The appearance of a new star in the constellation of the Swan in the autumn of 1876 promises to throw even more light than was expected on some of the most interesting problems with which modern astronomy has to deal. It was justly regarded as a circumstance of extreme interest that so soon after the outburst of the star which formed a new gem in the Northern Crown in May, 1866, another should have shone forth under seemingly similar conditions. And when, as time went on, it appeared that in several respects the new star in the Swan differed from the new star in the Crown, astronomers found fresh interest in studying, as closely as possible, the changes presented by the former as it gradually faded from view. But they were not prepared to expect what has actually taken place, or to recognize so great a difference of character between these two new stars, that whereas one seemed throughout its visibility to ordinary eyesight, and even until the present time, to be justly called a star, the other should so change as to render it extremely doubtful whether at any time it deserved to be regarded as a star or sun. Few astronomical phenomena, even of those observed during this century (so fruitful in great astronomical discoveries), seem better worthy of thorough investigation and study than those presented by the two stars which appeared in the Crown and in the Swan, in 1866 and 1876 respectively. Let us briefly consider the history of the star of 1866 in the first place, and then turn our thoughts to the more surprising and probably more instructive history of the star which shone out in November, 1876. In the first place, however, I would desire to make a few remarks on the objections which have been expressed by an observer to whom astronomy is indebted for very useful work, against the endeavour to interpret the facts ascertained respecting these so-called new stars. M. Cornu, who made some among the earliest spectroscopic observations of the star in Cygnus, after describing his results, proceeded as follows:—“Grand and seductive though the task may be of endeavouring to draw from observed facts inductions respecting the physical state of this new star, respecting its temperature, and the chemical reactions of which it may be the scene, I shall abstain from all commentary and all hypothesis on this subject. I think that we do not yet possess the data necessary for arriving at useful conclusions, or at least at conclusions capable of being tested: however attractive hypotheses may be, we must not forget that they are outside the bounds of science, and that, far from serving science, they seriously endanger its progress.” This, as I ventured to point out at the time, is utterly inconsistent with all experience. M. Cornu’s objection to theorizing when he did not see his way to theorizing justly, is sound enough; but his general objection to theorizing is, with all deference be it said, sheerly absurd. It will be noticed that I say theorizing, not hypothesis-framing; for though he speaks of hypotheses, he in reality is describing theories. The word hypothesis is too frequently used in this incorrect sense—perhaps so frequently that we may almost prefer sanctioning the use to substituting the correct word. But the fact really is, that many, even among scientific writers, Since the preceding paragraph was written, my attention has been attracted to the words of another observer more experienced than M. Cornu, who has not only expressed the same opinion which I entertain respecting M. Cornu’s ill-advised remark, but has illustrated in a very practical way, and in this very case, how science gains from commentary and theory upon observed facts. Herr VÖgel considers “that the fear that an hypothesis” (he, also, means a theory here) “might do harm to science is only justifiable in very rare cases: in most cases it will further science. In the first place, it draws the attention of the observer to things which but for the hypothesis might have been neglected. Of course if the observer is so strongly influenced that in favour of an hypothesis he sees things which do not exist—and this may happen sometimes—science may for a while be arrested in its progress, but in that case the observer is The star which shone out in the Northern Crown in May, 1866, would seem to have grown to its full brightness very quickly. It is not necessary that I should here consider the history of the star’s discovery; but I think all who have examined that history agree in considering that whereas on the evening of May 12, 1866, a new star was shining in the Northern Crown with second-magnitude brightness, none had been visible in the same spot with brightness above that of a fifth-magnitude star twenty-four hours earlier. On ascertaining, however, the place of the new star, astronomers found that there had been recorded in Argelander’s charts and catalogue a star of between the ninth and tenth magnitude in this spot. The star declined very rapidly in brightness. On May 13th it appeared of the third magnitude; on May 16th it had sunk to the fourth magnitude; on the 17th to the fifth; on the 19th to the seventh; and by the end of the month it shone only as a telescopic star of the ninth magnitude. It is now certainly not above the tenth magnitude. Examined with the spectroscope, this star was found to Unfortunately, we have not accordant accounts of the changes which the spectrum of this star underwent as the star faded out of view. Wolf and Rayet, of the Paris Observatory, assert that when there remained scarcely any trace of the continuous spectrum, the four bright lines were still quite brilliant. But Huggins affirms that this was not the case in his observations; he was “able to see the continuous spectrum when the bright lines could be scarcely distinguished.” As the bright lines certainly faded out of view eventually, we may reasonably assume that the French observers were prevented by the brightness of the lines from recognizing the continuous spectrum at that particular stage of the diminution of the star’s light when the continuous spectrum had faded considerably but the hydrogen lines little. Later, the continuous spectrum ceased to diminish in brightness, while the hydrogen lines rapidly faded. Thereafter the continuous spectrum could be discerned, and with greater and greater distinctness as the hydrogen lines faded out. Now, in considering the meaning of the observed changes in the so-called “new star,” we have two general theories to consider. One of these theories is that to which Dr. Huggins would seem to have inclined, though he did not definitely “The ignited hydrogen gas in burning produced the light corresponding to the two bright bands in the red and green; the remaining bright lines were not, however, coincident with those of oxygen, as might have been expected. According to this theory, the burning hydrogen must have greatly increased the heat of the solid matter of the photosphere and brought it into a state of more intense incandescence and luminosity, which may explain how the formerly faint star could so suddenly assume such remarkable brilliance; the liberated hydrogen became exhausted, the flame gradually abated, and with the consequent cooling the photosphere became less vivid, and the star returned to its original condition.” According to the other theory, advanced by Meyer and Klein, the blazing forth of this new star may have been occasioned by the violent precipitation of some great mass, perhaps a planet, upon a fixed star, “by which the momentum of the falling mass would be changed into molecular motion,” and result in the emission of light and heat. “It might even be supposed that the new star, through its rapid motion, may have come in contact with one of the nebulÆ which traverse in great numbers the realms of space in every direction, and which from their gaseous condition must possess a high temperature; such a collision would necessarily set the star in a blaze, and occasion the most vehement ignition of its hydrogen.” If we regard these two theories in their more general aspect, considering one as the theory that the origin of disturbance was within the star, and the other as the theory that the origin of disturbance was outside the star, they seem to include all possible interpretations of the observed A planet could not very well come into final conflict with its sun at one fell swoop. It would gradually draw nearer and nearer, not by the narrowing of its path, but by the change of the path’s shape. The path would, in fact, become more and more eccentric; until at length, at its point of nearest approach, the planet would graze its primary, exciting an intense heat where it struck, but escaping actual destruction that time. The planet would make another circuit, and again graze the sun, at or near the same part of the planet’s path. For several circuits this would continue, the grazes not becoming more and more effective each time, but rather less. The interval between them, however, would grow continually less and less; at last the time would come when the planet’s path would be reduced to the circular form, its globe touching the sun’s all the way round, and then the planet would very quickly be reduced to vapour and partly burned up, its substance being absorbed by its sun. But all successive grazes would be indicated to us by accessions of lustre, the period between each seeming outburst being only a few months at first, and gradually becoming less and less (during a long course of years, perhaps even of centuries) until the planet was finally destroyed. Nothing of this sort has happened in the case of any so-called new star. As for the rush of a star through a nebulous mass, that is a theory which would scarcely be entertained by any one acquainted with the enormous distances separating the gaseous star-clouds But while thus advancing objections, which seem to me irrefragable, against the theory that either a planet or a nebula (still less another small star) had come into collision with the orb in Corona which shone out so splendidly for a while, I advanced another view which seemed to me then and seems now to correspond well with phenomena, and to render the theory of action from without on the whole preferable to the theory of outburst from within. I suggested that, far more probably, an enormous flight of large meteoric masses travelling around the star had come into partial collision with it in the same way that the flight of November meteors comes into collision with our earth thrice in each century, and that other meteoric flights may occasionally come into collision with our sun, producing the disturbances which occasion the sun-spots. As I pointed out, in conceiving this we are imagining nothing new. A meteoric flight capable of producing the suggested effects would differ only in kind from meteoric flights which are known to circle around our own sun. The meteors which produce the November displays of falling stars follow in the track of a comet barely visible to the naked eye. “May we not reasonably assume that those glorious comets which have not only been visible but conspicuous, shining even in the day-time, and brandishing around tails, which like that of the ‘wonder in heaven, the great dragon,’ seemed to ‘draw the third part of the stars of heaven,’ are followed by much denser flights of much more massive meteors? Some of these giant comets have paths which This theory corresponds far better also with observed facts than the theory of Meyer and Klein, in other respects than simply in antecedent probability. It can easily be shown that if a planet fell upon a sun in such sort as to become part of his mass, or if a nebula in a state of intense heat excited the whole frame of a star to a similar degree of heat, the effects would be of longer duration than the observed accession of heat and light in the case of all the so-called “new stars.” It has been calculated by Mr. Croll (the well-known mathematician to whom we owe the most complete investigations yet made into the effect of the varying eccentricity of the earth’s orbit on the climate of the earth) that if two suns, each equal in mass to one-half of our sun, came into collision with a velocity of 476 miles per second, light and heat would be produced which would cover the present rate of the sun’s radiation for fifty million years. Now although it certainly does not follow from this that such a collision would result in the steady emission of so much light and heat as our sun gives out, for a period of fifty million years, but is, on the contrary, certain that there This has been urged as an objection even to the term star as applied to these suddenly appearing orbs. But the objection is not valid; because there is no reason whatever for supposing that even our own sun might not be excited by the downfall of meteoric or cometic matter upon it to a sudden and short-lasting intensity of splendour and of heat. Mr. Lockyer remarks that, if any star, properly so called, were to become a “a world on fire,” or “burst into flames,” or, in less poetical language, were to be driven either into a condition of incandescence absolutely, or to have its incandescence increased, there can be little doubt that thousands or millions of years would be necessary for the reduction of its light to its original intensity. This must, however, have been written in forgetfulness of some facts which have been ascertained respecting our sun, and which indicate pretty clearly that the sun’s surface might be roused to a temporary intensity of splendour and heat without any corresponding increase in the internal heat, or in the activity of the causes, whatever they may be, to which the sun’s steady emissions of light and heat are due. For instance, most of my readers are doubtless familiar with the account (an oft-told tale, at any rate) of the sudden increase in the splendour of a small portion of the sun’s surface on September 1, 1859, observed by two astronomers independently. The appearances described corresponded “In many places,” says Sir J. Herschel, “the telegraph wires struck work. At Washington and Philadelphia, the electric signalmen received severe electric shocks. At a station in Norway, the telegraphic apparatus was set fire to, and at Boston, in North America, a flame of fire followed the pen of Bain’s electric telegraph, which writes down the message upon chemically prepared paper.” We see, then, that most certainly the sun can be locally excited to increased emission of light and heat, which nevertheless may last but for a very short time; and we have good reason for believing that the actual cause of the sudden change in his condition was the downfall of meteoric matter upon a portion of his surface. We may well believe that, whatever the cause may have been, it was one which might in the case of other suns, or even in our sun’s own case, affect a much larger portion of the photosphere. If this happened All that can be said in the way of negative evidence, so far as our own sun is concerned, is that we have no reason for believing that our sun has, at any time within many thousands of years, been excited to emit even for a few hours a much greater amount of light and heat than usual; so that it has afforded no direct evidence in favour of the belief that other suns may be roused to many times their normal splendour, and yet very quickly resume that usual lustre. But we know that our sun, whether because of his situation in space, or of his position in time (that is, the stage of solar development to which he has at present attained), belongs to the class of stars which shine with steady lustre. He does not vary like Betelgeux, for example, which is not only a sun like him as to general character, but notably a larger and more massive orb. Still less is he like Mira, the Wonderful Star; or like that more wonderful variable star, Eta ArgÛs, which at one time shines with a lustre nearly equalling that of the bright Sirius, and anon fades away almost into utter invisibility. He is a variable sun, for we cannot suppose that the waxing and waning of the sun-spot period leaves his lustre, as a whole, altogether unaffected. But his variation is so slight that, with all ordinary methods of photometric measurement by observers stationed on worlds which circle around other suns, it must be absolutely undiscernible. We do not, however, reject Betelgeux, or Mira, or even Eta ArgÛs, from among stars because they vary in lustre. We recognize the fact that, as in glory, so in condition and in changes of condition, one star differeth from another. Doubtless there are excellent reasons for rejecting the theory that a massive body like a planet, or a nebulous mass like those which are found among the star-depths (the least There are, indeed, reasons for believing, not only, as I have already indicated, that the outburst in the sun was caused by the downfall of meteoric masses, but that those “Of all the comets on record,” says Sir J. Herschel, “that approached nearest the sun; indeed, it was at first supposed that it had actually grazed the sun’s surface, but it proved to have just missed by an interval of not more than 80,000 miles—about a third of the distance of the moon from the earth, which (in such a matter) is a very close shave indeed to get clear off.” We can well believe that the two meteors which produced the remarkable outburst of 1859 may have been stragglers from the main body following after that glorious comet. I do not insist upon the connection. In fact, I rather incline to the belief that the disturbance in 1859, occurring as it did about the time of maximum sun-spot frequency, was caused by meteors following in the train of some as yet undiscovered comet, circuiting the sun in about eleven years, the spots Let us consider now the evidence obtained from the star in Cygnus, noting especially in what points it resembles, and in what points it differs from, the evidence afforded by the star in the Crown. The new star was first seen by Professor Schmidt at a quarter to six on the evening of November 24. It was then shining as a star of the third magnitude, in the constellation of the Swan, not very far from the famous but faint star 61 Cygni—which first of all the stars in the northern heavens had its distance determined by astronomers. The three previous nights had unfortunately been dark; but Schmidt is certain that on November 20 the star was not visible. At midnight, November 24, its light was very yellow, and it was somewhat brighter than the well-known star Eta Pegasi, which marks the forearm of the Flying Horse. Schmidt sent news of the discovery to Leverrier, at Paris; but neither he nor Leverrier telegraphed the news, as they should have done, to Greenwich, Berlin, or the United States. Many precious opportunities for observing the spectrum of the new-comer at the time of its greatest brilliancy were thus lost. On December 2, the spectrum, as observed by M. Cornu, consisted almost entirely of bright lines. On December 5, he determined the position of these lines, though clouds still greatly interfered with his labours. He found three bright lines of hydrogen, the strong double sodium line in the orange-yellow, the triple magnesium line in the yellow-green, and two other lines—one of which seemed to agree exactly in position with a bright line belonging to the solar corona. All these lines were shining upon the rainbow-tinted background of the spectrum, which was relatively faint. He drew the conclusion that in chemical constitution the atmosphere of the new star was constituted exactly like the solar sierra. Herr VÖgel’s observations commenced on December 5, and were continued at intervals until March 10, when the star had sunk to below the eighth magnitude. VÖgel’s earlier observations agreed well with Cornu’s. He remarks, however, that Cornu’s opinion as to the exact resemblance of the chemical constitution of the star’s atmosphere with that of the sierra is not just, for both Cornu and himself noticed one line which did not correspond with any line belonging to the solar sierra; and this line We have also observations by F. Secchi, at Rome, Mr. Copeland, at Dunecht, and Mr. Backhouse, of Sunderland, all agreeing in the main with the observations made by VÖgel and Cornu. In particular, Mr. Backhouse observed, as VÖgel had done, that whereas in December the greenish-blue line of hydrogen, F, was brighter than the nitrogen line (also in the green-blue, but nearer the red end than F), on January 6 the nitrogen line was the brightest of all the lines in the spectrum of the new star. VÖgel, commenting on the results of his observations up to March 10, makes the following interesting remarks (I quote, with slight verbal alterations, from a paraphrase in a weekly scientific journal):—“A stellar spectrum with bright lines is always a highly interesting phenomenon for any one acquainted with stellar spectrum analysis, and well worthy of deep consideration. Although in the chromosphere (sierra) of our sun, near the limb, we see numerous bright lines, yet only dark lines appear in the spectrum whenever we produce a small star-like image of the sun, and examine it through the spectroscope. It is generally believed that the bright lines in some few star-spectra result from gases which break forth from the interior of the luminous body, the temperature of which is higher than that of the surface of the body—that is, the phenomenon is the same sometimes observed in the spectra of solar spots, where incandescent hydrogen rushing out of the hot interior becomes visible above the cooler spots through the hydrogen lines turning bright. But this is not the only possible explanation. We may also suppose that the atmosphere VÖgel considers that ZÖllner’s hypothesis has been confirmed in its essential points by the application of spectrum analysis to the stars. We can recognize from the spectrum different stages in the process of cooling, and in some of the fainter stars we perceive indeed that chemical compounds have already formed, and still exist. As to new stars, again, says VÖgel, ZÖllner’s theory seems in nowise contradicted “by the spectral observations made on the two new stars of 1866 and 1876. The bright continuous spectrum, and the bright lines only slightly exceeding it at first” (a description, however, applying correctly only to the star of 1876), “could not be well explained if we only suppose a violent eruption from the interior, which again rendered the surface wholly or partially luminous; but are easily explained if we suppose that the quantity of light is considerably augmented through It thus appears that Herr VÖgel regarded the observations which had been made on this remarkable star up to March 10 as indicating that first there had been an outburst of glowing gaseous matter from the interior, producing the part of the light which gave the bright lines indicative of gaseity, and that then there had followed, as a consequence, the combustion of a portion of the solid and relatively cool crust, causing the continuous part of the spectrum. We may compare what had taken place, on this hypothesis, with the outburst of intensely hot gases from the interior of a volcanic crater, and the incandescence of the lips of the crater in consequence of the intense heat of the out-rushing gases. Any one viewing such a crater from a distance, with a spectroscope, would see the bright lines belonging to the out-rushing gases superposed upon the continuous spectrum due to the crater’s burning lips. VÖgel further supposes that the burning parts of the star soon cooled, the majority of the remaining light (or at any rate the part of the remaining light spectroscopically most effective) being that which came from the glowing gases which had emanated in vast quantities from the star’s interior. “The observations of the spectrum show, beyond doubt,” he says, “that the decrease in the light of the star corresponds with the cooling of its surface. The violet and blue parts decreased more rapidly in intensity than the other parts; and the absorption-bands which crossed the spectrum have gradually become darker and darker.” The reasoning, however, if not altogether unsatisfactory, is by no means so conclusive as Herr VÖgel appears to think. It is not clear how the incandescent portion of the surface The natural explanation of what had thus far been observed is different from that advanced by VÖgel, though we must not assume that because it is the natural, it is necessarily the true explanation. It is this—that the source of that part of the star’s light which gave the bright-line spectrum, or the spectrum indicative of gaseity, belongs to the normal condition of the star, and not to gases poured forth, in consequence of some abnormal state of things, from the sun’s interior. We should infer naturally, though again I say not therefore correctly, that if a star spectroscope had been directed upon the place occupied by the new star before it began to shine with unusual splendour, the bright-line spectrum would have been observed. Some exceptional cause would then seem to have aroused the entire surface of the star to shine with a more intense brightness, the matter thus (presumably) more intensely heated being such as would give out the combined continuous and bright-line The question, be it noted, is simply whether we should regard the kind of light which lasts longest in this star as it fades out of view as more probably belonging to the star’s abnormal brightness or to its normal luminosity. It seems to me there can be little doubt that the persistence of this part of the star’s light points to the latter rather than to the former view. Let it also be noticed that the changes which had been observed thus far were altogether unlike those which had been observed in the case of the star in the Northern Crown, and therefore cannot justly be regarded as pointing to the same explanation. As the star in the Crown faded from view, the bright lines indicative of glowing hydrogen died out, and only the ordinary stellar spectrum remained. In the case of the star in the Swan, the part of the spectrum corresponding to stellar light faded gradually from view, and bright lines only were left, at least as conspicuous parts of the star’s spectrum. So that whereas one orb seemed to have faded into a faint star, the other seemed fading out into a nebula—not merely passing into such a condition as to shine with light indicative of gaseity, but actually so changing as to shine with light of the very tints (or, more strictly, of the very wave-lengths) observed in all the gaseous nebulÆ. The strange eventful history of the new star in Cygnus did not end here, however. We may even say, indeed, that it has not ended yet. But another chapter can already be written. VÖgel ceased from observing the star in March, precisely when observation seemed to promise the most interesting results. At most other observatories, also, no observations Now let us consider the significance of the evidence afforded by this discovery—not perhaps hoping at once to perceive the full meaning of the discovery, but endeavouring to advance as far as we safely can in the direction in which it seems to point. We have, then, these broad facts: where no star had been known, an object has for a while shone with stellar lustre, in this sense, that its light gave a rainbow-tinted spectrum not unlike that which is given by a certain order of stars; this object has gradually parted with its new lustre, and in so doing the character of its spectrum has slowly altered, the continuous portion becoming fainter, and the chief lustre of the bright-line portion shifting from the hydrogen lines to a line which, there is every reason to believe, is absolutely identical with the nebula nitrogen line: Now it cannot, I think, be doubted that, accompanying the loss of lustre in this orb, there has been a corresponding loss of heat. The theory that all the solid and liquid materials of the orb have been vaporized by intense heat, and that this vaporization has caused the loss of the star’s light (as a lime-light might die out with the consumption of the lime, though the flame remained as hot as ever), is opposed by many considerations. It seems sufficient to mention this, that if a mass of solid matter, like a dead sun or planet, were exposed to an intense heat, first raising it to incandescence, and eventually altogether vaporizing its materials, although quite possibly the time of its intensest lustre might precede the completion of the vaporization, yet certainly so soon as the vaporization was complete, the spectrum of the newly vaporized mass would show multitudinous bright lines corresponding to the variety of material existing in the body. No known fact of spectroscopic analysis lends countenance to the belief that a solid or liquid mass, vaporized by intense heat, would shine thenceforth with monochromatic light. Again, I think we are definitely compelled to abandon VÖgel’s explanation of the phenomena by ZÖllner’s theory. The reasons which I have urged above are not only strengthened severally by the change which has taken place in the spectrum of the new star since VÖgel observed it, but an additional argument of overwhelming force has been introduced. If any one of the suns died out, a crust forming over its surface and this crust being either absolutely dark or only shining with very feeble lustre, the sun would still in one respect resemble all the suns which are spread over the heavens—it would show no visible disc, however great the telescopic power used in observing it. If the nearest of all the stars were as large, or even a hundred times as large, as Sirius, and were observed with a telescope of ten times greater magnifying power than any yet It is conceivable (and the possibility must be taken into account in any attempt to interpret the phenomena of the new star) that when shining as a star, the new orb, so far as this unusual lustre was concerned, was of sunlike dimensions. For we cannot tell whether the surface which gave the strong light was less or greater than, or equal to, that which is now shining with monochromatic light. Very likely, if we had been placed where we could have seen the full dimensions of the planetary nebula as it at present exists, we should have found only its nuclear part glowing suddenly with increased lustre, which, after very rapidly attaining its maximum, gradually died out again, leaving the nebula as it had been before. But that the mass now shining with monochromatic light is, I will not say enormously large, but of exceedingly small mean density, so that it is enormously large compared with the dimensions it would have if its entire substance were compressed till it had the same mean density as our own sun, must be regarded as, to all intents and purposes, certain. We certainly have not here, then, the case of a sun which has grown old and dead and dark save at the surface, but within whose interior fire has still remained, only waiting some disturbing cause to enable it for a while to rush forth. If we could suppose that in such a case there could be such changes as the spectroscope has indicated—that the bright lines of the gaseous outbursting matter would, during the earlier period of the outburst, show on a bright continuous background, due to the glowing lips of the opening through which the matter had rushed, but later would shine alone, becoming also fewer in number, till at last only one was left,—we should find ourselves confronted with the stupendous difficulty that that single remaining line is the bright line of So that, if we assume the so-called star in Cygnus to be now like other objects giving the same monochromatic spectrum—and this seems the only legitimate assumption—we are compelled to believe that the light now reaching us comes from a nebulous mass, not from the faintly luminous envelope of a dead sun. Yet, remembering that when at its brightest this orb gave a spectrum resembling in general characteristics that of other stars or suns, and closely resembling even in details that of stars like Gamma CassiopeiÆ, we are compelled by parity of reasoning to infer that when the so-called new star was so shining, the greater part of its light came from a sunlike mass. Thus, then, we are led to the conclusion that in the case of this body we have a nucleus or central mass, and that around this central mass there is a quantity of gaseous matter, resembling in constitution that which forms the bulk of the other gaseous nebulÆ. The denser nucleus ordinarily shines with so faint a lustre that the continuous spectrum from its light is too faint to be discerned with the same spectroscopic means by which the bright lines of the gaseous portion are shown; and the gaseous portion ordinarily shines with so faint a lustre that its bright lines would not be discernible on the continuous background of a stellar spectrum. Through some cause unknown—possibly (as suggested in an article on the earlier history of this same star in my “Myths and Marvels of Astronomy”) the rush of a rich |