product of “sexual selection”—the outcome of a process of selection from among the most conspicuously coloured individuals as postulated by the Darwinian theory of Sexual Selection? If so, then this choice must be regarded as a periodic recurrence coinciding with the period during which the individual is dominated by its female attributes. In due course it becomes, for the time, a male, and may find itself rejected, owing to a lack of intensity in its coloration, or, on the other hand, it may vanquish a rival by its very splendour. Each, in short, would help materially in this process of beautification. If the choice of mating for it is this rather than a choice of mates—proceeds on these lines, the bright coloration of the members of this species becomes easy to understand. But does it? It is more than doubtful whether the eyes of Snails are sufficiently good to distinguish the coloration of their neighbours’ shells, or for the matter of that of their own, for their eyes being carried on long mobile stalks, they should have no difficulty in contemplating their own charms. And what of Snails of more sober hues? It seems highly probable that here, as in so many cases, scent is the selecting factor, and the coloration is an “accidental” feature. That the colour of the shell plays no such part as that just postulated may be gathered from the evidence afforded by many marine species, whose shells, though conspicuously marked, are, during life, completely enveloped and concealed by the all-investing, fleshy mantle. In like manner the As touching the danger of self-fertilization to which reference has been made. That this is real is shown by the fact that the ova and spermatozoa are rarely ripe in one individual at the same time. However, among the pulmonata, or air-breathing gastropods, it seems to have been established that self-fertilization can, and does, occur. That in some species, at any rate, where cross-fertilization, for some reason, is impossible, the individual thus isolated can store up its own spermatozoa to be used in fertilizing its own eggs. But the fact that this rarely happens is testimony enough that such occurrences are inimical to well-being. The Lamellibranch, or bivalve Mollusca, e.g., Oyster, Mussel, and Cockle, afford valuable evidence as to excrescences and extravagances of growth which appeal to our eyes as ornamental, and therefore likely to be due to the influence of sexual selection. And this because such ornamentation is a very conspicuous feature among these animals. Yet, save in a few cases, locomotion is impossible, and sight is wanting. Light-distinguishing organs, and therefore eyes, are possessed by some, but in no case probably are they strong enough to appreciate form. Even if they did, such revelations of beauty would play no part in mate selection from among the most ornamental; for these creatures are commonly fixed throughout life in one position, often, indeed, buried in mud or sand. Some move laboriously: a few, like the Cockles and Pectens, swim by rapidly opening and closing the shell. The Pectens are brilliantly coloured, not only as regards the shell, which is also beautifully sculptured, The fact that the Lamellibranch, or bivalve molluscs, are far less numerous in point of species than the univalve tribes is accounted for by the fact that in the first place they are of necessity aquatic, and in the second their means of locomotion is extremely limited. Some few species swim spasmodically: some crawl: many are incapable of movement when once the motile larva settles down and the shell-bearing adult stage is attained. Such species can extend their range only by means of larval wanderings. Enormous numbers, millions, of young have to be produced and set adrift each year by every adult in the community, and yet but a few of each brood can ever attain to maturity. Life, for such species, must be a dull, monotonous business: the only opportunity for excitement is that which is preliminary to being eaten Sex, and all that appertains thereto, in short, is in these creatures reduced to its lowest terms. There are not wanting, to-day, both men and women, who affect to believe that all would be well for the human race could a similar slowing-down, or strangulation, of the sexual instincts be brought about. Such blind leaders might profitably contemplate the Oyster: but such contemplation, to be profitable, requires intelligence of a higher order than these protagonists of folly appear to possess. In justice to Darwin it should be remarked that he himself fully realized, and carefully points out, the inconceivability of the application of the Sexual Selection theory to the Mollusca. In commenting on the beauty of colour and shape which many species display, he remarks: “The colours do not appear in most cases, to be of any use as a protection; they are probably the direct result, as in the lowest classes, of the nature of the It has been contended that the hermaphrodite condition represents the primitive mode of reproduction among the multicellular animals—that is to say, all animals above the level of those whose bodies are composed of but a single cell, or particle, of protoplasm—but this view is probably erroneous, and the hermaphrodite state must be regarded as a secondary condition, a later innovation. More remarkable are the facts concerned with that singular form of reproduction known as parthenogenesis, or the production of offspring by virgin females. This is undoubtedly a degenerate sexual condition occurring as a normal mode of reproduction, among the microscopic “Rotifers,” e.g. the “Wheel-animalcule,” Crustacea, and Insects, and in varying degrees of intensity. The most familiar instances of Parthenogenesis are furnished by the Hymenoptera, and notably by the Bees and the Aphides. There are certain cases among the Rotifers where no males have ever been found, and it is possible that they Briefly, a community of hive-bees harbours both male and female individuals only for a very short space. During the greater part of the year it consists only of a vast concourse of infertile females, the daughters of one mother; the “queen” of the hive. The males of that hive are the brothers, not the fathers, of the workers, as some have supposed, and their sojourn there is brief. To gain a clear idea of the facts in regard to the life-history of these insects it is necessary to trace some of the incidents which lead up to the manner in which the population of the hive is regulated, and its continuance ensured. These may well begin with the time when the number of the inhabitants consonant with the well-being of the hive has reached its limit. This occurs during the early part of June, when the queen leaves the hive, accompanied by several thousands of her daughters; they settle at some distance from their late abode in a “swarm” for the purpose of founding a new colony. Here we may leave them. The house just vacated is, however, not entirely deserted. The males are the first to leave, making daily excursions abroad in the search for mates. They display in this a very leisurely behaviour, rising late and not venturing out till the day is well aired. Returning early in the afternoon with sharpened appetites, they feed to repletion and soon fall asleep. In about three days, however, the young queen ventures abroad, timidly at first, to stretch her wings in the sunshine. She is preparing for the great moment of her life, the nuptial flight. So far, though drones may swarm on every side of her, no sign of recognition is given, nor do the males evince any consciousness of her presence. She behaves warily and demurely throughout. Her first excursions abroad are very brief; they are not so much trial flights, apparently, as efforts to locate the exact position of the hive in relation to the outer world. To this end the flights are rapidly extended in ever-widening circles, till at last, with lightning speed, she makes for the blue sky, to return to the gloom of the hive almost immediately after. During all this time the stimulus of sexual desire has been gathering force, and now, being no longer controllable, she darts off, and up into the sky; almost at once she is recognized by the swarms of males from neighbouring hives, some thousands in number, which for days have been She leaves a bride and returns a widow, filled with murderous intentions. There are captive queens in the hive, and she can tolerate no rivals. So soon as she has removed from her person the embarrassing souvenir of her nuptial flight she makes for the Royal cells. Accompanied by attendant workers she proceeds to tear off their waxen coverings and put their occupants to death with a thrust of her stiletto. No sooner is the work of execution over than the dead bodies are seized by the workers and borne out of the hive. This awful task is soon over, however, and henceforth for four or five long years she remains a prisoner within the walls of her own palace. Craving neither the air nor the light of the sun, she will die without once having sipped the nectar from a flower. And during all this time, save during the winter sleep, her sole duty is to produce sons and daughters. In the prime of her maternity she may lay as many as three thousand eggs a day. But strangely enough the number of eggs produced is determined for her by the workers, who are the real rulers in this constitutional state. By varying the amount and quality of the food they give her they can increase or check the During that brief, weird honeymoon in the clouds she received a store of spermatozoa, the fertilizing male germs, sufficient for all the eggs she can ever lay, and they may amount to nigh on a million. Incredible as this may seem, their purpose is yet more so; for they are destined to be expended solely in the production of female offspring doomed for the most part to perpetual spinsterhood. One youngster in ten thousand may attain to a higher state, may, if Fate wills, become a queen and mother. And because of this need for mothers to carry on the race, this extraordinary state of affairs has been brought about. All is under the control of her daughters—the spinster-workers. As she proceeds on her rounds of egg-laying an attendant crowd waits upon her, controlling her actions by gentle caresses. As she passes from cell to cell, the cradles of the young that are to be, she thrusts down her abdomen and lays an egg in each. The cells destined to produce the workers are the smallest, those for drones are larger, and those for queens are largest of all, and the walls are formed of pure pollen, not of wax as are those of the workers and drones. But it would seem that she never lays an egg in any of the last named. The sight of a queen-cell rouses her to fury. These cells, then, are filled by the workers, who remove the requisite number of worker—eggs from the cells in which they were laid and deposit them in the queen-cradles. The larvÆ at hatching, and for the first three days of life, differ in no wise from their sisters around them. Their Royal state is determined solely by the food which is administered to them. This consists of “bee-jelly,” which is furnished in abundance: a white, shining liquid, regurgitated by the ever-zealous But what of the drone? He, as has already been mentioned, is reared in a larger cradle than that of his sisters—save such as are destined to be queens—and for the first three days of his life is fed on “bee-milk” of a special kind and more generous quality than that of his worker—sisters, the Cinderellas of the hive; but this generous diet is diminished at the end of three days, when a mixture of honey and pollen is given him. In about three weeks or rather more he emerges, a great, lazy drone, and for a fortnight more he wanders about the hive alternately soliciting bee-milk from his sisters But so far only a part of the story of the drone’s life-history has been told. Though the son of a queen, he has never had a father; and should he ever attain to the dignity of fatherhood his posthumous children are all daughters, most of whom die spinsters within six or seven weeks of their birth, worn out by a life of ceaseless toil and drudgery! The queen, it will be remembered, cohabits with the male but once in her life. The sperm-cells then received are stored in a special receptacle and are released during the passage of the egg down the oviduct. In this act of releasing the fertilizing germs a singular economy is practised. In the case of most other creatures myriads of sperm-cells are released for the fertilization of a single egg, and of these but one can possibly attain its goal, the minute aperture or “micropyle” which is the doorway to the germ liberated, in the form of an egg, by the female. The rest die. In the case of the queen bee but one of these precious sperm-cells is liberated at a time. Hence her prolonged ability to produce fertilized eggs. But eggs destined to produce males, or drones, are never thus fertilized: they are born without the One cannot suppose that the queen in coming to a drone cell deliberately withholds the male germ as the egg passes down her oviduct; some inhibitory factor preventing the release of the sperm-cell must be brought into play which as yet we have not discovered. This production of males from unfertilized eggs, or “parthenogenesis” as it is called, is a common feature among the hymenoptera, and some other groups of insects, and it occurs also among other lowly creatures to be described later. Having regard to the importance of the workers, a brief summary of their life-history must be given. These, it has already been indicated, are all, at any rate till three days old, potential queens. Their development into, or degradation to, the lower grade is determined, apparently, solely by the quality of the food, for the fact that queens are reared only in specially constructed cells of large size with walls of pollen instead of wax is explained by the larger size of the queen and the need for a more porous, air-permeated cell-wall on account of the longer time which must be spent in confinement. The worker is certainly the most “intellectual” member of the hive, but this superiority has been gained at a great price. Emerging from the chrysalis skin at about three weeks from the time that the egg from which she emerged was laid, she begins forthwith to gnaw her way through the mass of wax and pollen which forms the door of her The worker-bees, it has been remarked, are barren: their reproductive organs are atrophied, and by the decree, not of the queen-mother of the hive, nor of the males, but of their own caste. In spite of the fact that they are incapable of producing offspring, they, and they alone, determine who shall undertake this task; and they decree the fate that awaits those thus appointed when they can no longer fulfil this purpose. When the queen, waxing old, and waning in fecundity, lays fewer and fewer eggs, and these only producing males, they take silent note of the fact, and at the The execution of a queen is not an event of common occurrence; but that of male members of the hive forms part of the ordinary routine, though coming only within the larger cycle of the year. As the summer wanes and the harvest of nectar grows perceptibly less, visions of a possible famine, and its attendant horrors, seem to arise. So heads are counted and occupations are scrutinized, when it is discovered that the only members of the community who are contributing nothing to the general well-being are the males, who are now but useless drains on the hive. None of the neighbouring hives are now likely to send forth a virgin queen to her nuptials, to which end each hive is obliged to contribute—for no hive utilizes the services of its own drones; these idle fellows, then, are “eating their heads off”—and males, too; perish the thought! While they had anything to gain from him their motto was “Feed the brute”; but now, on each, doom is pronounced. It must be admitted that a live drone at the end of summer is one of life’s failures. Notoriously unable to feed himself save upon When the mother of the hive ceases to maintain the standard of fertility set by her exacting daughters, she is put to death stealthily, as if in an excess of devotion: she is smothered under their embraces. Towards the drones now under sentence no such consideration is to be shown. When the word goes forth, the slaughter begins, and it gathers in ferocity. It begins in a massacre of the innocents—every helpless larval drone is ruthlessly dragged from its cot and thrown out of the hive to die: there is now no crime in infanticide, nor in the most gruesome massacre that is presently to follow. The drones, all unsuspecting, are to be tolerated a brief spell longer. The cool, calculating spirit of these unsexed ones seems to realize that there is even yet a remote possibility that the services of these doomed ones may be wanted. No sooner, however, does it become clear that this chance is past, than the decree of death is made absolute, and the poor drones are suddenly and viciously attacked by half a dozen frenzied spinsters at once. Each tries to bite through the base of the victim’s wings, and succeeding in this, he is speedily pushed towards the door of the hive and out into the open, whence return is impossible, so that nothing is left but death by starvation. Some of the victims will escape in the mÊlÉe, but only for a brief season. Such as find their way, unmaimed, to the open air, are still faced by inevitable death. To remain out is to die of starvation or cold, to return is to fall a prey to the now infuriated guards, who, strongly reinforced, stand at the doorway of the hive to intercept and dispatch these unlucky There are certain structural differences distinguishing the three types in such a hive—the queen, the drone and the worker—which must now be referred to. The queen is larger than the worker; she has a larger and longer abdomen, a longer and much-curved sting, and her eyes have fewer facets. Only vestiges remain of the wax-secreting organs, and no trace is to be found of the wonderful pollen-baskets which perform so important a function in the worker; and finally, her instincts are of a very different kind. The “pollen-basket” of the worker is a strange contrivance. The pollen is mainly collected by the hairs which clothe the under surface of the body, from which it is scraped by special brushes of hairs which clothe the inner surface of the “metatarsus “—the big, flat joint to which are attached a series of small triangular joints, the last of which bears the claws. When the brushes are “clogged up,” the legs are crossed and the pollen is combed out by specially stiff hairs on the “tibia”—the joint immediately above the metatarsus—and the bolus thus formed is then transferred to the outer surface of The drone is larger than either queen or worker, and has enormous eyes, which meet one another over the top of the head; he has no wax-secreting organs, no pollen-basket, no sting. His antennÆ are longer, his hum is deeper, his sole function is to fertilize a queen, and this done, he promptly dies. Failing in his first flight, he may make yet other ventures, but the chances are that he will die without attaining the only purpose for which he exists. The fact that he lives for some days in the hive with the queen, before her nuptial flight, apparently unaware of her presence, would seem to indicate some special “trigger” for the release of the sexual instincts. But it must be remembered that he does not attain to maturity until after his first flight, and this it is, probably, which arouses the mate-hunger. More than this, however, it is probable that coitus is possible only when on the wing, when the air-sacs become inflated, and exert pressure on the genital organs. How he recognizes the queen when on her wild flight heavenwards is unknown: possibly by scent, but more probably by the very different vibrative note of her wings, that of the male being much stronger and deeper. His continued return to the hive These differences between the fully-developed male and female present nothing very striking; but how are the singular peculiarities of structure and instinct in the “workers” to be accounted for? They are present in neither queen nor drone, yet by them they are transmitted to their offspring from one generation to another! It is true that every worker, for a time, is a potential queen, and every queen, but for the grace of Chance, might have been a worker. All depends on the food. It is remarkable, but apparently the fact, that a more generous diet, or, rather, a more stimulating diet, should so profoundly modify the organism, but, it is to be noted, this sleight-of-hand is only successfully practised on a larva during its first three days of existence. Thus the royal bee jelly stimulates the growth of the sexual organs and inhibits the development of the structures peculiar to the worker—the basket, and pollen-hairs, and so on. These structures are not made by the food; they are simply nourished or inhibited, as the case may be. Nevertheless, one cannot help being mystified by the fact that the mere difference in the quality of the food, or, rather, in the chemical constituents thereof, should cause the inhibition, or, rather, the suppression, of relatively complex structures like the corbiculum and the reduction of the number of the facets of the eye. To say that the structures inhibited, in the case of the queen, are just those which will be of no service when in her royal state, is by no means to explain the mystery. And what is true of the physical side is How—and the question has often been asked—are the experiences of the infertile females, the workers, transmitted to the germ-plasm? For the workers, it has been contended, being sterile, are incapable of handing on such acquirements: this is so. These workers hold the same position in regard to the species that structures essential to well-being hold in regard to the individual. These last are not under the control of the individual, but are determined by a plus or minus quality in its germ-plasm. The worker-bees are products of the germ-plasm, committed to the care of the queens. Any strain, so to speak, of that germ-plasm which gives rise to defective workers brings about its own extinction, or elimination, sooner or later. Any strain of germ-plasm which contains, so to speak, a spark of that quality which in the individual is expressed by intelligent behaviour, will gain advantages in the struggle for existence. The complex, the extraordinarily complex, behaviour of the worker-bees on any interpretation is still mysterious. This interpretation can be tested only by a reference to the life-history of other social-bees which have attained to a less complexity. This shows us that the sterile worker is not to be regarded as a newly-evolved type so much as an arrested stage of a more complete ancestral condition, and the fact that the worker is potentially a queen is further evidence of this. A clue to many of the more puzzling features presented by the domestic economy of the Hive-bee may be obtained by a study of the life-history of other species of social-bees which have not attained to so high a degree of specialization. The Bumble-bees afford illustrations of the stages through which Apis mellifica, the Hive-bee, must have passed. In the stone Bumble-bee (Bombus lapidarius), a queen, who has passed the winter in blissful sleep, will lay the foundation for a new colony on some bright May morning by collecting a small quantity of moss. This done, she starts forth to gather pollen, with which, under cover of the moss, she forms a waxen cell, mixing the newly-gathered pollen with the wax so mysteriously formed within her body, as in the case of Hive-bees of the worker type. Slowly and laboriously this waxen cradle grows. Fashioned like a globe, its inner surface is lined with pollen soaked in honey, and with the last pellet of this a number of eggs are laid arid the nursery is sealed up. By the time these labours are completed the queen is worn out; she therefore rests awhile, clinging to the outer wall of this cunningly-wrought cradle. After a few days’ rest she adds another and commonly yet a third cell to the first, joining each to the other with wax. But before the third cradle is finished the eggs in the first have hatched. The youngsters will have consumed the layer of honey-soaked pollen placed there for this purpose. They therefore require feeding, and thus the labours of this very industrious queen are still further increased. Divining the needs of her imprisoned first-born, she bites a small hole through the nursery wall and pours in a quantity of honey for their sustenance. In due time they are “full-fed,” and each spins for itself a silken Much that baffles one in the history of the Hive-bee becomes clear in the light of the facts revealed by the life-story of the Bumble-bee. In the first place it will be remembered her first eggs produced only workers, which appeared at a time when her energies were severely strained, and their food allowance was no more than barely sufficient to sustain life. The females which Thus, then, the mysterious existence of the workers among the Hive-bees, displaying structural peculiarities and instincts so different from those of the queen-mother, is explained. For the queen, in this case, is evidently the product of a more intensified, more perfected, social system, relieved, from the first, of the labours of building and the care of her offspring, duties which the queen Bumble-bee has at first to perform for herself, because all her children die at the end of the summer. Among Hive-bees fertile workers also occasionally occur; they are probably bees which in their larval state received a more than usually abundant supply of food, or food approximating to the “bee jelly” which produces young queens. The difference, then, between the individuals of a colony of Hive-bees and one of Bumble-bees lies in the greater abundance of fertile workers and in the |