The most promising result of solar research since Kirchhoff in 1859 interpreted the dark lines of the sun’s spectrum has recently been announced from America. Interesting in itself, the discovery just made is doubly interesting in what it seems to promise in the future. Just as Kirchhoff’s great discovery, that a certain double dark line in the solar spectrum is due to the vapour of sodium in the sun’s atmosphere, was but the first of a long series of results which the spectroscopic analysis of the sun was to reveal, so the discovery just announced that a certain important gas—the oxygen present in our air and the chief chemical constituent of water—shows its presence in the sun by bright lines instead of dark, will in all probability turn out to be but the firstfruits of a new method of examining the solar spectrum. As its author, Dr. Henry Draper, of New York, remarks, further investigation in the direction he has pursued will lead to the discovery of other elements in the sun, but it was not “proper to conceal, for the sake of personal advantage, the principle on which such researches are to be conducted.” It may well happen, though I anticipate otherwise, that by thus at once describing his method of observation, Dr. Draper may enable others to add to the I propose briefly to consider the circumstances which preceded the great discovery which it is now my pleasing duty to describe, in order that the reader may the more readily follow the remarks by which I shall endeavour to indicate some of the results which seem to follow from the discovery, as well as the line along which, in my opinion, the new method may most hopefully be followed. It is generally known that what is called the spectroscopic method of analyzing the sun’s substance had its origin in Kirchhoff’s interpretation of the dark lines in the solar spectrum. Until 1859 these dark lines had not been supposed to have any special significance, or rather it had not been supposed that their significance, whatever it might be, could be interpreted. A physicist of some eminence spoke of these phenomena in 1858 in a tone which ought by the way seldom to be adopted by the man of science. “The phenomena defy, as we have seen,” he said, “all attempts hitherto to reduce them within empirical laws, and no complete explanation or theory of them is possible. All that theory can be expected to do is this—it may explain how dark lines of any sort may arise within the spectrum.” Kirchhoff, in 1859, showed not only how dark lines of any sort may appear, but how and why they do appear, and precisely what they mean. He found that the dark lines of the solar spectrum are due to the vapours of various elements in the sun’s atmosphere, and that the nature of such elements may be determined from the observed position of the dark lines. Thus when iron is raised by the passage of the electric spark to so intense a degree of heat that it is vaporized, the light of the glowing vapour of iron is found to give a multitude of bright lines along the whole Thus was it shown that in the atmosphere of the sun there is the glowing vapour of the familiar metal, iron; and in like manner other metals, and one element (hydrogen) which is not ordinarily regarded as a metal, were shown to be present in the sun’s atmosphere. In saying that they are present in the sun’s atmosphere, I am, in point of fact, saying that they are present in the sun; for the solar atmosphere is, in fact, the outer part of the sun himself, since a very large part, if not by far the greater part, of the sun’s mass must be vaporous. But no other elements, except the metals iron, sodium, barium, calcium, magnesium, aluminium, manganese, chromium, cobalt, nickel, zinc, copper, and titanium, and the element hydrogen, were shown to be present in the sun, by this method of observing directly the solar dark lines. In passing, I may note that there are Fourteen only of the elements known to us, or less than a quarter of the total number, were thus found to be present in the sun’s constitution; and of these all were metals, if we regard hydrogen as metallic. Neither gold nor silver shows any trace of its presence, nor can any sign be seen of platinum, lead, and mercury. But, most remarkable of all, and most perplexing, was the absence of all trace of oxygen and nitrogen, two gases which could not be supposed wanting in the substance of the great ruling centre of the planetary system. It might well be believed, indeed, that none of the five metals just named are absent from the sun, and indeed that every one of the forty metals not recognized by the spectroscopic method nevertheless exists in the sun. For according to the nebular hypothesis of the origin of our solar system, the sun might be expected to contain all the It was not supposed, however, by any one at all competent to form an opinion on the subject, that oxygen, nitrogen, and carbon are absent from the sun. It was perceived that an element might exist in enormous quantities in the substance of the sun, and yet fail to give any evidence of its presence, or only give such evidence as might readily escape recognition. If we remember how the dark lines are really caused, we shall perceive that this is so. A glowing vapour in the atmosphere of the sun absorbs rays of the same colour as it emits. If then, it is cooler than the glowing mass of the sun which it enwraps, and if, notwithstanding the heat received from this mass, it remains cooler, then it suffers none of those rays to pass earthwards.1 It emits rays of the same kind (that is, of the same colour) itself, but, being cooler, the rays thus coming from it are feebler; or, to speak more In order, then, that any element may be detected by its dark lines, it is necessary that it should lie as a vaporous screen between the more intensely heated mass of the sun and the eye of the observer on earth. It must then form an enclosing envelope cooler than the sun within it. Or rather, some part of the vapour must be thus situated. For enormous masses of the vapour might be within the photospheric surface of the sun at a much higher temperature, which yet, being enclosed in the cooler vaporous shell of the same substance, would not be able to send its light rays earthwards. One may compare the state of things, so far as that particular element is concerned, to what is presented in the case of a metallic globe cooled on the outside but intensely hot within. The cool outside of such a globe is what determines the light and heat received from it, so long as the more heated mass within has not yet (by conduction) warmed the exterior shell. So in the case of a vapour permeating the entire mass, perhaps, of the sun, and at as high a temperature as the sun everywhere except on the outside: it is the temperature of the outermost part of such a vaporous mass which determines the intensity of the rays received from it—or in other words, determines whether the corresponding parts of the spectrum shall be darker or not than the rest of the spectrum. If the vapour does not rise above the photosphere of the sun in sufficient quantity to exercise a recognizable absorptive effect, its presence in the sun will not be indicated by any dark lines. I dwell here on the question of quantity, which is sometimes overlooked in considering the spectroscopic evidence of the sun’s condition, but is in reality a very important factor in determining the nature of the evidence relating to There is another consideration, which, so far as I know, has not hitherto received much attention, but should certainly be taken into account in the attempt to interpret the real meaning of the solar spectrum. Some of the metals which are vaporized by the sun’s heat below the photosphere may become liquid or even solid at or near the level of the photosphere. Even though the heat at the level of the photosphere may be such that, under ordinary conditions of pressure and so forth, such metals would be vaporous, the enormous pressure which must exist not far below the level of the photosphere may make the heat necessary for complete vaporization far greater than the actual heat at that level. In that case the vapour will in part condense into liquid globules, or, if the heat is considerably less than is necessary to keep the substance in the form of vapour, then it may in part be solidified, the tiny globules of liquid metal becoming tiny crystals of solid metal. We see both conditions fulfilled within the limits of our own air in the case of the vapour of water. Low down the water is present in the air (ordinarily) in the form of pure vapour; at a higher level the vapour is condensed by cold into liquid drops forming visible clouds (cumulus clouds), and yet higher, where the cold is still greater, the minute water-drops turn into ice-crystals, forming those light fleecy clouds called cirrus clouds by the meteorologist. Now true clouds of either sort may exist in the solar atmosphere even above that photospheric level which forms the boundary of the sun we see. It may be said that the spectroscope, applied to examine matter outside the photosphere, has given evidence only of vaporous cloud masses. The ruddy prominences which tower tens of thousands of miles above the surface of the sun, and the sierra (or as it is sometimes unclassically called, the chromosphere) which covers usually the whole of the photosphere to a It is easy to see how the evidence of the presence of any In passing, I must note a circumstance in which some of those who have dealt with this special part of the spectroscopic evidence have erred. It is true in one sense that some elements may be of such a nature that their vapours cannot rise so high in the solar atmosphere as those of other elements. But it must not be supposed that the denser vapours seek a lower level, the lighter vapours rising higher. According to the known laws of gaseous diffusion, a gas or vapour diffuses itself throughout a space occupied by another gas or several other gases, in the same way as though the space were not occupied at all. If we introduce into a vessel full of common air a quantity of carbonic acid gas (I follow the older and more familiar nomenclature), this gas, although of much higher specific gravity than either oxygen or nitrogen, does not take its place at the bottom of the vessel, but so diffuses itself that the air of the upper part of the vessel contains exactly the same quantity of carbonic acid gas as the air of the lower But undoubtedly the chief circumstance likely to operate in veiling the existence of important constituents of the solar mass must be that which has so long prevented spectroscopists from detecting the presence of oxygen in the sun. An element may exist in such a condition, either over particular parts of the photosphere, or over the entire surface of the sun, that instead of causing dark lines in the solar spectrum it may produce bright lines. Such lines may be conspicuous, or they may be so little brighter than the background of the spectrum as to be scarcely perceptible or quite imperceptible. In passing, I would notice that this interpretation of the want of all spectroscopic evidence of the presence of oxygen, carbon, and other elements in the sun, is not an ex post facto explanation. As will presently appear, it is now absolutely certain that oxygen, though really existing, and doubtless, in enormous quantities, in the sun, has been concealed from recognition in this way. But that this might be so was perceived long ago. I myself, in the first edition of my treatise on “The Sun,” pointed out, in 1870, with special reference to nitrogen and oxygen, that an element “may be in a condition enabling it to radiate as much light as it absorbs, or else very little more or very little less; so that it either obliterates all signs of its existence, or else gives lines so little brighter or darker than the surrounding parts of the spectrum that we can detect no trace of its Let us more closely consider the significance of what we learn from the spectral evidence respecting the gas hydrogen. We know that when the total light of the sun is dealt with, the presence of hydrogen is constantly indicated by dark lines. In other words, regarding the sun as a whole, hydrogen constantly reduces the emission of rays of those special tints which correspond to the light of this element. When we examine the light of other suns than ours, we find that in many cases, probably in by far the greater number of cases, hydrogen acts a similar part. But not in every case. In the spectra of some stars, notably in those of Betelgeux and Alpha Herculis, the lines of hydrogen are not visible at all; while in yet others, as Gamma CassiopeiÆ, the middle star of the five which form the straggling W of this constellation, the lines of hydrogen show bright upon the relatively dark background of the spectrum. When we examine closely the sun himself, we find that although his light as a whole gives a spectrum in which the lines of hydrogen appear dark, the light of particular parts of his surface, if separately examined, occasionally shows the hydrogen lines bright as in the spectrum of Gamma CassiopeiÆ, while sometimes the light of particular parts gives, There are other considerations which have to be taken into account, as well in dealing with the difficulty arising I would specially call attention now to a point which I thus presented seven years ago:—“The great difficulty of interpreting the results of the spectroscopic analysis of the sun arises from the circumstance that we have no means of learning whence that part of the light comes which gives the continuous spectrum. When we recognize certain dark lines, we know certainly that the corresponding element exists in the gaseous form at a lower temperature than the substance which gives the continuous spectrum. But as regards that continuous spectrum itself we can form no such exact opinion.” It might, for instance, have its origin in glowing liquid or solid matter; but it might also be compounded of many spectra, each containing a large number of bands, the bands of one spectrum filling up the spaces which would be left dark between the bands of another spectrum, and so on until the entire range from the extreme visible red to the extreme visible violet were occupied by what appeared as a continuous rainbow-tinted streak. “We have, in fact, in the sun,” as I pointed out, “a vast agglomeration of elements, subject to two giant influences, producing in some sort opposing effects—viz., a temperature far surpassing any we can form any conception of, and a pressure (throughout nearly the whole of the sun’s globe) which is perhaps even more disproportionate to the phenomena of our experience. Each known element would be vaporized by the solar temperature at known pressures; each (there can be little question) would be solidified by the vast pressures, did these arise at known temperatures. Now whether, under these circumstances, the laws of gaseous diffusion prevail where the elements are gaseous in the solar globe; whether, where liquid matter exists it is in general bounded in a definite manner from the neighbouring gaseous matter; whether any elements at all are solid, and if so under what conditions their solidity is maintained and the It will be seen that Dr. H. Draper’s discovery supplies an answer to one of the questions, or rather to one of the sets of questions, thus indicated. I give his discovery as far as possible in his own words. “Oxygen discloses itself,” he says, “by bright lines or bands in the solar spectrum, and does not give dark absorption-lines like the metals. We must therefore change our theory of the solar spectrum, and no longer regard it merely as a continuous spectrum with certain rays absorbed by a layer of ignited metallic vapours, but as having also bright lines and bands superposed on the background of continuous spectrum. Such a conception not only opens the way to the discovery of others of the non-metals, sulphur, phosphorus, selenium, chlorine, bromine, iodine, fluorine, carbon, etc., but also may account for some of the so-called dark lines, by regarding them as intervals between bright lines. It must be distinctly understood that in speaking of the solar spectrum here, I do not mean the spectrum of any In support of the important statement here advanced, Dr. Draper submits a photograph of part of the solar spectrum with a comparison spectrum of air, and also with some of the lines of iron and aluminium. The photograph itself, a copy of which, kindly sent to me by Dr. Draper, lies before me as I write, fully bears out Dr. Draper’s statement. It is absolutely free from handwork or retouching, except that reference letters have been added in the negative. It shows the part of the solar spectrum between the well-known Fraunhofer lines G and H, of which G (an iron line) lies in the indigo, and H (a line of hydrogen) in the violet, so that the portion photographed belongs to that region of the spectrum whose chemical or actinic energy is strongest. Adjacent to this lies the photograph of the air lines, showing nine or ten well-defined oxygen lines or groups of lines, and two nitrogen bands. The exact agreement of the two spectra in position is indicated by the coincidence of bright lines of iron and aluminium included in the air spectrum with the dark lines of the same elements in the solar spectrum. “No close observation,” as Dr. Draper truly remarks, “is needed to demonstrate to even the most casual observer” (of this photograph) “that the oxygen lines are found in the sun as bright lines.” There is in particular one quadruple group of oxygen lines in the air spectrum, the coincidence of which with a group of bright lines in the solar spectrum is unmistakable. “This oxygen group alone is almost sufficient,” says Dr. Draper, “to prove the presence of oxygen in the sun, for not only does each of the four components have a representative in the solar group, but the relative strength and the general aspect of the lines in each case is similar.4 I shall not “As to the spectrum of nitrogen and the existence of this element in the sun there is not yet certainty. Nevertheless, even by comparing the diffused nitrogen lines of this particular photograph, in which nitrogen has been sacrificed to get the best effect for oxygen, the character of the evidence appears. There is a triple band somewhat diffused in the photograph belonging to nitrogen, which has its appropriate representative in the solar spectrum, and another band of nitrogen is similarly represented.” Dr. Draper states that “in another photograph a heavy nitrogen line which in the present one lies opposite an insufficiently exposed part of the solar spectrum, corresponds to a comparison band in the sun.” But one of the most remarkable points in Dr. Draper’s paper is what he tells us respecting the visibility of these lines in the spectrum itself. They fall, as I have mentioned, in a part of the spectrum where the actinic energy is great but the luminosity small; in fact, while this part of the spectrum is the very strongest for photography, it is close to the region of the visible spectrum, “Where the last gleamings of refracted light Die in the fainting violet away.” It is therefore to be expected that those, if any, of the bright lines of oxygen, will be least favourably shown for direct vision, and most favourably for what might almost be called photographic vision, where we see what photography records for us. Yet Dr. Draper states that these bright lines of Dr. Draper remarks that from purely theoretic considerations derived from terrestrial chemistry, and the nebular hypothesis, the presence of oxygen in the sun might have been strongly suspected; for this element is currently stated to form eight-ninths of the water of the globe, one-third of the crust of the earth, and one-fifth of the air, and should therefore probably be a large constituent of every member of the solar system. On the other hand, the discovery of oxygen, and probably other non-metals, in the sun gives increased strength to the nebular hypothesis, because to many persons the absence of this important group has presented a considerable difficulty. I have already remarked on the circumstance that we cannot, according to the known laws of gaseous diffusion, accept the reasoning of those who have endeavoured to explain the small density of the outer planets by the supposition that the lighter gases were left behind by the great contracting nebulous mass, out of which, on the nebular hypothesis, the solar system is supposed to have been formed. It is important to notice, now, that if on the one hand we find in the community of structure between the sun and our earth, as confirmed by the discovery of oxygen and nitrogen in the sun, evidence favouring the theory according to which all the members of that system were formed out of what was originally a single mass, we do The view which I have long entertained respecting the growth of the solar system—viz., that it had its origin, not in contraction only or chiefly, but in combined processes of contraction and accretion—seems to me to be very strongly confirmed by Dr. Draper’s discovery. This would not be the place for a full discussion of the reasons on which this opinion is based. But I may remark that I believe no one who applies the laws of physics, as at present known, to the theory of the simple contraction of a great nebulous mass formerly extending far beyond the orbit of Neptune, till, when planet after planet had been thrown off, the sun was left in his present form and condition in the centre, will fail to perceive enormous difficulties in the hypothesis, or to recognize in Dr. Draper’s discovery a difficulty added to those affecting the hypothesis so presented. Has it ever occurred, I often wonder, to those who glibly quote the nebular theory as originally propounded, to inquire how far some of the processes Inquiring as to the significance of his discovery, Dr. Draper remarks that it seems rather difficult “at first sight The reasoning here is not altogether satisfactory (or else is not quite correctly expressed). In the first place, the difficulty dealt with has no real existence. The law that a gas when glowing absorbs rays of the same refrangibility as it emits, does not imply that a gas between a source of light and the observer will show its presence by spectroscopic dark lines. A gas so placed does receive from the source of light rays corresponding to those which it emits itself, if it is cooler than the source of light; and it absorbs them, being in fact heated by means of them, though the gain of temperature may be dissipated as fast as received; but if the gas is hotter, it emits more of those rays than it absorbs, and will make its presence known by its bright lines. This is not a matter of speculation, but of experiment. On It is in no cavilling spirit that I indicate what appears to me erroneous in a portion of Dr. Draper’s reasoning on his great discovery. The entire significance of the discovery depends on the meaning attached to it, and therefore it is most desirable to ascertain what this meaning really is. There can be no doubt, I think, that we are to look for the true interpretation of the brightness of the oxygen lines in the higher temperature of the oxygen, not in the great depth of oxygen above the photospheric level. The oxygen which produces these bright lines need not necessarily be above the photosphere at all. (In fact, I may remark here that Dr. Draper, in a communication addressed to myself, mentions that he has found no traces at present of oxygen above the photosphere, though I had not this circumstance in my thoughts in reasoning down to the conclusion that the part of the oxygen effective in showing these bright lines lies probably below the visible photosphere.) Of course, if the photosphere were really composed of glowing solid and liquid matter, or of masses of gas so compressed and so intensely heated as to give a continuous spectrum, no gas existing below the photosphere could send its light through, nor could its presence, therefore, be indicated in any spectroscopic manner. But the investigations which have been made into the structure of the photosphere as revealed by the telescope, and in particular the observations made by I hope we shall soon obtain news from Dr. Huggins’s Observatory that the oxygen lines have been photographed, and possibly the bright lines of other elements recognized in the solar spectrum. Mr. Lockyer also, we may hope, will exercise that observing skill which enabled him early to recognize the presence of bright hydrogen lines in the spectrum of portions of the sun’s surface, to examine that spectrum for other bright lines. I do not remember any time within the last twenty years when the prospects of fresh solar discoveries seemed more hopeful than they do at present. The interest which has of late years been drawn to the subject has had the effect of But I would specially call attention to the interest which attaches to Dr. Draper’s discovery and to the researches likely to follow from it, in connection with a branch of research which is becoming more and more closely connected year by year with solar investigations—I mean stellar spectroscopy. We have seen the stars divided into orders according to their constitution. We recognize evidence tending to show that these various orders depend in part upon age—not absolute but relative age. There are among the suns which people space some younger by far than our sun, others far older, and some in a late stage of stellar decrepitude. Whether as yet spectroscopists have perfectly succeeded in classifying these stellar orders in such sort that the connection between a star’s spectrum and the star’s age can be at once determined, may be doubtful. But certainly there are reasons for hoping that before long this will be done. Amongst the stars, and (strange to say) among celestial objects which are not stars, there are suns in every conceivable stage of development, from embryon masses not as yet justly to be regarded as suns, to masses which have ceased to fulfil the duties of suns. Among the more pressing duties of spectroscopic analysis at the present time is the proper classification of these various orders of stars. Whensoever that task shall have been accomplished, strong light, I venture to predict, will be thrown on our sun’s present condition, as well as on his past history, and on that future fate upon which depends the future of our earth. |