FELLOW OF GONVILLE AND CAIUS COLLEGE PROFESSOR OF BIOLOGY IN THE UNIVERSITY OF CAMBRIDGE THIRD EDITION |
CHAPTER I | |
PAGE | |
The Problem | 1 |
CHAPTER II | |
Historical | 8 |
CHAPTER III | |
Mendel's Work | 17 |
CHAPTER IV | |
The Presence and Absence Theory | 29 |
CHAPTER V | |
Interaction of Factors | 42 |
CHAPTER VI | |
Reversion | 59 |
CHAPTER VII | |
Dominance | 68 |
Wild Forms and Domestic Varieties | 79 |
CHAPTER IX | |
Repulsion and Coupling of Factors | 88 |
CHAPTER X | |
Sex | 99 |
CHAPTER XI | |
Sex (continued) | 115 |
CHAPTER XII | |
Intermediates | 125 |
CHAPTER XIII | |
Variation and Evolution | 135 |
CHAPTER XIV | |
Economical | 153 |
CHAPTER XV | |
Man | 170 |
APPENDIX | 187 |
INDEX | 191 |
ILLUSTRATIONS
PLATES | |||
PLATE | PAGE | ||
Gregor Mendel | Frontispiece | ||
I. | Rabbits | To face | 60 |
II. | Sweet Peas | " | 64 |
III. | Sheep | " | 78 |
IV. | Sweet Peas | " | 80 |
V. | Fowls | " | 107 |
VI. | Butterflies | " | 146 |
FIGURES IN TEXT | |||
FIG. | |||
1. | Scheme of Inheritance in simple Mendelian Case | 21 | |
2. | Feathers of Silky and Common Fowl | 30 | |
3. | Single and Double Primulas | 31 | |
4. | Fowls' Combs | 32 | |
5. | Diagram of Inheritance of Fowls' Combs | 37 | |
6. | Fowls' Combs | 39 | |
7. | Diagram of F2 Generation resulting from Cross between two White Sweet Peas | 46 | |
8. | Diagram illustrating 9:3:4 Ratio in Mice | 52 | |
9. | Sections of Primulas | 55 | |
Small and Large-eyed Primulas | 55 | ||
11. | Diagram illustrating Reversion in Pigeons | 67 | |
12. | Primula sinensis × Primula stellata | 68 | |
13. | Diagram illustrating Cross between Dominant and Recessive White Fowls | 72 | |
14. | Bearded and Beardless Wheat | 75 | |
15. | Feet of Fowls | 76 | |
16. | Scheme of Inheritance of Horns in Sheep | 76 | |
17. | Abraxas grossulariata and var. lacticolor | 99 | |
18. | Scheme of Inheritance in Abraxas | 102 | |
19. | Scheme of Inheritance of Silky Hen × Brown Leghorn Cock | 105 | |
20. | Scheme of Inheritance of Brown Leghorn Hen × Silky Cock | 106 | |
21. | Scheme of F1 (ex Brown Leghorn × Silky Cock) crossed with pure Brown Leghorn | 107 | |
22. | Scheme for Silky Hen × Brown Leghorn Cock | 108 | |
23. | Scheme for Brown Leghorn Hen × Silky Cock | 109 | |
24. | Diagram illustrating Nature of Offspring from Brown Leghorn Hen × F1 Cock | 111 | |
25. | Scheme to illustrate Heterozygous Nature of Brown Leghorn Hen | 111 | |
26. | Scheme of Inheritance of Colour-blindness | 117 | |
27. | Single and Double Stocks | 122 | |
28. | F2 Generation ex Silky Hen × Brown Leghorn Cock | 127 | |
29. | Pedigree of Eurasian Family | 131 | |
30. | Curve illustrating Influence of Selection | 159 | |
Curve illustrating Conception of pure Lines | 162 | ||
32. | Brachydactylous and Normal Hands | 170 | |
33. | Radiograph of Brachydactylous Hand | 170 | |
34. | Pedigree of Brachydactylous Family | 173 | |
35. | Pedigree of HÆmophilic Family | 175 |
For although it be a more new and difficult way, to find out the nature of things, by the things themselves; then by reading of Books, to take our knowledge upon trust from the opinions of Philosophers: yet must it needs be confessed, that the former is much more open, and lesse fraudulent, especially in the Secrets relating to Natural Philosophy.
William Harvey,
Anatomical Exercitations, 1653.
CHAPTER I
THE PROBLEM
A curious thing in the history of human thought so far as literature reveals it to us is the strange lack of interest shown in one of the most interesting of all human relationships. Few if any of the more primitive peoples seem to have attempted to define the part played by either parent in the formation of the offspring, or to have assigned peculiar powers of transmission to them, even in the vaguest way. For ages man must have been more or less consciously improving his domesticated races of animals and plants, yet it is not until the time of Aristotle that we have clear evidence of any hypothesis to account for these phenomena of heredity. The production of offspring by man was then held to be similar to the production of a crop from seed. The seed came from the man, the woman provided the soil. This remained the generally accepted view for many centuries, and it was not until the recognition of woman as more than a passive agent that the physical basis of heredity became established. That recognition was effected by the microscope, for only with its advent was actual
As a general rule it may be stated that the reproductive cells produced by the female are relatively large and without the power of independent movement. In addition to the actual living substance which is to take part in the formation of a new individual, the ova are more or less heavily loaded with the yolk substance that is to provide for the nutrition of the developing embryo during the early stages of its existence. The size of the ova varies enormously in different animals. In birds and reptiles where the contents of the egg form the sole resources of the developing young they are very large in comparison with the size of the animal which lays them. In mammals, on the other hand, where the young are parasitic upon the mother during the earlier stages of their growth, the eggs are minute and only contain the small amount of yolk that enables them to reach the stage at which they develop the processes for attaching themselves to the wall of the maternal uterus. But whatever the differences in the size and appearance of the ova produced by different
The male sexual cells are always of microscopic size and are produced in the generative gland or testis in exceedingly large numbers. In addition to their minuter size they differ from the ova in their power of active movement. Animals present various mechanisms by which the sexual elements may be brought into juxtaposition, but in all cases some distance must be traversed in a fluid or semifluid medium (frequently within the body of the female parent) before the necessary fusion can occur. To accomplish this latter end of its journey the spermatozoon is endowed with some form of motile apparatus, and this frequently takes the form of a long flagellum, or whip-like process, by the lashing of which the little creature propels itself much as a tadpole with its tail.
In plants as in animals the female cells or ovules are larger than the pollen grains, though the disparity in size is not nearly so marked. Still they are always relatively minute cells since the circumstances of their development as parasites upon the mother plant render it unnecessary for them to possess any great supply of food yolk. The ovules are found surrounded by maternal tissue in the ovary, but through the stigma and down the pistil a
Whatever the details of development, one cardinal fact is clear. Except for the relatively rare instances of parthenogenesis a new individual, whether plant or animal, arises as the joint product of two sexual cells derived from individuals of different sexes. Such sexual cells, whether ovules or ova, spermatozoa or pollen grains, are known by the general term of gametes, or marrying cells, and the individual formed by the fusion or yoking together of two gametes is spoken of as a zygote. Since a zygote arises from the yoking together of two separate gametes, the individual so formed must be regarded throughout its life as a double structure in which the components brought in by each of the gametes remain intimately fused in a form of partnership. But when the zygote in its turn comes to form gametes, the partnership is broken and the process is reversed. The component parts of the dual structure are resolved, with the formation of a set of single structures, the gametes.
The life cycle of a species from among the higher plants or animals may be regarded as falling into three periods: (1) a period of isolation in the form of gametes, each a living unit incapable of further development without intimate association with another produced by the opposite sex; (2) a period of association in which two gametes become yoked together into a zygote and react upon one
Owing to their peculiar power of growth and the relatively large size to which they attain, many of the properties of zygotes are appreciable by observation. The colour of an animal or of a flower, the shape of a seed, or the pattern on the wings of a moth are all zygotic properties, and all capable of direct estimation. It is otherwise with the properties of gametes. While the difference between a black and a white fowl is sufficiently obvious, no one by inspection can tell the difference between the egg that will hatch into a black and that which will hatch into a white. Nor from a mass of pollen grains can any one to-day pick out those that will produce white from those that will produce coloured flowers. Nevertheless, we know that in spite of apparent similarity there must exist fundamental differences among the gametes, even
CHAPTER II
HISTORICAL
To Gregor Mendel, monk and abbot, belongs the credit of founding the modern science of heredity. Through him there was brought into these problems an entirely new idea, an entirely fresh conception of the nature of living things. Born in 1822 of Austro-Silesian parentage, he early entered the monastery of BrÜnn, and there in the seclusion of the cloister garden he carried out with the common pea the series of experiments which has since become so famous. In 1865 after eight years' work he published the results of his experiments in the Proceedings of the Natural History Society of BrÜnn, in a brief paper of some forty pages. But brief as it is the importance of the results and the lucidity of the exposition will always give it high rank among the classics of biological literature. For thirty-five years Mendel's paper remained unknown, and it was not until 1900 that it was simultaneously discovered by several distinguished botanists. The causes of this curious neglect are not altogether without interest. Hybridisation experiments before Mendel there had been in plenty. The classificatory work of
The coherence and simplicity of the theory, supported as it was by the great array of facts which Darwin had patiently marshalled together, rapidly gained the enthusiastic support of the great majority of biologists. The problem of the relation of species at last appeared to be solved, and for the next forty years zoologists and botanists were busily engaged in classifying by the light of Darwin's theory the great masses of anatomical facts which had already accumulated and in adding and classifying fresh ones. The study of comparative anatomy and embryology received a new stimulus, for with the acceptance of the theory of descent with modification it became incumbent upon the biologist to demonstrate the manner in which animals and plants differing widely in structure and appearance could be conceivably related to one another. Thenceforward the energies of both
Nevertheless one interesting and noteworthy attempt to give greater precision to the term heredity was made about this time. Francis Galton, a cousin of Darwin, working upon data relating to the breeding of Basset hounds, found that he could express on a definite statistical scheme the proportion in which the different colours appeared in successive generations. Every individual was conceived of as possessing a definite heritage which might be expressed as unity. Of this, ½ was on the average derived from the two parents (i.e. ¼ from each parent), ¼ from the four grandparents, ? from the eight great-grandparents, and so on. The Law of Ancestral Heredity, as it was termed, expresses with fair accuracy some of the statistical phenomena relating to the transmission of characters in a mixed population. But the problem of the way in which characters are distributed from gamete to zygote and from zygote to gamete remained as before. Heredity is essentially a physiological problem, and though statistics may be suggestive in the initiation of experiment, it is upon the basis of experimental fact that progress must ultimately rest. For this reason, in spite of its ingenuity and originality, Galton's theory and the subsequent statistical work that has been founded upon it failed to give us any deeper insight into the nature of the hereditary process.
While Galton was working in England the German zoologist August Weismann was elaborating the complicated
A further important step was taken in 1895, when Bateson once more drew attention to the problem of the origin
A few years later appeared the first volume of de Vries' remarkable book on The Mutation Theory. From a prolonged study of the evening primrose (Oenothera) de Vries concluded that new varieties suddenly arose from older ones by sudden sharp steps or mutations, and not by any process involving the gradual accumulation of minute
CHAPTER III
MENDEL'S WORK
The task that Mendel set before himself was to gain some clear conception of the manner in which the definite and fixed varieties found within a species are related to one another, and he realised at the outset that the best chance of success lay in working with material of such a nature as to reduce the problem to its simplest terms. He decided that the plant with which he was to work must be normally self-fertilising and unlikely to be crossed through the interference of insects, while at the same time it must possess definite fixed varieties which bred true to type. In the common pea (Pisum sativum) he found the plant he sought. A hardy annual, prolific, easily worked, Pisum has a further advantage in that the insects which normally visit flowers are unable to gather pollen from it and so to bring about cross fertilisation. At the same time it exists in a number of strains presenting well-marked and fixed differences. The flowers may be purple, or red, or white; the plants may be tall or dwarf; the ripe seeds may be yellow or green, round or wrinkled—such are a few of the characters in which the various races of peas differ from one another.
In planning his crossing experiments Mendel adopted an attitude which marked him off sharply from the earlier hybridisers. He realised that their failure to elucidate any general principle of heredity from the results of cross fertilisation was due to their not having concentrated upon particular characters or traced them carefully through a sequence of generations. That source of failure he was careful to avoid, and throughout his experiments he crossed plants presenting sharply contrasted characters, and devoted his efforts to observing the behaviour of these characters in successive generations. Thus in one series of experiments he concentrated his attention on the transmission of the characters tallness and dwarfness, neglecting in so far as these experiments were concerned any other characters in which the parent plants might differ from one another. For this purpose he chose two strains of peas, one of about 6 feet in height, and another of about 1½ feet. Previous testing had shown that each strain bred true to its peculiar height. These two strains were artificially crossed[1] with one another, and it was found to make no difference which was used as the pollen parent and which was used as the ovule parent. In either case the result was the same. The result of crossing tall with dwarf was in every case nothing but talls, as tall or even a little taller than the tall parent. For this reason Mendel termed tallness the dominant and
If we denote a dwarf plant as D, a true breeding tall plant as T, and a tall which gives both talls and dwarfs in the ratio 3:1 as T(D), the result of these experiments may be briefly summarised in the foregoing scheme.[2]
Mendel experimented with other pairs of contrasted characters and found that in every instance they followed the same scheme of inheritance. Thus coloured flowers were dominant to white, in the ripe seeds yellow was dominant to green, and round shape was dominant to wrinkled, and so on. In every case where the inheritance of an alternative pair of characters was concerned the effect of the cross in successive generations was to produce three and only three different sorts of individuals, viz. dominants which bred true, dominants which gave both dominant and recessive offspring in the ratio 3:1, and recessives which always bred true. Having determined a general scheme of inheritance which experiment showed to hold good for each of the seven pairs of alternative characters with which he worked, Mendel set himself to providing a theoretical interpretation of this scheme which, as he clearly realised, must be in terms of germ cells. He
Scheme of inheritance in the cross of tall with dwarf pea. Gametes represented by small and zygotes by larger circles.
We may now proceed with the help of the accompanying scheme (Fig. 1) to deduce the results that should flow from Mendel's conception of the nature of the gametes, and to see how far they are in accordance with the facts. Since the original tall plant belonged to a strain which bred true, all the gametes produced by it must bear the tall character. Similarly all the gametes of the original dwarf plant must bear the dwarf character. A cross between these two means the union of
It is possible to put the theory to a further test. The explanation of the 3:1 ratio of dominants and recessives in the F2 generation is regarded as due to the F1 individuals producing equal numbers of gametes bearing the
So far we have been concerned with the results obtained when two individuals differing in a single pair of characters are crossed together and with the interpretation of those results. But Mendel also used plants which differed in more than a single pair of differentiating characters. In such cases he found that each pair of characters followed the same definite rule, but that the inheritance of each pair was absolutely independent of the other. Thus, for example, when a tall plant bearing coloured flowers was crossed with a dwarf plant
Of Mendel's experiments with beans it is sufficient to say here that they corroborated his more ample work with peas. He is also known to have made experiments with many other plants, and a few of his results are incidentally given in his series of letters to NÄgeli the botanist. To the breeding and crossing of bees he also devoted much
Note.—Shortly after the discovery of Mendel's paper a need was felt for terms of a general nature to express the constitution of individuals in respect of inherited characters, and Bateson accordingly proposed the words homozygote and heterozygote. An individual is said to be homozygous for a given character when it has been formed by two gametes each bearing the character, and all the gametes of a homozygote bear the character in respect of which it is homozygous. When, however, the zygote is formed by two gametes of which one bears the given character while the other does not, it is said to be heterozygous for the character in question, and only half the gametes produced by such a heterozygote bear the character. An individual may be homozygous for one or more characters, and at the same time may be heterozygous for others.
CHAPTER IV
THE PRESENCE AND ABSENCE THEORY
It was fortunate for the development of biological science that the rediscovery of Mendel's work found a small group of biologists deeply interested in the problems of heredity, and themselves engaged in experimental breeding. To these men the extraordinary significance of the discovery was at once apparent. From their experiments, undertaken in ignorance of Mendel's paper, de Vries, Correns, and Tschermak were able to confirm his results in peas and other plants, while Bateson was the first to demonstrate their application to animals. Thenceforward the record has been one of steady progress, and the result of ten years' work has been to establish more and more firmly the fundamental nature of Mendel's discovery. The scheme of inheritance, which he was the first to enunciate, has been found to hold good for such diverse things as height, hairiness, and flower colour and flower form in plants, the shape of pollen grains, and the structure of fruits; while among animals the coat colour of mammals, the form of the feathers and of the comb in poultry, the waltzing habit of Japanese mice, and eye
A wing feather and a contour feather of an ordinary and a silky fowl. The peculiar ragged appearance of the silky feathers is due to the absence of the little hooks or barbules which hold the barbs together. The silky condition is recessive.
As we have already seen, Mendel considered that in the gamete there was either a definite something
Two double and an ordinary single primula flower. This form of double is recessive to the single.
On Mendel's view there was a factor corresponding to the dominant character and another factor corresponding to the recessive character of each alternative pair of unit-characters, and the characters were alternative because no gamete could carry more than one of the two factors belonging to the alternative pair. On the other hand, Mendel supposed that it always carried either one or the other of such a pair. As experimental work proceeded,
Diagram to illustrate the nature of the F2 generation from the cross of rose comb × pea comb. Fig. 5 shows the result of applying this method to our series RP, Rp, rP, rp, and the 16 squares represent the different kinds of zygotes formed and the proportions in which they occur. As
The Presence and Absence theory is to-day generally accepted by students of these matters. Not only does it afford a simple explanation of the remarkable fact that in all cases of Mendelian inheritance we should be able to express our unit-characters in terms of alternative pairs, but, as we shall have occasion to refer to later, it suggests a clue as to the course by which the various domesticated varieties of plants and animals have arisen from their wild prototypes.
Fowls' combs. A and B, F1 hen from rose × Breda; C, an F1 cock from the cross of single × Breda; D, head of Breda cock.
Before leaving this topic we may draw attention to some experiments which offer a pretty confirmation of the view that the rose comb is a single to which a modifying factor for roseness has been added. It was argued that if we could find a type of comb in which the factor for singleness was absent, then on crossing such a comb with a rose we ought, if singleness really underlies rose, to obtain some single combs in F2 from such a cross. Such a comb we had the good fortune to find in the Breda fowl, a breed largely used in Holland. This fowl is usually spoken of as combless, for the place of the comb is taken by a covering of short bristlelike feathers (Fig. 6, D). In reality it possesses the vestige of a comb in the form of two minute lateral knobs of comb tissue. Characteristic also of this breed is the high development of the horny nostrils, a feature probably correlated with the almost complete absence of comb. The first step in the experiment was to prove the absence of the factor for singleness in the Breda.
CHAPTER V
INTERACTION OF FACTORS
We have now reached a point at which it is possible to formulate a definite conception of the living organism. A plant or animal is a living entity whose properties may in large measure be expressed in terms of unit-characters, and it is the possession of a greater or lesser number of such unit-characters renders it possible for us to draw sharp distinctions between one individual and another. These unit-characters are represented by definite factors in the gamete which in the process of heredity behave as indivisible entities, and are distributed according to a definite scheme. The factor for this or that unit-character is either present in the gamete or it is not present. It must be there in its entirety or completely absent. Such at any rate is the view to which recent experiment has led us. But as to the nature of these factors, the conditions under which they exist in the gamete, and the manner in which they produce their specific effects in the zygote, we are at present almost completely in the dark.
The case of the fowls' combs opens up the important question of the extent to which the various factors can
One of the most interesting and instructive cases in which the interaction between separate factors has been demonstrated is a case in the sweet pea. All white sweet peas breed true to whiteness. And generally speaking the result of crossing different whites is to produce nothing but whites, whether in F1 or in succeeding generations. But there are certain strains of white sweet peas which when crossed together produce only coloured flowers. The colour may be different in different cases, though for our present purpose we may take a case in which the colour is red. When such reds are allowed to self-fertilise themselves in the normal way and the seeds sown, the resulting F2 generation consists of reds and whites, the former being rather more numerous than the latter in the proportion of 9:7. The raising of a further generation from the seeds of these F2 plants shows that the whites always breed true to whiteness, but that different reds may behave differently. Some breed true, others give reds and whites in the ratio 3:1, while others, again, give reds and whites in the ratio 9:7. As in the case of the fowls' combs, this case may be interpreted in terms of the presence and absence of two factors.
Diagram to illustrate the nature of the F2 generation from the two white sweet peas which give a coloured F1.a series of pollen grains meets a similar series of ovules we may make use of the same "chessboard" system which we have already adopted in the case of the fowls' combs. An examination of this figure (Fig. 7) shows that 9 out of the 16 squares contain both A and B, while 7 contain either A or B alone, or neither. In other words, on this view of the nature of the two white sweet peas we should in the F2 generation look for the appearance of coloured and white flowers in the ratio 9:7. And this, as we have already seen, is what was actually found by experiment. Further examination of the figure shows that the coloured plants are not all of the same constitution, but are of four kinds with respect to their zygotic constitution, viz. AABB, AABb, AaBB, and AaBb. Since AABB is homozygous for both A and B, all the gametes which it produces must contain both of these factors, and such a plant must therefore breed true to the red colour. A plant of the
The theory was further tested by an examination into the properties of the various F2 whites which come from a coloured plant that has itself been produced by the mating of two whites. As Fig. 7 shows, these are, in respect of their constitution, of five different kinds, viz. AAbb, Aabb, aaBB, aaBb, and aabb. Since none of them produce anything but whites on self-fertilisation it was found necessary to test their properties in another way, and the method adopted was that of crossing them together. It is obvious that when this is done we should expect different results in different cases. Thus the cross between two whites of the constitution AAbb and aaBB should give nothing but coloured plants; for these two whites are of
From the evidence afforded by this exhaustive set of experiments it is impossible to resist the deduction that the appearance of colour in the sweet pea depends upon the interaction of two factors which are independently transmitted according to the ordinary scheme of Mendelian inheritance. What these factors are is still an open question. Recent evidence of a chemical nature indicates that colour in a flower is due to the interaction of two definitive substances: (1) a colourless "chromogen," or colour basis; and (2) a ferment which behaves as an activator of the chromogen, and by inducing some process of oxidation, leads to the formation of a coloured substance. But whether these two bodies exist as such
Since the elucidation of the nature of colour in the sweet pea phenomena of a similar kind have been witnessed in other plants, notably in stocks, snapdragons, and orchids. Nor is this class of phenomena confined to plants. In the course of a series of experiments upon the plumage colour of poultry, indications were obtained that different white breeds did not always owe their whiteness to the same cause. Crosses were accordingly made between the white Silky fowl and a pure white strain derived from the white Dorking. Each of these had been previously shown to behave as a simple recessive to colour. When the two were crossed only fully coloured birds resulted. From analogy with the case of the sweet pea it was anticipated that such F1 coloured birds when bred together would produce an F2 generation consisting of coloured and white birds in the ratio 9:7, and when the experiment was made this was actually shown to be the case. With the growth of knowledge it is probable that further striking parallels of this nature between the plant and animal worlds will be met with.
Before quitting the subject of these experiments attention may be drawn to the fact that the 9:7 ratio is in reality a 9:3:3:1 ratio in which the last three terms are indistinguishable owing to the special circumstances that neither factor can produce a visible effect without
One of the earliest sets of experiments demonstrating the interaction of separate factors was that made by the French zoologist CuÉnot on the coat colours of mice. It was shown that in certain cases agouti, which is the colour of the ordinary wild grey mouse, behaves as a dominant to the albino variety, i.e. the F2 generation from such a cross consists of agoutis and albinos in the ratio 3:1. But in other cases the cross between albino and agouti gave a different result. In the F1 generation appeared only agoutis as before, but the F2 generation consisted of three distinct types, viz. agoutis, albinos, and blacks. Whence the sudden appearance of the new type? The answer is a simple one. The albino parent was really a black. But it lacked the factor without which the colour is unable to develop, and consequently it remained an albino. If we denote this factor by C, then the constitution of an albino must be cc, while that of a coloured animal may be CC or Cc, according as to whether it breeds true to colour or can
Diagram to illustrate the nature of the F2 generation which may arise from the mating of agouti with albino in mice or rabbits.of this case is that all the animals are black, and that we are dealing with the presence and absence of two factors, a colour developer (C), and a colour modifier (G), both acting, as it were, upon a substratum of black. The F2 generation really consists of the four classes agoutis, blacks, albino agoutis, and albino blacks in the ratio 9:3:3:1. But since in the absence of the colour developer C the colour modifier G can produce no visible result, the last two classes of the ratio are indistinguishable, and our F2 generation comes to consist of three classes in the ratio 9:3:4, instead of four classes in the ratio 9:3:3:1. This explanation was further tested by experiments with the albinos. In an F2 family of this nature there ought to be three kinds, viz. albinos homozygous for G (GGccBB), albinos heterozygous for G (GgccBB), and albinos without G (ggccBB). These albinos are, as it were, like photographic plates exposed but undeveloped.
Though albinos, whether mice, rabbits, rats, or other animals, breed true to albinism, and though albinism behaves as a simple recessive to colour, yet albinos may be of many different sorts. There are in fact just as many kinds of albinos as there are coloured forms—neither more nor less. And all these different kinds of albinos may breed together, transmitting the various colour factors according to the Mendelian scheme of inheritance,
So far we have dealt with cases in which the production of a character is dependent upon the interaction of two factors. But it may be that some characters require the simultaneous presence of a greater number of factors for their manifestation, and the experiments of Miss Saunders have shown that there is a character in stocks which is unable to appear except through the interaction of three distinct factors. Coloured stocks may be either hoary, with the leaves and stem covered by small hairs, or they may lack the hairy covering, in which case they are termed glabrous. Hoariness is dominant to glabrousness; that is to say, there is a definite factor which can turn the glabrous into a hoary plant when it is present. But in families where coloured and white stocks occur the white are always glabrous, while the coloured plants may or may not be hoary. Now colour in the stock as in the sweet pea has been proved to be dependent upon the interaction of two separate factors. Hence hoariness depends upon three separate factors, and a stock cannot be hoary unless
Sections of primula flowers. The anthers are shown as black. A, "pin" form with long style and anthers set low down; B, "thrum" form with short style and anthers set higher up; C, homostyle form with anthers set low down as in "pin," but with short style. This form only occurs with the large eye.
Two primula flowers showing the extent of the small and of the large eye.
A somewhat different and less usual form of interaction between factors may be illustrated by a case in primulas recently worked out by Bateson and Gregory. Like the common primrose, the primula exhibits both pin-eyed and thrum-eyed varieties. In the former the style is long, and the centre of the eye is formed by the end of the stigma which more or less plugs up the opening of the corolla (cf. Fig. 9, A); in the latter the style is short and hidden by the four anthers which spring from higher up in the corolla and form the centre of the eye (cf. Fig. 9, B). The greater part of the "eye" is formed by the greenish-yellow patches on each petal just at the opening
CHAPTER VI
REVERSION
As soon as the idea was grasped that characters in plants and animals might be due to the interaction of complementary factors, it became evident that this threw clear light upon the hitherto puzzling phenomenon of reversion. We have already seen that in certain cases the cross between a black mouse or rabbit and an albino, each belonging to true breeding strains, might produce nothing but agoutis. In other words, the cross between the black and the white in certain instances results in a complete reversion to the wild grey form. Expressed in Mendelian terms, the production of the agouti was the necessary consequence of the meeting of the factors C and G in the same zygote. As soon as they are brought together, no matter in what way, the reversion is bound to occur. Reversion, therefore, in such cases we may regard as the bringing together of complementary factors which had somehow in the course of evolution become separated from one another. In the simplest cases, such as that of the black and the white rabbit, only two factors are concerned, and one of them is brought in from each of the
1, Yellow Dutch Rabbit; 2, Himalayan; 3, Agouti ( = grey) F1 reversion; 4-8, F2 types, viz.: 4, Agouti; 5, Yellow; 6, Black; 7, Tortoiseshell; 8, Himalayan.
In addition to these appeared Himalayans with either black points or with lighter brownish ones, and the proportions in which they came showed the Himalayan character to be a simple recessive. A certain number of the coloured forms exhibited the Dutch marking to a greater or less extent, but as its inheritance in this set of experiments is complicated and has not yet been worked out, we may for the present neglect it and confine our attention to the coloured types and to the Himalayans. The proportion in which the four coloured types appeared in F2 was very nearly 9 agoutis, 3 blacks, 3 yellows, and 1 tortoiseshell. Evidently we are here dealing with two factors: (1) the grey factor (G), which modifies black into agouti, or tortoiseshell into yellow; and (2) an intensifying factor (I), which intensifies yellow into agouti and tortoiseshell into black. It may be mentioned here that other experiments confirmed the view that the yellow rabbit is a dilute agouti, and the tortoiseshell a dilute black. The Himalayan pattern behaves as a recessive to self-colour. It is a self-coloured black rabbit lacking a factor that allows the colour to develop except in the points. That factor we may denote
Most of the instances of reversion yet worked out are those in which colour characters are concerned. The sweet pea, however, supplies us with a good example of reversion in structural characters. A dwarf variety known as the "Cupid" has been extensively grown for
To this interpretation it may be objected that the ordinary sweet pea is a plant of upright habit. This, however, is not true. It only appears so because the conventional way of growing it is to train it up sticks. In reality it is of procumbent habit, with divergent stems like the ordinary Cupid, a fact which can easily be observed by anyone who will watch them grow without the artificial aid of prepared supports.
1, Bush Sweet Pea; 2, Cupid Sweet Pea; 3, F1 reversionary Tall; 4, Erect Cupid Sweet Pea; 5, Purple Invincible; 6, Painted Lady; 7, Duke of Westminster (hooded standard).
The cases of reversion with which we have so far dealt have been cases in which the reversion occurs as an immediate result of a cross, i.e. in the F1 generation. This is perhaps the commonest mode of reversion, but instances are known in which the reversion that occurs when two pure types are crossed does not appear until the F2 generation. Such a case we have already met with in the fowls' combs. It will be remembered that the cross between pure pea and pure rose gave walnut combs in F1, while in the F2 generation a definite proportion, 1 in 16, of single combs appeared (cf. p. 32). Now the single comb is the form that is found in the wild jungle fowl, which is generally regarded as the ancestor of the domestic breeds. If this is so, we have a case of reversion in F2; and this in the absence of the two factors brought together by the rose-comb and pea-comb parents. Instead of the reversion being due to the bringing together of two complementary factors, we must regard it here as due to the association of two complementary absences. To this question, however, we shall revert later in discussing the origin of domesticated varieties.
There is one other instance of reversion to which we must allude. This is Darwin's famous case of the occasional appearance of pigeons reverting to the wild blue rock (Columba livia), when certain domesticated races are crossed together.[4] As is well known, Darwin made use of this as an argument for regarding all the domesticated varieties as having arisen from the same wild species. The original experiment is somewhat complicated, and is shown in the accompanying scheme. Essentially it lay in
Diagram to illustrate the appearance of the reversionary blue pigeon in F2 from the cross of black with white.
CHAPTER VII
DOMINANCE
Primula flowers to illustrate the intermediate nature of the F1 flower when sinensis is crossed with stellata.
In the cases which we have hitherto considered the presence of a factor produces its full effect whether it is introduced by both of the gametes which go to form the zygote, or by one of them alone. The heterozygous tall pea or the heterozygous rose-combed fowl cannot be distinguished from the homozygous form by mere inspection, however close. Breeding tests alone can decide which is the heterozygous and which the homozygous form. Though this is true for the majority of characters yet investigated, there are cases known in which the heterozygous form differs in appearance from either parent. Among plants such a case has been met with in the primula. The ordinary Chinese primula (P. sinensis) (Fig. 12) has large rather wavy petals much crenated at the edges. In the Star Primula (P. stellata) the flowers are much smaller, while the petals are flat and present only a terminal notch instead of the numerous crenations of P. sinensis. The heterozygote produced by crossing these forms is intermediate in size and appearance. When self-fertilised such plants behave in simple Mendelian fashion,
Among birds a case of similar nature is that of the Blue Andalusian fowl. Fanciers have long recognised the difficulty of getting this variety to breed true. Of a slaty blue colour itself with darker hackles and with black lacing on the feathers of the breast, it always throws "wasters" of two kinds, viz. blacks, and whites splashed with black. Careful breeding from the blues shows that the three sorts are always produced in the same definite
In such cases as this it is obvious that we cannot speak of dominance. And with the disappearance of this phenomenon we lose one criterion for determining which of the two parent forms possesses the additional factor. Are we, for example, to regard the black Andalusian as a splashed white to which has been added a double dose of a colour-intensifying factor, or are we to consider the white splashed bird as a black which is unable to show its true pigmentation owing to the possession of some inhibiting factor which prevents the manifestation of the black. Either interpretation fits the facts equally well,
Besides these comparatively rare cases where the heterozygote cannot be said to bear a closer resemblance to one parent more than to the other, there are cases in which it is often possible to draw a visible distinction between the heterozygote and the pure dominant. There are certain white breeds of poultry, notably the White Leghorn, in which the white behaves as a dominant to colour. But the heterozygous whites made by crossing the dominant white birds with a pure coloured form (such as the Brown Leghorn) almost invariably show a few coloured feathers or "ticks" in their plumage. The dominance of white is not quite complete, and renders it possible to distinguish the pure from the impure dominant without recourse to breeding experiments.
Diagram to illustrate the nature of the F2 generation from the cross between dominant white and recessive white fowls.
This case of the dominant white fowl opens up another interesting problem in connection with dominance. By accepting the "Presence and Absence" hypothesis we are committed to the view that the dominant form possesses an extra factor as compared with the recessive. The natural way of looking at this case of the fowl is to regard white as the absence of colour. But were this so, colour should be dominant to white, which is not the case. We are therefore forced to suppose that the absence of colour in this instance is due to the presence of a factor whose
Ears of beardless and bearded wheat. The beardless condition is dominant to the bearded.
A phenomenon sometimes termed irregularity of dominance has been investigated in a few cases. In certain breeds of poultry such as Dorkings there occurs an extra toe directed backwards like the hallux (cf. Fig. 15). In some families this character behaves as an ordinary dominant to the normal, giving the expected 3:1 ratio in F2. But in other families similarly bred the proportions of birds with and without the extra toe appear to be unusual. It has been shown that in such a family some of the birds without the extra toe may nevertheless transmit the peculiarity when mated with birds belonging to strains in which the extra toe never occurs. Though the external appearance of the bird generally affords some indication of the nature of the gametes which it is carrying, this is not always the case. Nevertheless we have reason to suppose that the character segregates in the gametes, though the nature of these cannot always be decided from the appearance of the bird which bears them.
Fowls' feet. On the right a normal and on the left one with an extra toe.
Scheme to illustrate the inheritance of horns in sheep. Heterozygous males shown dark with a white spot, heterozygous females light with a dark spot in the centre.
There are cases in which an apparent irregularity of dominance has been shown to depend upon another character, as in the experiments with sheep carried out by Professor Wood. In these experiments two breeds were crossed, of which one, the Dorset, is horned in both sexes, while the other, the Suffolk, is without horns in either sex. Whichever way the cross was made the resulting F1 generation was similar; the rams were horned, and
CHAPTER VIII
WILD FORMS AND DOMESTIC VARIETIES
In discussing the phenomena of reversion we have seen that in most cases such reversion occurs when the two varieties which are crossed each contain certain factors lacking in the other, of which the full complement is necessary for the production of the reversionary wild form. This at once suggests the idea that the various domestic forms of animals and plants have arisen by the omission from time to time of this factor or of that. In some cases we have clear evidence that this is the most natural interpretation of the relation between the cultivated and the wild forms. Probably the species in which it is most evident is the sweet pea (Lathyrus odoratus). We have already seen reason to suppose that as regards certain structural features the Bush variety is a wild lacking the factor for the procumbent habit, that the Cupid is a wild without the factor for the long inter-node, and that the Bush Cupid is a wild minus both these factors. Nor is the evidence less clear for the many colour varieties. In illustration we may consider in more detail a case in which the cross between two whites resulted
1, 2, Emily Henderson; 3, F1 reversionary Purple; 4-10, Various F2 forms: 4, Purple; 5, Deep Purple; 6, Picotee; 7, Painted Lady; 8, Miss Hunt; 9, Tinged White; 10, White.
Again, the proportion in which the three classes of purples appeared was 9 bicolors, 3 deep purples, 4 picotees. We are, therefore, concerned here with the operation of two factors: (1) a light wing factor, which renders the bicolor dominant to the dark winged form; and (2) a factor for intense colour, which occurs in the bicolor and in the deep purple, but is lacking in the dilute picotee. And here it should be mentioned that these conclusions rest upon an exhaustive set of experiments involving the breeding of many thousands of plants. In this cross, therefore, we are concerned with the presence or absence of five factors, which we may denote as follows:—
A colour base, R.
A colour developer, C.
A purple factor, B.
A light wing factor, L.
A factor for intense colour, I.
On this notation our six coloured forms are:—
(1) Purple bicolor | CRBLI.[6] |
(2) Deep purple | CRBlI. |
(3) Picotee | CRBLi or CRBli. |
(4) Red bicolor ( = Painted Lady) | CRbLI. |
(5) Deep red ( = Miss Hunt) | CRblI. |
(6) Tinged white | CRbLi or CRbli. |
It will be noticed in this series that the various coloured
Moreover, this view is in harmony with such historical evidence as is to be gleaned from botanical literature, and from old seedsmen's catalogues. The wild sweet pea first reached England in 1699, having been sent from Sicily by the monk Franciscus Cupani as a present to a certain Dr. Uvedale in the county of Middlesex. Somewhat later we hear of two new varieties, the red bicolor, or Painted Lady, and the white, each of which may be regarded as having "sported" from the wild purple by the omission of the purple factor, or of one of the two colour factors. In 1793 we find a seedsman offering also what he called black and scarlet varieties. It is probable that these were our deep purple and Miss Hunt varieties, and that somewhere about this time the factor for the
From what we know of the history of the various strains of sweet peas one thing stands out clearly. The new character does not arise from a pre-existing variety by any process of gradual selection, conscious or otherwise. It turns up suddenly complete in itself, and thereafter it can be associated by crossing with other existing characters to produce a gamut of new varieties. If, for example, the character of hooding in the standard (cf. Pl. II., 7) suddenly turned up in such a family as that shown on Plate IV. we should be able to get a hooded form corresponding to each of the forms with the erect
Why these mutations arise: what leads to the surmised unequal division of the gametes: of this we know practically nothing. Nor until we can induce the production of mutations at will are we likely to understand the conditions which govern their formation. Nevertheless there are already hints scattered about the recent literature of experimental biology which lead us to hope that we may know more of these matters in the future.
In respect of the evolution of its now multitudinous varieties, the story of the sweet pea is clear and straightforward. These have all arisen from the wild by a process of continuous loss. Everything was there in the beginning, and as the wild plant parted with factor after factor there came into being the long series of derived forms. Exquisite as are the results of civilization, it is by the degradation of the wild that they have been brought about. How far are we justified in regarding this as a picture of the manner in which evolution works?
There are certainly other species in which we must suppose that this is the way that the various domesticated forms have arisen. Such, for example, is the case in the rabbit, where most of the colour varieties are recessive to the wild agouti form. Such also is the case in the rat, where the black and albino varieties and the various pattern forms are also recessive to the wild agouti type. And with the exception of a certain yellow variety to which we shall refer later, such is also the case with the many fancy varieties of mice.
Nevertheless there are other cases in which we must suppose evolution to have proceeded by the interpolation of characters. In discussing reversion on crossing, we have already seen that this may not occur until the F2 generation, as, for example, in the instance of the fowls' combs (cf. p. 65). The reversion to the single comb occurred as the result of the removal of the two factors
On the whole, therefore, we must be prepared to admit that the evolution of domestic varieties may come about by a process of addition of factors in some cases and of subtraction in others. It may be that what we term additional factors fall into distinct categories from the rest. So far, experiment seems to show that they are either of the nature of melanic factors, or of inhibitory
CHAPTER IX
REPULSION AND COUPLING OF FACTORS
Although different factors may act together to produce specific results in the zygote through their interaction, yet in all the cases we have hitherto considered the heredity of each of the different factors is entirely independent. The interaction of the factors affects the characters of the zygote, but makes no difference to the distribution of the separate factors, which is always in strict accordance with the ordinary Mendelian scheme. Each factor in this respect behaves as though the other were not present.
A few cases have been worked out in which the distribution of the different factors to the gametes is affected by their simultaneous presence in the zygote. And the influence which they are able to exert upon one another in such cases is of two kinds. They may repel one another, refusing, as it were, to enter into the same zygote, or they may attract one another, and, becoming linked together, pass into the same gamete, as it were by preference. For the moment we may consider these two sets of phenomena apart.
One of the best illustrations of repulsion between factors occurs in the sweet pea. We have already seen that the loss of the blue or purple factor (B) from the wild bicolor results in the formation of the red bicolor known as Painted Lady (Pl. IV., 7). Further, we have seen that the hooded standard is recessive to the ordinary erect standard. The omission of the factor for the erect standard (E) from the purple bicolor (Pl. II., 5) results in a hooded purple known as Duke of Westminster (Pl. II., 7). And here it should be mentioned that in the corresponding hooded forms the difference in colour between the wings and standard is not nearly so marked as in the forms with the erect standard, but the difference in structure appears to affect the colour, which becomes nearly uniform. This may be readily seen by comparing the picture of the purple bicolor on Plate II. with that of the Duke of Westminster flower.
Now when a Duke of Westminster is mated with a Painted Lady the factor for erect standard (E) is brought in by the red, and that for blue (B) by the Duke, and the offspring are consequently all purple bicolors. Purples so formed are all heterozygous for these two factors, and were the case a simple one, such as those which have already been discussed, we should expect the F2 generation to consist of the four forms: erect purple, hooded purple, erect red, and hooded red in the ratio 9:3:3:1. Such, however, is not the case. The F2 generation
On the assumption that there exists a repulsion between the factors for erect standard and blue in a plant which is heterozygous for both, this peculiar case receives a simple explanation. The constitutions of the erect red and the hooded purple are EEbb and eeBB respectively and that of the F1 erect purple is EeBb. Now let us suppose that in such a zygote there exists a repulsion
Other similar cases of factorial repulsion have been demonstrated in the sweet pea, and two of these are also concerned with the two factors with which we have just been dealing. Two distinct varieties of pollen grains occur in this species, viz. the ordinary oblong form and a rather smaller rounded grain. The former is dominant to the latter.[7] When a cross is made between a purple with round pollen and a red with long pollen the F1 plant is a long pollened purple. But the F2 generation consists of purples with round pollen, purples with long pollen, and reds with long pollen in the ratio 1:2:1. No red with round pollen appears in F2 owing to repulsion between the factors for purple (B) and for long pollen (L). Similarly plants produced by crossing a red hooded long with a red round having an erect standard give in F1 long pollened reds with an erect standard, and these in F2 produce the three types, round pollened erect, long pollened erect, and long pollened hooded, in the ratio 1:2:1. The repulsion here is between the long pollen factor (L) and the factor for the erect standard (E).
Yet another similar case is known in which we are concerned with quite different factors. In some sweet peas the axils whence the leaves and flower stalks spring from the main stem are of a deep red colour. In others they are green. The dark pigmented axil is dominant to the light one. Again, in some sweet peas the anthers are sterile, setting no pollen, and this condition is recessive to the ordinary fertile condition. When a sterile plant with a dark axil is crossed by a fertile plant with a light axil, the F1 plants are all fertile with dark axils. But such plants in F2 give fertiles with light axils, fertiles with dark axils, and steriles with dark axils in the ratio 1:2:1. No light axilled steriles appear from such a cross owing to the repulsion between the factor for dark axil (D) and that for the fertile anther (F).
These four cases have already been found in the sweet pea, and similar phenomena have been met with by Gregory in primulas. To certain seemingly analogous cases in animals where sex is concerned we shall refer later.
Now all of these four cases present a common feature which probably has not escaped the attention of the reader. In all of them the original cross was such as to introduce one of the repelling factors with each of the two parents. If we denote our two factors by A and B, the crosses have always been of the nature AAbb × aaBB. Let us now consider what happens when both of the
Nor for the present can we suggest why certain factors should be linked together in the peculiar way that we have reason to suppose that they are during the process of the formation of the gametes. Nevertheless the phenomena are very definite, and it is not unlikely that a further study of them may throw important light on the architecture of the living cell.
APPENDIX TO CHAPTER IX
As it is possible that some readers may care, in spite of its complexity, to enter rather more fully into the peculiar phenomenon
49 BBLL | + 7 BBLl | + 7 BbLL | + 49 | BbLl | + BBll | + 7 Bbll | + bbLL | + 7 bbLl | + 49 bbll |
+ 7 BBLl | + 7 BbLL | + | BbLl | + 7 Bbll | + 7 bbLl | ||||
+ | BbLl | ||||||||
+ 49 | BbLl | ||||||||
brace | brace | brace | brace | ||||||
177 purple, long | 15 purple, round | 15 red, long | 49 red, round |
and as this theoretical result fits closely with the actual figures obtained by experiment we have reason for supposing that the heterozygous plant produces a series of gametes in which the factors are coupled in this way. The intensity of the coupling, however, varies in different cases. Where we are dealing with another, viz. fertility (F) and the dark axil (D), the experimental numbers accord with the view that the gametic series is here 15 FD: 1 Fd: 1 fD: 15 fd. The coupling is in this instance more intense. In the case of the erect standard (E) and blueness (B) the coupling is even more intense, and the experimental evidence available at present points to the gametic series here being 63 Eb: 1 EB: 1 eB: 63 eb. There is evidence also for supposing that the intensity of the coupling may vary in different families for the same pair of factors. The coupling between blue and long pollen is generally on the 7:1:1:7
3 AB + | Ab + | aB + | 3 | ab |
7 AB + | Ab + | aB + | 7 | ab |
15 AB + | Ab + | aB + | 15 | ab, etc., etc. |
In such a series the number of gametes containing A is equal to the number lacking A, and the same is true for B. Consequently the number of zygotes formed containing A is three times as great as the number of zygotes which do not contain A; and similarly for B. The proportion of dominants to recessives in each case is 3:1. It is only in the distribution of the characters with relation to one another that these cases differ from a simple Mendelian case.
As the study of these series presents another feature of some interest, we may consider it in a little more detail. In the accompanying table are set out the results produced by these different series of gametes. The series marked by an asterisk have already been demonstrated experimentally. The first term in the series,
No. of Gametes in series. | Distribution of Factors in Gametic Series | No. of Zygotes produced. | Form of F2 Generation. | |||
AB. Ab. aB. ab. | AB. | Ab. | aB. | ab. | ||
4 | 1 : 1 : 1 : 1 | 16 | 9 | 3 | 3 | 1 |
8 | 3 : 1 : 1 : 3 | 64 | 49 | 7 | 7 | 9 |
16 | 7 : 1 : 1 : 7 | 256 | 177 | 15 | 15 | 49* |
32 | 15 : 1 : 1 : 15 | 1024 | 737 | 31 | 31 | 225* |
64 | 31 : 1 : 1 : 31 | 4096 | 3009 | 63 | 63 | 961 |
128 | 63 : 1 : 1 : 63 | 16384 | 12161 | 127 | 127 | 3969* |
2n | (n-1) : 1 : 1 : (n-1) | 4n2 | 3n2-(2n-1) | (2n-1) | (2n-1) | n2-(2n-1) |
Now, as the table shows, it is possible to express the gametic series by a general formula (n + 1) AB + Ab + aB + (n - 1) ab, where 2n is the total number of the gametes in the series. A plant producing such a series of gametes gives rise to a family of zygotes in which 3n2 - (2n - 1) show both of the dominant characters and n2 - (2n - 1) show both of the recessive characters, while the number of the two classes which each show one of the two dominants is (2n - 1). When in such a series the coupling becomes closer the value of n increases, but in comparison with n2 its value becomes less and less. The larger n becomes the more negligible is its value relatively to n2. If, therefore, the coupling were very close, the series 3n2 - (2n - 1): (2n - 1): (2n - 1): n2 - (2n - 1) would approximate more and more to the series 3n2: n2, i.e. to a simple 3:1 ratio. Though the point is probably of more theoretical than practical interest, it is not impossible that some of the cases which have hitherto been regarded as following a simple 3:1 ratio will turn out on further analysis to belong to this more complicated scheme.
CHAPTER X
SEX
Abraxas grossulariata, the common currant moth, and (on the right) its paler lacticolor variety.
In their simplest expression the phenomena exhibited by Mendelian characters are sharp and clean cut. Clean cut and sharp also are the phenomena of sex. It was natural, therefore, that a comparison should have been early instituted between these two sets of phenomena. As a general rule, the cross between a male and a female results in the production of the two sexes in approximately equal numbers. The cross between a heterozygous dominant and a recessive also leads to equal numbers of recessives and of heterozygous dominants. Is it not, therefore, possible that one of the sexes is heterozygous for a factor which is lacking in the other, and that the presence or absence of this factor determines the sex of the zygote? The results of some recent experiments would appear to justify this interpretation, at any rate in particular cases. Of these, the simplest is that of the common currant moth (Abraxas grossulariata), of which there exists a pale variety (Fig. 17) known as lacticolor. The experiments of Doncaster and Raynor showed that the variety behaved as a simple recessive to the normal form. But the distribution of the dominants and
(1) The grossulariata character (G) is dominant to the lacticolor character (g). This is obviously justified by the experiments, for, leaving the sex distribution out of account, we get the expected 3:1 ratio from F1 × F1, and also the expected ratio of equality when the heterozygote is crossed with the recessive.
(2) The female is heterozygous for a dominant factor (F) which is lacking in the male. The constitution of a female is consequently Ff, and of a male ff. This assumption is in harmony with the fact that the sexes are produced in approximately equal numbers.
(3) There exists repulsion between the factors G and F in a zygote which is heterozygous for them both. Such zygotes (FfGg) must always be females, and on this assumption will produce gametes Fg and fG in equal numbers.
Scheme of inheritance in the F1 and F2 generations resulting from the cross of lacticolor female with grossulariata male. The character of each individual is represented by the sex signs in brackets, the black being grossulariata in appearance and the light ones lacticolor.
We may now construct a scheme for comparison with that on page 100 to show how these assumptions explain the experimental results. The original parents were lacticolor female and grossulariata male, which on our assumptions must be Ffgg and ffGG respectively in constitution. Since the female is always heterozygous for F, her gametes must be of two kinds, viz. Fg and fg, while those of the pure grossulariata male must be all fG. When an ovum Fg is fertilised by a spermatozoon fG, the resulting zygote, FfGg, is heterozygous for both F and G, and in appearance is a female grossulariata. The zygote resulting from the fertilisation of an ovum fg by a spermatozoon fG is heterozygous for G, but does not contain F, and therefore is a male grossulariata. Such a male being in constitution
Before leaving the currant moth we may allude to an interesting discovery which arose out of these experiments. The lacticolor variety in Great Britain is a southern form and is not known to occur in Scotland. Matings were made between wild Scotch females and lacticolor males. The families resulting from such matings were precisely the same as those from lacticolor males and F1 females, viz. grossulariata males and lacticolor females only. We are, therefore, forced to regard the constitution of the wild grossulariata female as identical with that of the F1 female, i.e. as heterozygous for the grossulariata factor as well as for the factor for femaleness. Though from a region where lacticolor is unknown, the "pure" wild grossulariata female is nevertheless a permanent mongrel, but it can never reveal its true colours unless it is mated with a male which is either heterozygous for G or pure lacticolor. And as all the wild northern males are
Scheme illustrating the result of crossing a Silky hen with a Brown Leghorn cock. Black sex signs denote deeply pigmented birds, and light sex signs those without pigmentation. The light signs with a black dot in the centre denote birds with a small amount of pigment.
An essential feature of the case of the currant moth lies in the different results given by reciprocal crosses. Lacticolor female × grossulariata male gives grossulariata alone of both sexes. But grossulariata female × lacticolor male gives only grossulariata males and lacticolor females. Such a difference between reciprocal crosses has also been found in other animals, and the experimental results, though sometimes more complicated, are explicable on the same lines. An interesting case in which three factors are concerned has been recently worked out in poultry. The Silky breed of fowls is characterised among other peculiarities by a remarkable abundance of melanic pigment. The skin is dull black, while the comb and wattles are of a deep purple colour contrasting sharply with the white plumage (Pl. V., 3). Dissection shows that this black pigment is widely spread throughout the body, being especially marked in such membranes as the mesenteries, the periosteum, and the pia mater surrounding the brain. It also occurs in the connective tissues among the muscles. In the Brown Leghorn, on the other hand, this pigment is not found. Reciprocal crosses between these two breeds gave a remarkable difference in result. A cross between the Silky hen and the Brown Leghorn cock produced F1 birds in which both sexes exhibited only traces of the pigment. On casual observation they might have
Scheme illustrating the result of crossing a Brown Leghorn hen with a Silky cock (cf. Fig. 19).
When, however, the cross was made the other way, viz. Brown Leghorn hen × Silky cock, the result was different. While the F1 male birds were almost destitute of pigment as in the previous cross, the F1 hens, on the other hand, were nearly as deeply pigmented as the pure Silky
Scheme to illustrate the result of crossing F1 birds (e.g. Brown Leghorn × Silky) with the pure Brown Leghorn.
In analysing this complicated case many other different crosses were made, but for the present it will be sufficient to mention but one of these, viz. that between the F1 birds and the pure Brown Leghorn. The cross between the F1 hen and the Brown Leghorn cock produced only birds with a slight amount of pigment and birds without pigment. And this was true for both the deeply pigmented and the slightly pigmented types of F1 hen. But when the F1 cock was mated to a Brown Leghorn hen, a definite proportion of the chicks, one in eight, was deeply pigmented, and these deeply pigmented birds were always females (cf. Fig. 21). And in this respect all the F1 males behaved alike, whether they were from the Silky hen or from the Silky cock. We have, therefore, the paradox that the F1 hen, though herself deeply pigmented, cannot transmit this condition to any of her offspring when she is mated to the unpigmented Brown Leghorn, but that, when similarly mated, the F1 cock can transmit this pigmented condition to a quarter of his female offspring though he himself is almost devoid of pigment.
1, 2, F1 Cock and Hen, ex Brown Leghorn Hen × Silky Cock; 3, Silky Cock; 4, Hen ex Silky Hen × Brown Leghorn Cock.
Scheme to illustrate the nature of the F1 generation from the Silky hen and Brown Leghorn cock (cf. Fig. 23).
Now all these apparently complicated results, as well as many others to which we have not alluded, can be expressed by the following simple scheme. There are three factors affecting pigment, viz. (1) a pigmentation factor (P); (2) a factor which inhibits the production of pigment (I); and (3) a factor for femaleness (F), for which the female birds are heterozygous, but which is not present in the males. Further, we make the assumptions (a) that there is repulsion between F and I in the female zygote (FfIi), and (b) that the male Brown Leghorn is homozygous for the inhibitor factor (I), but that the hen Brown Leghorn is always heterozygous for this factor just in the same way as the female of the currant moth is always heterozygous for the grossulariata factor. We may now proceed to show how this explanation fits the experimental facts which we have given.
The Silky is pure for the pigmentation factor, but does not contain the inhibitor factor. The Brown Leghorn, on the other hand, contains the inhibitor factor, but not the
Scheme to illustrate the nature of the F1 generation from the Brown Leghorn hen and Silky cock (cf. Fig. 22).
In the reciprocal cross, on the other hand, we are mating a Silky male (ffPPii) with a Brown Leghorn hen which on our assumption is heterozygous for the inhibitor factor (I), and in constitution therefore is FfppIi. Owing to the repulsion between F and I the gametes produced by such a bird are Fpi and fpI in equal numbers. All the gametes produced by the Silky cock are fPi. Hence the constitution of the F1 male birds produced by this cross is ffPpIi as before, but the female birds must be all of the constitution FfPpii. The Silky cock transmits the fully pigmented condition to his daughters, because the gametes of the Brown Leghorn hen which contain the factor for femaleness do not contain the
Diagram showing the nature of the offspring from a Brown Leghorn hen and an F1 cock bred from Silky hen × Brown Leghorn cock, or vice versa.
On the other hand, the Brown Leghorn cock is on our hypothesis ffppII. All his gametes consequently contain the inhibitor factor, and when he is mated with an F1
Scheme to illustrate the heterozygous nature of the pure Brown Leghorn hen. For explanation see text.
The interpretation of this case turns upon the constitution of the Brown Leghorn hen, upon her heterozygous condition with regard to the two factors F and I, and upon the repulsion that occurs between them when the gametes are formed. Through an independent set of experiments this view of the nature of the Brown Leghorn hen has been confirmed in an interesting way. There are fowls which possess neither the factor for pigment nor the inhibitory factor, which are in constitution ppii. Such birds when crossed with the Silky give dark pigmented birds of both sexes in F1, and the F2 generation consists of pigmented and unpigmented in the ratio 3:1. Now a cock of such a strain crossed with a Brown Leghorn hen should give only completely unpigmented birds. But if, as we have supposed, the Brown Leghorn hen is producing gametes Fpi and fpI, the male birds produced by such a cross should be heterozygous for I,
This conception of the nature of the Brown Leghorn hen leads to a curious paradox. We have stated that the Silky cock transmits the pigmented condition, but transmits it to his daughters only. Apparently the case is one of unequal transmission by the father. Actually, as our analysis has shown, it is one of unequal transmission by the mother, the father's contribution to the offspring being identical for each sex. The mother transmits to the daughters her dominant quality of femaleness, but to balance this, as it were, she transmits to her sons another quality which her daughters do not receive. It is a matter of common experience among human families that in respect to particular qualities the sons tend to resemble their mothers more than the daughters do, and it is not improbable that such observations have a real foundation for which the clue may be provided by the Brown Leghorn hen.
Nor is this the only reflection that the Brown Leghorn suggests. Owing to the repulsion between the factors for femaleness and for pigment inhibition, it is impossible by any form of mating to make a hen which is homozygous for the inhibitor factor. She has bartered away for femaleness the possibility of ever receiving a double dose of this factor. We know that in some cases, as, for example,
CHAPTER XI
SEX (continued)
The cases which we have considered in the last chapter belong to a group in which the peculiarities of inheritance are most easily explained by supposing that the female is heterozygous for some factor that is not found in the male. Femaleness is an additional character superposed upon a basis of maleness, and as we imagine that there is a separate factor for each the full constitutional formula for a female is FfMM, and for a male ffMM. Both sexes are homozygous for the male element, and the difference between them is due to the presence or absence of the female element F.
There are, however, other cases for which the explanation will not suffice, but can be best interpreted on the view that the male is heterozygous for a factor which is not found in the female. Such a case is that recently described by Morgan in America for the pomace fly (Drosophila ampelophila). Normally this little insect has a red eye, but white eyed individuals are known to occur as rare sports. Red eye is dominant to white. In their relation to sex the eye colours of the pomace fly
In order to bring these cases and others into line an interesting suggestion has recently been put forward by Bateson. On this suggestion each sex is heterozygous for its own sex factor only, and does not contain the factor proper to the opposite sex. The male is of the constitution, Mmff and the female Ffmm. Each sex produces two sorts of gametes, Mf and mf in the case of the male, and Fm, fm in that of the female. But on this view a further supposition is necessary. If each of the two kinds of spermatozoa were capable of fertilising each of the two kinds of ova, we should get individuals of the constitution MmFf and mmff, as well as the normal males and females, Mmff and Ffmm. As the facts of ordinary bisexual reproduction afford us no grounds for assuming the existence of these two classes of individuals, whatever they may be, we must suppose that fertilisation. is productive only between the spermatozoa carrying M and the ova without F, or between the spermatozoa
Scheme to illustrate the probable mode of inheritance of colour-blindness. The dark signs represent affected individuals. A black dot in the centre denotes an unaffected female who is capable of transmitting the condition to her sons.
Whatever the merits or demerits of such a scheme it certainly does offer an explanation of a peculiar form of sex limited inheritance in man. It has long been a matter of common knowledge that colour-blindness is much more common among men than among women, and also that unaffected women can transmit it to their sons. At first sight the case is not unlike that of the sheep, where the horned character is apparently dominant in the male but recessive in the female. The hypothesis that the colour-blind condition is due to the presence of an extra factor as compared with the normal, and that a single dose of it will produce
But there is one notable difference in this case as compared with that of the sheep. When crossed with pure hornless ewes the heterozygous horned ram transmits the horned character to half his male offspring (cf. p. 71). But the heterozygous colour-blind man does not behave altogether like a sheep, for he apparently does not transmit the colour-blind condition to any of his male offspring. If, however, we suppose that the colour-blind factor is repelled by the factor for maleness, the amended scheme will cover the observed facts. For, denoting the colour-blind factor by X, the gametes produced by the colour-blind male are of two sorts only, viz. Mfx and mfX. If he marries a normal woman (Ffmmxx), the spermatozoa Mfx unite with ova fmx to give normal males, while the spermatozoa mfX unite with ova Fmx to give females which are heterozygous for the colour-blind factor. These daughters are themselves normal, but transmit the condition to about half their sons.
The attempt to discover a simple explanation of the nature of sex has led us to assume that certain combinations between gametes are incapable of giving rise to zygotes which can develop further. In the various cases hitherto considered there is no reason to suppose that anything of the sort occurs, or that the different gametes are otherwise than completely fertile one with another. One peculiar case, however, has been known for several years in which some of the gametes are apparently incapable of uniting to produce offspring. Yellow in the mouse is dominant to agouti, but hitherto a homozygous yellow has never been met with. The yellows from families where only yellows and agoutis occur produce, when bred together, yellows and agoutis in the ratio 2:1. If it were an ordinary Mendelian case the ratio should be 3:1, and one out of every three yellows so bred should be homozygous and give only yellows when crossed with agouti. But CuÉnot and others have shown that all of the yellows are heterozygous, and when crossed with agoutis give both yellows and agoutis. We are led, therefore, to suppose that an ovum carrying the yellow factor is unproductive if fertilised by a spermatozoon which also bears this factor. In this way alone does it seem possible to explain the deficiency of yellows and the absence of homozygous ones in the families arising from the mating of yellows together. At present, however, it remains the only definite instance among animals in which we have
If we turn from animals to plants we find a more complicated state of affairs. Generally speaking, the higher plants are hermaphrodite, both ovules and pollen grains occurring on the same flower. Some plants, however like most animals, are of separate sexes, a single plant bearing only male or female flowers. In other plants the separate flowers are either male or female, though both are borne on the same individual. In others, again, the conditions are even more complex, for the same plant may bear flowers of three kinds, viz. male, female, and hermaphrodite. Or it may be that these three forms occur in the same species but in different individuals—female and hermaphrodites in one species; males, females, and hermaphrodites in another. One case, however, must be mentioned as it suggests a possibility which we have not hitherto encountered. In the common English bryony (Bryonia dioica) the sexes are separate, some plants having only male and others only female flowers. In another European species, B. alba, both male and female flowers occur on the same plant. Correns crossed these two species reciprocally, and also fertilised B. dioica by its own male with the following results:—
dioica | ? | × dioica | ? gave | ? ? and ? ? |
" | × alba | ? " | ? ? only | |
alba | ? | × dioica | ? " | ? ? and ? ?. |
The point of chief interest lies in the striking difference shown by the reciprocal crosses between dioica and alba. Males appear when alba is used as the female parent but not when the female dioica is crossed by male alba. It is possible to suggest more than one scheme to cover these facts, but we may confine ourselves here to that which seems most in accord with the general trend of other cases. We will suppose that in dioica femaleness is dominant to maleness, and that the female is heterozygous for this additional factor. In this species, then, the female produces equal numbers of ovules with and without the female factor, while this factor is absent in all the pollen grains. Alba ? × dioica ? gives the same result as dioica ? × dioica ?, and we must therefore suppose that alba produces male and female ovules in equal numbers. Alba ? x dioica ?, however, gives nothing but females. Unless, therefore, we assume that there is selective fertilisation we must suppose that all the pollen grains of alba carry the female factor—in other words, that so far as the sex factors are concerned there is a difference between the ovules and pollen grains borne by the same plant. Unfortunately further investigation of this case is rendered impossible owing to the complete sterility of the F1 plants.
Single and double stocks raised from the same single parent.
That the possibility of a difference between the ovules and pollen grains of the same individual must be taken into account in future work there is evidence from quite a different source. The double stock is an old horticultural favourite, and for centuries it has been known that of itself it sets no seed, but must be raised from special strains of the single variety. "You must understand withall," wrote John Parkinson of his gilloflowers,[9] "that those plants that beare double flowers, doe beare Crosses of single and double stocks.no seed at all ... but the onely way to have double flowers any yeare is to save the seedes of those plants of this kinde that beare single flowers, for from that seede will rise some that will beare single, and some double flowers." With regard to the nature of these double-throwing strains of singles, Miss Saunders has recently brought out some interesting facts. She crossed the double-throwing singles with pure singles belonging to strains in which doubles never occur. The cross was made both ways, and in both cases all the F1 plants were single. A distinction, however, appeared when a further generation was raised from the F1 plants. All the F1 plants from the pollen of the double-throwing single behaved like double-throwing singles, but of the F1 plants from the ovules of the double throwers some behaved as double throwers, and some as pure singles. We are led to infer, therefore, that the ovules and pollen grains
From all this it is clear enough that there is much to be done before the problem of sex is solved even so far as the biologist can ever expect to solve it. The possibilities are many, and many a fresh set of facts is needed before we can hope to decide among them. Yet the occasional glimpses of clear-cut and orderly phenomena, which Mendelian spectacles have already enabled us to catch, offer a fair hope that some day they may all be brought into focus, and assigned their proper places in a general scheme which shall embrace them all. Then, though not till then, will the problem of the nature of sex pass from the hands of the biologist into those of the physicist and the chemist.
CHAPTER XII
INTERMEDIATES
So far as we have gone we have found it possible to express the various characters of animals and plants in terms of definite factors which are carried by the gametes, and are distributed according to a definite scheme. Whatever may be the nature of these factors it is possible for purposes of analysis to treat them as indivisible entities which may or may not be present in any given gamete. When the factor is present it is present as a whole. The visible properties developed by a zygote in the course of its growth depend upon the nature and variety of the factors carried in by the two gametes which went to its making, and to a less degree upon whether each factor was brought in by both gametes or by one only. If the given factor is brought in by one gamete only, the resulting heterozygote may be more or less intermediate between the homozygous form with a double dose of the factor and the homozygous form which is entirely destitute of the factor. Cases in point are those of the primula flowers and the Andalusian fowls. Nevertheless these intermediates produce only pure gametes, as is
Diagram to illustrate the nature and composition of the F2 generations arising from the cross of Silky hen with Brown Leghorn cock.place, and the apparently continuous series of intermediates is the result of the interaction of the different factors upon one another. The constitution of the F1 ? is a ffPpIi, and such a bird produces in equal numbers the four sorts of gametes fPI, fPi, fpI, fpi. The constitution of the F1 ? in this case is FfPpIi. Owing to the repulsion between F and I she produces the four kinds of gametes FPi, Fpi, fPI, fpi, and produces them in equal numbers. The result of bringing two such series of gametes together is shown in Fig. 28. Out of the sixteen types of zygote formed one (FfPPii) is homozygous for the pigmentation factor, and does not contain the inhibitor factor. Such a bird is as deeply pigmented as the pure Silky parent. Two, again, contain a single dose of P in the absence of I. These are nearly as dark as the pure Silky. Four zygotes are destitute of P, though they may or may not contain I. These birds are completely devoid of pigment like the Brown Leghorn. The remaining nine zygotes show
In connection with intermediates a more cogent objection to the Mendelian view is the case of the first cross between two definite varieties thenceforward breeding true. The case that will naturally occur to the reader is that of the mulatto, which results from the cross between the negro and the white. According to general opinion, these mulattos, of intermediate pigmentation, continue to produce mulattos. Unfortunately this interesting case has never been critically investigated, and the statement that the mulatto breeds true rests almost entirely upon
Pedigree of a family which originated from a cross between a Hindu and a European. Black signs denote individuals as dark as average Hindus. Plain signs denote quite-fair members, while those with a dot in the centre are intermediate.
On the other hand, from the cross between the darkly pigmented Eastern races and the white segregation seems to occur in subsequent generations. Families are to be found in which one parent is a pure white, while the other has arisen from the cross between the dark and light in the first or some subsequent generation. Such families may contain children indistinguishable from pure blonds as well as children of very dark and of intermediate shades. As an example, I may give the following pedigree, which was kindly communicated to me by an Anglo-Indian friend (Fig. 29). The family had resided in England for several generations, so that in this case there was no question of a further admixture of black. Most noticeable is the family produced by a very dark lady who had married a white man. Some of the children were intermediate in colour, but two were fair whites and two were dark as dark Hindus. This sharp segregation or splitting out of blacks and whites in addition to intermediates strongly suggests that the nature of the inheritance is Mendelian, though it may be complicated by the existence of several factors which may also react upon one another. Nor must it be forgotten that in so far as these different factors are concerned the whites themselves may differ in constitution without showing any trace of it in their appearance. Before the case can be regarded as settled all these different possibilities will have to be definitely tested. With the dark Eastern races as with the negro we cannot
Though for the present we must regard the case of the negro as not proven, there are nevertheless two others in which the heredity would appear not to follow the Mendelian rule. Castle in America crossed the lop-eared rabbit with the normal form, and found that the F1 animals were intermediate with respect to their ears. And subsequent experiment showed that, on the whole, they bred true to this intermediate condition. The other case relates to Lepidoptera. The speckled wood butterfly (Pararge egeria) has a southern form which differs from the northern one in the greater brightness and depth of its yellow-brown markings. The northern form is generally distinguished as var. egeriades. Bateson crossed the southern form from the south of France with the paler British form, and found that the offspring were more or less intermediate in colour, and that in subsequent generations the parental types did not recur. These cases at present stand alone. It is possible that further research may reveal complications which mask or interfere with an underlying process of segregation. Or it may be that segregation does not occur owing to some definite physiological reason which at present we do not understand.
And here it is impossible not to recall Mendel's own experiences with the Hawkweeds (Hieracium). This
CHAPTER XIII
VARIATION AND EVOLUTION
Through the facts of heredity we have reached a new conception of the individual. Hitherto we have been accustomed to distinguish between the members of a family of rabbits like that illustrated on Plate I. by assigning to each an individuality, and by making use of certain external features, such as the coat colour or the markings, as convenient outward signs to express our idea that the individuality of these different animals is different. Apart from this, our notions as to what constituted the individuality in each case were at best but vague. Mendelian analysis has placed in our hands a more precise method of estimating and expressing the variations that are to be found between one individual and another. Instead of looking at the individual as a whole, which is in some vague way endowed with an individuality marking it off from its fellows, we now regard it as an organism built up of definite characters superimposed on a basis beyond which for the moment our analysis will not take us. We have begun to realise that each individual has a definite architecture, and that this architecture depends
In the simple case where the homozygous and heterozygous conditions are indistinguishable in appearance the number of possible forms is 2, raised to the power of the number of factors concerned. Thus where one factor is concerned there are only 21 = 2 possible forms, where ten factors are concerned there are 210 = 1024 possible forms differing from one another in at most ten and at least one character. Where the factors interact upon one another this number will, of course, be considerably increased. If the heterozygous form is different in appearance from the homozygous form, there are three possible forms connected with each factor; for ten such factors the possible number of individuals would be 310 = 59,049; for twenty such factors the possible number of different individuals would be 320 = 3,486,784,401. The presence or absence of a comparatively small number of factors in a species carries with it the possibility of an enormous range of individual variation. But every one of these individuals has a perfectly definite constitution which can
But, as everybody knows, an individual organism, whether plant or animal, reacts, and often reacts markedly, to the environmental conditions under which its life is passed. More especially is this to be seen where such characters as size or weight are concerned. More sunlight or a richer soil may mean stronger growth in a plant, better nutrition may result in a finer animal, superior education may lead to a more intelligent man. But although the changed conditions produce a direct effect upon the individual, we have no indisputable evidence that such alterations are connected with alterations in the nature of the gametes which the individual produces. And without this such variations cannot be perpetuated through heredity, but the conditions which produce the effect must always be renewed in each
The distinction between these two kinds of variation, so entirely different in their causation, renders it possible to obtain a clearer view of the process of evolution than that recently prevalent. As Darwin long ago realised, any theory of evolution must be based upon the facts of heredity and variation. Evolution only comes about through the survival of certain variations and the elimination of others. But to be of any moment in evolutionary change a variation must be inherited. And to be inherited it must be represented in the gametes. This, as we have seen, is the case for those variations which we have termed mutations. For the inheritance of fluctuations, on the other hand, of the variations which result from the direct action of the environment upon the individual, there is no indisputable evidence. Consequently we have no reason for regarding them as playing any part in the production of that succession of temporarily stable forms which we term evolution. In
It is evident that this view of the process of evolution is in some respects at variance with that generally held during the past half century. There we were given the conception of an abstract type representing the species, and from it most of the individuals diverged in various directions, though, generally speaking, only to a very small extent. It was assumed that any variation, however small, might have a selection value, that is to say, could be transmitted to the offspring. Some of these would possess it in a less and some in a greater degree than the parent. If the variation were a useful one, those possessing to a rather greater extent would be favoured through the action of natural selection at the expense of their less fortunate brethren, and would leave a greater number of offspring, of whom some possessed it in an even more marked degree than themselves. And so it would go on. The process was a cumulative one. The slightest variation in a favourable direction gave natural selection a starting-point to work on. Through the continued action of natural selection on each successive generation the useful variation was gradually worked up, until at last it reached the magnitude of a specific
Upon this view are made two assumptions not unnatural in the absence of any exact knowledge of the nature of heredity and variation. It was assumed, in the first place that variation was a continuous process, and, second, that any variation could be transmitted to the offspring. Both of these assumptions have since been shown to be unjustified. Even before Mendel's work became known Bateson had begun to call attention to the prevalence of discontinuity in variation, and a few years later this was emphasised by the Dutch botanist Hugo de Vries in his great work on The Mutation Theory. The ferment of new ideas was already working in the solution, and under the stimulus of Mendel's work they have rapidly crystallised out. With the advent of heredity as a definite science we have been led to revise our views as to the nature of variation, and consequently in some respects as to the trend of evolution. Heritable variation has a definite basis in the gamete, and it is to the gamete, therefore, not to the individual, that we must look for the initiation of this process. Somewhere or other in the course of their production is added or removed the factor upon whose removal or addition the new variation owes its existence. The new variation springs into being by a
In this way we avoid a difficulty that beset the older view. For on that view no new character could be developed except by the piling up of minute variations through the action of natural selection. Consequently any character found in animals and plants must be supposed to be of some definite use to the individual. Otherwise it could not have developed through the action of natural selection. But there are plenty of characters to which it is exceedingly difficult to ascribe any utility, and the ingenuity of the supporters of this view has often been severely taxed to account for their existence. On the more modern view this difficulty is avoided. The origin of a new variation is independent of natural
One of the arguments made use of by supporters of the older view is that drawn from the study of adaptation. Animals and plants are as a rule remarkably well adapted to living the life which their surroundings impose upon them, and in some cases this adaptation is exceedingly striking. Especially is this so in the many instances of what is called protective coloration, where the animal comes to resemble its surroundings so closely that it may reasonably be supposed to cheat even the keenest sighted enemy. Surely, we are told, such perfect adaptation could hardly have arisen through the mere survival of chance sports. Surely there must be some guiding hand moulding the species into the required shape. The argument is an old one. For John Ray that guiding hand was the superior wisdom of the Creator: for the modern Darwinian it is Natural Selection controlling the direction of variation. Mendelism certainly offers no suggestion of any such controlling force. It interprets the
For that special group of adaptation phenomena classed under the head of Mimicry, Mendelism seems to offer an interpretation simpler than that at present in vogue. This perhaps may be more clearly expressed by taking a specific case. There is in Africa a genus of Danaine butterflies known as Amauris, and there are reasons for considering that the group to which it belongs possesses properties which render it unpalatable to vertebrate enemies such as birds or monkeys. In the same region is also found the genus Euralia belonging to the entirely
One of the species of Euralia occurs in two very distinct forms (Pl. VI.), which were previously regarded as separate species under the names E. wahlbergi and E. mima. These two forms respectively resemble Amauris dominicanus and A. echeria. For purposes of argument we will assume A. echeria to be the more recent form of the two. On the modern Darwinian view certain individuals of A. dominicanus gradually diverged from the dominicanus type and eventually reached the echeria type, though why this should have happened does not appear to be clear. At the same time those specimens which tended to vary in the direction of A. echeria in places where this species was more abundant than A. dominicanus were encouraged by natural selection, and under its guiding hand the form mima eventually arose from wahlbergi.
According to Mendelian views, on the other hand,
It is interesting to recall that in earlier years Darwin was inclined to ascribe more importance to "sports" as opposed to continuous minute variation, and to consider that they might play a not inconsiderable part in the formation of new varieties in nature. This view, however, he gave up later, because he thought that the relatively rare sport or mutation would rapidly disappear through the swamping effects of crossing with the more abundant normal form, and so, even though favoured by natural selection, would never succeed in establishing itself. Mendel's discovery has eliminated this difficulty. For suppose that the sport differed from the normal in the loss of a factor and were recessive. When mated with the normal this character would seem to disappear, though, of course, half of the gametes of its progeny would bear it. By continual crossing with normals a small proportion of heterozygotes would eventually be scattered among the population, and as soon as any two of these mated together the recessive sport would appear in one quarter of their offspring.
A suggestive contribution to this subject was recently made by G.H. Hardy. Considering the distribution of a single factor in a mixed population consisting of the heterozygous and the two homozygous forms he showed that such a population breeding at random rapidly fell into a
p. | 2q. | r. |
1 | 2 | 1 |
1 | 4 | 4 |
1 | 6 | 9 |
1 | 8 | 16 |
1 | 20,000 | 100,000,000 |
1 | 2n | n2 |
This, of course, assumes that all three classes are equally fertile, and that no form of selection is taking place to the
One last question with regard to evolution. How far does Mendelism help us in connection with the problem of the origin of species? Among the plants and animals with which we have dealt we have been able to show that distinct differences, often considerable, in colour, size, and structure, may be interpreted in terms of Mendelian factors. It is not unlikely that most of the various characters which the systematist uses to mark off one species from another, the so-called specific characters, are of this nature. They serve as convenient labels, but are not essential to the conception of species. A systematist who defined the wild sweet pea could hardly fail to include in his definition such characters as the procumbent habit, the tendrils, the form of the pollen, the shape of the flower, and its purple colour. Yet all these and other characters have been proved to depend upon the presence of definite factors which can be removed by appropriate crossing. By this means we can produce a small plant a few inches in height with an erect habit of growth, without tendrils, with round instead of oblong pollen, and with colourless deformed flowers quite different
CHAPTER XIV
ECONOMICAL
Since heredity lies at the basis of the breeder's work, it is evident that any contribution to a more exact knowledge of this subject must prove of service to him, and there is no doubt that he will be able to profit by Mendelian knowledge in the conduct of his operations. Indeed, as we shall see later, these ideas have already led to striking results in the raising of new and more profitable varieties. In the first place, heredity is a question of individuals. Identity of appearance is no sure guide to reproductive qualities. Two individuals similarly bred and indistinguishable in outward form may nevertheless behave entirely differently when bred from. Take, for instance, the family of sweet peas shown on Plate IV. The F2 generation here consists of seven distinct types, three sorts of purples, three sorts of reds, and whites. Let us suppose that our object is to obtain a true breeding strain of the pale purple picotee form. Now from the proportions in which they come we know that the dilute colour is due to the absence of the factor which intensifies the colour. Consequently the picotee cannot throw the
Such cases as these of the sweet pea throw a fresh light upon another of the breeder's conceptions, that of purity of type. Hitherto the criterion of a "pure-bred" thing, whether plant or animal, has been its pedigree, and the individual was regarded as more or less pure bred for a given quality according as it could show a longer or shorter list of ancestors possessing this quality. To-day we realise that this is not essential. The pure-bred picotee appears in our F2 family though its parent was a purple bicolor, and its remoter ancestors whites for generations. So also from the cross between pure strains of black and albino rabbits we may obtain in the F2 generation animals of the wild agouti colour which breed as true to type as the pure wild rabbit of irreproachable pedigree. The true test of the pure breeding thing lies not in its ancestry but in the nature of the gametes which have gone to its making. Whenever two similarly constituted gametes unite, whatever the nature of the parents from which they arose, the resulting individual is homozygous in all respects and must consequently breed true. In deciding questions of purity it is to the gamete, and not to ancestry, that our appeal must henceforth be made.
Improvement is after all the keynote to the breeder's operations. He is aiming at the production of a strain which shall combine the greatest number of desirable properties with the least number of undesirable ones. This good quality he must take from one strain, that from another, and that again from a third, while at the same time avoiding all the poor qualities that these different strains possess. It is evident that the Mendelian conception of characters based upon definite factors which are transmitted on a definite scheme must prove of the greatest service to him. For once these factors have been determined, their distribution is brought under control, and they can be associated together or dissociated at the breeder's will. The chief labour involved is that necessary for the determination of the factors upon which the various characters depend. For it often happens that what appears to be a simple character turns out when analysed to depend upon the simultaneous presence of several distinct factors. Thus the Malay fowl breeds true to the walnut comb, as does also the Leghorn to the single comb, and when pure strains are crossed all the offspring have walnut combs. At first sight it would be not unnatural to regard the difference as dependent upon the presence or absence of a single factor. Yet, as we have already seen, two other types of comb, the pea and the rose, make their appearance in the F2 generation. Analysis shows that the difference between the walnut
An excellent example of the practical application of Mendelian principles is afforded by the experiments which Professor Biffen has recently carried out in Cambridge.
Curves to illustrate the influence of selection.
It may be objected that it is often with small differences rather than with the larger and more striking ones that the breeder is mainly concerned. It does not matter much to him whether the colour of a pea flower is purple or pink or white. But it does matter whether the plant bears rather larger seeds than usual, or rather more of them. Even a small difference when multiplied by the
A | fluctuating | between | 4 | and | 16 | with | a mean of | 10 | |
B | " | " | 6 | " | 18 | " | " | 12 | |
C | " | " | 8 | " | 20 | " | " | 14 |
Curves to illustrate the conception of pure lines in a population.
as is shown in Fig. 31. A seed that weighs 12 grains may belong to any of these three strains. It may be an average seed of B, or a rather large seed of A, or a rather small seed of C. If it belongs to B its offspring will average 12 grains, if to A they will average 10 grains, and if to C they will average 14 grains. Seeds of similar weight may give a different result because they happen to be fluctuations of different pure lines. But within the pure line any seed, large or small, produces the average result for that line. Thus a seed of line C which weighs 20 grains will give practically the same result as one that weighs 10 grains.
On this view we can understand why selection of the largest seed raises the average weight in the next generation. We are picking out more of C and less of A and B, and as this process is repeated the proportion of C gradually increases and we get the appearance of selection
Since the publication of Darwin's famous work upon the effects of cross and self fertilisation, it has been generally accepted that the effect of a cross is commonly, though not always, to introduce fresh vigour into the offspring, though why this should be so we are quite at a loss to explain. Continued close inbreeding, on the contrary, eventually leads to deterioration, though, as in many self-fertilised plants, a considerable number of generations may elapse before it shows itself in any marked degree. The fine quality of many of the seedsman's choice varieties of vegetables probably depends upon the fact that they had resulted from a cross but a few generations back, and it is possible that they often oust the older kinds not because they started as something intrinsically better, but because the latter had gradually deteriorated through continuous self-fertilisation. Most breeders are fully alive to the beneficial results of a cross so far as vigour is concerned, but they often hesitate to embark upon it owing to what was held
Nor is the problem one that concerns self-fertilised plants only. Plants that are reproduced asexually often appear to deteriorate after a few generations unless a sexual generation is introduced. New varieties of potato, for example, are frequently put upon the market, and their excellent qualities give them a considerable vogue. Much is expected of them, but time after time they deteriorate in a disappointing way and are lost to sight. It is not improbable that we are here concerned with a case in which the plants lose their vigour after a few asexual generations of reproduction from tubers, and can only recover it with the stimulus that results from the interpolation of a sexual generation. Unfortunately this generally means that the variety is lost, for owing to the haphazard way in which new kinds of potatoes are reproduced it is probable that most cultivated varieties are complex heterozygotes. Were the potato plant subjected to careful analysis and the various factors determined upon which its variations depend, we should be in a position to remake continually any good potato without
The application of Mendelian principles is likely to prove of more immediate service for plants than animals, for owing to the large numbers which can be rapidly raised from a single individual and the prevalence of self-fertilisation, the process of analysis is greatly simplified. Even apart from the circumstance that the two sexes may sometimes differ in their powers of transmission, the mere fact of their separation renders the analysis of their properties more difficult. And as the constitution of the individual is determined by the nature and quality of its offspring, it is not easy to obtain this knowledge where the offspring, as in most animals, are relatively few. Still, as has been abundantly shown, the same principles hold good here also, and there is no reason why the process of analysis, though more troublesome, should not be effectively carried out. At the same time, it affords the breeder a rational basis for some familiar but puzzling phenomena. The fact, for instance, that certain characters often "skip a generation" is simply the effect of dominance in F1 and the reappearance of the recessive character in the following generation. "Reversion" and "atavism," again, are phenomena which are no longer mysterious, but can be simply expressed in Mendelian terms as we have already suggested in Chap. VI. The occasional appearance of a sport in a supposedly pure strain is
Or, again, suppose that a breeder has a chestnut mare and wishes to make certain of a bay foal from her. We know that bay is dominant to chestnut, and that if a homozygous bay stallion is used a bay foal must result. In his choice of a sire, therefore, the breeder must be guided by the previous record of the animal, and select one that has never given anything but bays when put to either bay or chestnut mares. In this way he will assure himself of a bay foal from his chestnut mare, whereas if the record of the sire shows that he has given chestnuts he will be heterozygous, and the chances of his getting a bay or a chestnut out of a chestnut mare are equal.
It is not impossible that the breeder may be unwilling to test his animals by crossing them with a different breed through fear that their purity may be thereby impaired, and that the influence of the previous cross may show itself in succeeding generations. He might hesitate, for instance, to test his polled cows by crossing them with a horned bull for fear of getting horned calves when the cows were afterwards put to a polled bull of their own breed. The belief in the power of a sire to influence subsequent generations, or telegony as it is sometimes called, is not uncommon even to-day. Nevertheless, carefully conducted experiments by more than one competent observer have failed to elicit a single shred of unequivocal evidence in favour of the view. Until we have evidence based upon experiments which are capable of
Heterozygous forms play a greater part in the breeding of animals than of plants, for many of the qualities sought after by the breeder are of this nature. Such is the blue of the Andalusian fowl, and, according to Professor Wilson, the roan of the Shorthorn is similar, being the heterozygous form produced by mating red with white. The characters of certain breeds of canaries and pigeons again appear to depend upon their heterozygous nature. Such forms cannot, of course, ever be bred true, and where several factors are concerned they may when bred together produce but a small proportion of offspring like themselves. As soon, however, as their constitution has been analysed and expressed in terms of Mendelian factors, pure strains can be built up which when crossed will give nothing but offspring of the desired heterozygous form.
The points with which the breeder is concerned are often fine ones, not very evident except to the practised eye. Between an ordinary Dutch rabbit and a winner, or between the comb of a Hamburgh that is fit to show and one that is not, the differences are not very apparent to the uninitiated. Whether Mendelism will assist the breeder in the production of these finer points is at present doubtful. It may be that these small differences are heritable, such as those that form the basis of Johannsen's pure lines. In this case the breeder's outlook is
CHAPTER XV
MAN
Normal and brachydactylous hands placed together for comparison. (From Drinkwater.)
Though the interest attaching to heredity in man is more widespread than in other animals, it is far more difficult to obtain evidence that is both complete and accurate. The species is one in which the differentiating characters separating individual from individual are very numerous, while the number of the offspring is comparatively few, and the generations are far between. For these reasons, even if it were possible, direct experimental work with man would be likely to prove both tedious and expensive. There is, however, another method besides the direct one from which something can be learned. This consists in collecting all the evidence possible, arranging it in the form of pedigrees, and comparing it with standard cases already worked out in animals and plants. In this way it has been possible to demonstrate in man the existence of several characters showing simple Mendelian inheritance. As few besides medical men have hitherto been concerned practically with heredity, such records as exist are, for the most part, records of deformity or of disease. So it happens that most of the
Pedigree of Drinkwater's brachydactylous family. The affected members are indicated by black and the normals by light circles.
The evidence available from pedigrees has revealed the simplest form of Mendelian inheritance in several human defects and diseases, among which may be mentioned presenile cataract of the eyes, an abnormal form of skin thickening in the palms of the hands and soles of the feet, known as tylosis, and epidermolysis bullosa, a disease in which the skin rises up into numerous bursting blisters.
Among the most interesting of all human pedigrees is one recently built up by Mr. Nettleship from the records of a night-blind family living near Monpelier in the south of France. In night-blind people the retina is insensitive to light which falls below a certain intensity, and such people are consequently blind in failing daylight or in moonlight. As the Monpelier case had excited interest for some time, the records are unusually complete. They commence with a certain Jean Nougaret, who was born in 1637, and suffered from night-blindness, and they end for the present with children who are to-day but a few years of age. Particulars are known of over 2000 of the descendants of Jean Nougaret. Through ten generations and nearly three centuries the affection has behaved as a Mendelian dominant, and there is no sign that long-continued marriage with folk of normal vision has produced any amelioration of the night-blind state.
Pedigree of a hÆmophilic family. Affected (all males) represented by black, and normals of both sexes by light circles. (From Stahel.)
Besides cases such as these where a simple form of Mendelian inheritance is obviously indicated, there are others which are more difficult to read. Of some it may be said that on the whole the peculiarity behaves as though it were an ordinary dominant; but that exceptions occur in which affected children are born to unaffected parents. It is not impossible that the condition may, like colour in the sweet pea, depend upon the presence or absence of more than one factor. In none of these cases, however, are the data sufficient for determining with certainty whether this is so or not.
A group of cases of exceptional interest is that in which the incidence of disease is largely, if not absolutely, restricted to one sex, and so far as is hitherto known the burden is invariably borne by the male. In the inheritance of colour-blindness (p. 117) we have already discussed an instance in which the defect is rare, though not
Though by far the greater part of the human evidence relates to abnormal or diseased conditions, a start has been made in obtaining pedigrees of normal characters. From the ease with which it can be observed, it was natural that eye-colour should be early selected as a subject of investigation, and the work of Hurst and others
Even this fact is of considerable importance, for it at once suggests that the present systems of classification of eye-colours, to which some anthropologists attach considerable weight, are founded on a purely empirical and unsatisfactory basis. Intensity of colour is the criterion at present in vogue, and it is customary to arrange the eye-colours in a scale of increasing depth of shade, starting with pale greys and ending with the deepest browns. On this system the lighter greens are placed among the blues. But we now know that blues may differ from the deep browns in the absence of only a single factor, while, on the other hand, the difference between a blue and a green may be a difference dependent upon more than one factor. To what extent eye-colour may be valuable as a criterion of race it is at present impossible to say, but if it is ever to become so, it will only be after a searching Mendelian analysis has disclosed the factors upon which the numerous varieties depend.
A discussion of eye-colour suggests reflections of another kind. It is difficult to believe that the markedly different states of pigmentation which occur in the same species are not associated with deep-seated chemical differences influencing the character and bent of the individual.
The inheritance of mental characters is often elusive, for it is frequently difficult to appraise the effects of early environment in determining a man's bent. That ability can be transmitted there is no doubt, for this is borne out by general experience, as well as by the numerous cases of able families brought together by Galton and others. But when we come to inquire more precisely what it is that is transmitted we are baffled. A distinguished son follows in the footsteps of a distinguished father. Is this due to the inheritance of a particular mental aptitude, or is it an instance of general mental ability displayed in a field rendered attractive by early association? We have
The analysis of mental characters will no doubt be very difficult, and possibly the best line of attack is to search for cases where they are associated with some physical feature such as pigmentation. If an association of this kind be found, and the pigmentation factors be determined, it is evident that we should thereby obtain an insight into the nature of the units upon which mental conditions depend. Nor must it be forgotten that mental qualities, such as quickness, generosity, instability, etc.,—qualities which we are accustomed to regard as convenient units in classifying the different minds with which we are daily brought into contact,—are not necessarily qualities that correspond to heritable units. Effective mental ability is largely a matter of temperament, and this in turn is quite possibly dependent upon the various secretions produced by the different tissues of the body. Similar nervous systems associated with different livers might conceivably result in individuals upon whose mental ability the world would pass a very different judgment. Indeed, it is not at all impossible
Little as is known to-day of heredity in man, that little is of extraordinary significance. The qualities of men and women, physical and mental, depend primarily upon the inherent properties of the gametes which went to their making. Within limits these qualities are elastic, and can be modified to a greater or lesser extent by influences brought to bear upon the growing zygote, provided always that the necessary basis is present upon which these influences can work. If the mathematical faculty has been carried in by the gamete, the education of the zygote will enable him to make the most of it. But if the basis is not there, no amount of education can transform that zygote into a mathematician. This is a matter of common experience. Neither is there any reason for supposing that the superior education of a
Better hygiene and better education, then, are good for the zygote, because they help him to make the fullest use of his inherent qualities. But the qualities themselves remain unchanged in so far as the gamete is concerned, since the gamete pays no heed to the intellectual development of the zygote in whom he happens to dwell. Nevertheless, upon the gamete depend those inherent faculties which enable the zygote to profit by his opportunities, and, unless the zygote has received them from the gamete, the advantages of education are of little worth. If we are bent upon producing a permanent betterment that shall be independent of external circumstances, if we wish the national stock to become inherently more vigorous in mind and body, more free from congenital physical defect and feeble mentality, better able to assimilate and act upon the stores of knowledge which have been accumulated through the centuries, then it is the gamete that we must consult. The saving grace is with the gamete, and with the gamete alone.
People generally look upon the human species as having two kinds of individuals, males and females, and it is for them that the sociologists and legislators frame their schemes. This, however, is but an imperfect view to
APPENDIX
As some readers may possibly care to repeat Mendel's experiments for themselves, a few words on the methods used in crossing may not be superfluous. The flower of the pea with its standard, wings, and median keel is too familiar to need description. Like most flowers it is hermaphrodite. Both male and female organs occur on the same flower, and are covered by the keel. The anthers, ten in number, are arranged in a circle round the pistil. As soon as they are ripe they burst and shed their pollen on the style. The pollen tubes then penetrate the stigma, pass down the style, and eventually reach the ovules in the lower part of the pistil. Fertilisation occurs here. Each ovule, which is reached by a pollen tube, swells up and becomes a seed. At the same time the fused carpels enclosing the ovules enlarge to form the pod. When this, the normal mode of fertilisation, takes place, the flower is said to be selfed.
In crossing, it is necessary to emasculate a flower on the plant chosen to be the female parent. For this purpose a young flower must be taken in which the anthers have not yet burst. The keel is depressed, and the stamens bearing the anthers are removed at their base by a
The above method applies also to sweet peas, with these slight modifications. As the anthers ripen relatively sooner in this species, emasculation must be performed at a rather earlier stage. It is generally safe to choose a bud about three parts grown. The interval between emasculation and fertilisation must be rather longer. Two to three days is generally sufficient. Further, the sweet pea is visited by the leaf-cutter bee, Megachile, which, unlike the honey bee, is able to depress the keel and gather pollen. If the presence of this insect is suspected, it is desirable to guard against the risk of admixture of
INDEX
Abraxas grossulariata, 99
"Acquired" characters, 14
Adaptation, 143
Agouti mice, 50
Albino mice, 50
Albinos, nature of, 53
Amauris, 144
Analysis of types, 156
Ancestral Heredity, Law of, 13
Andalusian fowls, 70
Axil colour in sweet peas, 93
Bateson, W., 14, 29, 55, 116, 132, 141
Biffen, R. H., 157
Blue Andalusian fowls, 71
Brachydactyly, 171
Bryony, 120
Bush sweet peas, 63
Castle, 132
Colour, nature of, in flowers, 48
Colour-blindness, 117
Coupling of characters in gametes, 93
"Cupid" sweet peas, 62
Currant moth, 99
Discontinuity in variation, 14
Dominant characters, 18
Doncaster, L., 99
Drinkwater, H., 172
Dutch rabbits, 60
Factor, definition of, 31
Factors, interaction of, 42
Fertilisation, 3
Fertilisation, self- and cross-, 163
Fixation of varieties, 153
Fluctuations, 138
HÆmophilia, 176
Hardy, G. H., 147
Heterozygote, definition of, 28
Heterozygote, of intermediate form, 68
Himalayan rabbits, 60
Homostyle primulas, 56
Homozygote, definition of, 28
Hooded sweet peas, 89
Horses, bay and chestnut in, 167
Johannsen, W., 160
Lop-eared rabbits, 132
Mental characters, 180
Mice, inheritance of coat colour in, 50
Mimicry, 143
Mirabilis, 151
Morgan, T. H., 116
Mulattos, 129
Pararge egeria, 132
Parkinson, J., 122
Pea comb, 33
Peas, coloured flowers in, 24
Peas, tall and dwarf, 18
Pigeons, 86
Pin-eye in primulas, 55
Pisum, 17
Pollen, 3
Pollen of sweet peas, 92
Pomace fly, 115
Population, inheritance of characters in a, 147
Presence and Absence theory, 35
Pure lines, 162
Purity of gametes, 24
Purity of type, 155
Ratios, Mendelian—
3:1, 20
9:3:4, 51
9:7, 49
Ray, John, 143
Recessive characters, 19
Repulsion between factors, 90
in rabbits, 59
in sweet peas, 62
in fowls, 65
in pigeons, 65
Rose comb, 33
Seeds, nature of, 4
Segregation, 22
Selection, 162
Sheep, horns in, 76
Single comb, 32
Species, nature of, 150
Species, origin of, 11
Speckled wood butterfly, 132
Spermatozoa, 3
Sports, 147
Staples-Browne, R., 66
Sterility, 151
Sterility in sweet peas, 93
Stocks, double, 122
Stocks, hoariness in, 54
history of, 82
inheritance of hood in, 89
inheritance of size in, 62
Unit-character, definition of, 31
Walnut comb, 33
Weismann, A., 13
Wheat, beard in, 74
experiments with, 157
White, dominant in poultry, 72
Wilson, J., 168
Yellow mice, 119
Zygotes, nature of, 5