The inhabitants of the earth are subjected to agencies which—beneficial doubtless in the long run, perhaps necessary to the very existence of terrestrial races—appear, at first sight, energetically destructive. Such are—in order of destructiveness—the hurricane, the earthquake, the volcano, and the thunderstorm. When we read of earthquakes such as those which overthrew Lisbon, Callao, and Riobamba, and learn that one hundred thousand persons fell victims in the great Sicilian earthquake in 1693, and probably three hundred thousand in the two earthquakes which assailed Antioch in the years 526 and 612, we are disposed to assign at once to this devastating phenomenon the foremost place among the agents of destruction. But this judgment must be reversed when we consider that earthquakes—though so fearfully and suddenly destructive both to life and property—yet occur but seldom com In the gale of August, 1782, all the trophies of Lord Rodney’s victory, except the ‘Ardent,’ were destroyed, two British ships-of-the-line foundered at sea, numbers of merchantmen under Admiral Graves’ convoy were wrecked, and at sea alone three thousand lives were lost. But quite recently a storm far more destructive than these swept over the Bay of Bengal. Most of my readers doubtless remember the great gale of October 1864, in which all the ships in harbour at Calcutta were swept from their anchorage, and driven one upon another in inextricable confusion. Fearful as was the loss of life and property in Calcutta harbour, the destruction on land was greater. A vast wave swept for miles over the surrounding country, embankments were destroyed, and whole villages, with their inhabitants, were swept away. Fifty thousand souls, it is believed, perished in this fearful hurricane. The gale which has just ravaged the Gulf of Mexico adds another to the long list of disastrous hurricanes. As I write, the effects produced by this tornado are beginning to be made known. Already its destructiveness has become but too certainly evidenced. The laws which appear to regulate the generation The regions chiefly infested by hurricanes are the West Indies, the southern parts of the Indian Ocean, the Bay of Bengal, and the China Seas. Each region has its special hurricane season. In the West Indies, cyclones occur principally in August and September, when the south-east monsoons are at their height. At the same season the African south-westerly monsoons are blowing. Accordingly there are two sets of winds, both blowing heavily and steadily from the Atlantic, disturbing the atmospheric equilibrium, and thus in all probability generating the great West Indian hurricanes. The storms thus arising show their force first at a distance of about six or seven hundred miles from the equator, and far to the east of the region in which they attain their greatest fury. They sweep with a north-westerly course to the Gulf of Mexico, pass thence northwards, and so to the north-east, sweeping in a wide curve (resembling the letter ? placed thus ?) around the West Indian seas, and thence travelling across the Atlantic, generally expending their fury before they reach the shores of Western Europe. This course is the storm-track (or storm-? as I shall call it). Of the behaviour of the winds as they traverse this track, I shall have to speak when I come to consider the peculiarity from which these storms derive their names of ‘cyclones’ and tornadoes. The hurricanes of the Indian Ocean occur at the In the North Indian seas hurricanes rage at the same season as in the West Indies. In the China seas occur those fearful gales known among sailors as ‘typhoons’ or ‘white squalls.’ These take place at the changing of the monsoons. Generated, like the West Indian hurricanes, at a distance of some ten or twelve degrees from the equator, typhoons sweep—in a curve similar to that followed by the Atlantic storms—around the East Indian Archipelago, and the shores of China, to the Japanese Islands. There occur land-storms, also, of a cyclonic character in the valley of the Mississippi. ‘I have often observed the paths of such storms,’ says Maury, ‘through the forests of the Mississippi. There the track of these tornadoes is called a “wind-road,” because they make an avenue through the wood straight along, and as clear of trees as if the old denizens of the forest had been cleared with an axe. I have seen trees three or four feet in diameter torn up by the roots, and the top, with its limbs, lying next the hole whence the root came If it appeared, on a careful comparison of observations made in different places, that these winds swept directly along those tracks which they appear to follow, a comparatively simple problem would be presented to the meteorologist. But this is not found to be the case. At one part of a hurricane’s course the storm appears to be travelling with fearful fury along the true storm-?; at another less furiously directed across the storm-track; at another, but with yet diminished force, though still fiercely, in a direction exactly opposite to that of the storm-track. All these motions appear to be fairly accounted for by the theory that the true path of the storm is a spiral—or rather, that while the centre of disturbance continually travels onwards in a widely extended curve, the storm-wind sweeps continually around the centre of disturbance, as a whirlpool around its vortex. And here a remarkable circumstance attracts our notice, the consideration of which points to the mode in which cyclones may be conceived to be generated. It is found, by a careful study of different observations The danger of the sailor is obviously greater, however, when he is overtaken by the storm on the inner side of the storm-?. Here he has to encounter the double force of the cyclonic whirl and of the advancing storm-system, instead of the difference of the two motions, as on the outer side of the storm-track. His chance of escape will depend on his distance from the central path of the cyclone. If near to this, it is equally dangerous for him to attempt to scud to the safer side of the track, or to beat against the wind by the shorter course, which would lead him out of the storm-? on its inner side. It has been shown by Colonel Sir W. Reid that this is the quarter in which vessels have been most frequently lost. But even the danger of this most dangerous quarter admits of degrees. It is greatest where the storm is sweeping round the most curved part of its track, which happens in about latitude twenty-five or thirty degrees. In this case a ship may pass twice through the vortex of the storm. Here hurricanes have worked their most destructive effects. And hence it is that sailors dread, most of all, that part of the Atlantic near Florida and the Bahamas, and the region of the Indian Ocean which lies south of Bourbon and Mauritius. To show how important it is that captains should But the most remarkable point of Captain Hall’s account remains to be mentioned. He had gone out of his course to avoid the storm, but when the wind fell to a moderate gale he thought it a pity to lie so far from his proper course, and made sail to the north-west. ‘In less than two hours the barometer again began to fall and the storm to rage in heavy gusts.’ He bore again to the south-east, and the weather rapidly improved. There can be little doubt that but for Captain Hall’s knowledge of the law of cyclones, his ship and crew would have been placed in serious jeopardy, since in the heart of a Chinese typhoon a ship has been known to be thrown on her beam-ends when not showing a yard of canvas. If we consider the regions in which cyclones appear, the paths they follow, and the direction in which they whirl, we shall be able to form an opinion as to their origin. In the open Pacific Ocean (as its name, indeed, implies) storms are uncommon; they are infrequent also in the South Atlantic and South Indian Oceans. Around Cape Horn and the Cape of Good Hope heavy storms prevail, but they are not cyclonic, nor are they equal in fury and frequency, Maury tells us, to the true tornado. Along the equator, and for several degrees on either side of it, cyclones are also unknown. If we turn to a map in which ocean-currents are laid down, we shall see that in every ‘cyclone region’ there is a strongly marked current, and that each current follows closely the track which I have denominated the storm-?. In the North Atlantic we have the great Gulf Now, if we inquire why an ocean current travelling from the equator should be a ‘storm-breeder,’ we shall find a ready answer. Such a current, carrying the warmth of intertropical regions to the temperate zones, But the warmth of the stream itself is not the only cause of atmospheric disturbance. Over the warm water vapour is continually rising; and, as it rises, is continually condensed (like the steam from a locomotive) by the colder air round. ‘An observer on the moon,’ says Captain Maury, ‘would, on a winter’s day, be able to trace out by the mist in the air the path of the Gulf Stream through the sea.’ But what must happen when vapour is condensed? We know that to turn water into vapour is a process requiring—that is, using up—a large amount of heat; and, conversely, the return of vapour to the state of water sets free an equivalent quantity of heat. The amount of heat thus set free over the Gulf Stream is thousands of times greater than that which would be generated by the whole coal supply annually raised in Great Britain. Here, then, we have an efficient cause for the wildest hurricanes. For, along the whole of the Gulf Stream, from Bemini to the Grand Banks, there is a channel of heated—that is, rarefied air. Into this channel, the denser atmosphere on both sides is continually pouring, with greater or less strength. When a storm begins in the Atlantic, it always makes By a like reasoning, we can account for the cyclonic storms prevailing in the North Pacific Ocean. Nor do the tornadoes which rage in parts of the United States present any serious difficulty. The region along which these storms travel is the valley of the great Mississippi. This river at certain seasons is considerably warmer than the surrounding lands. From its surface, also, aqueous vapour is continually being raised. When the surrounding air is colder, this vapour is presently condensed, generating in the change a vast amount of heat. We have thus a channel of rarefied air over the Mississippi valley, and this channel becomes a storm-track, like the corresponding channels over the warm ocean-currents. The extreme violence of land-storms is probably due to the narrowness of the track within which they are compelled to travel. For it has been noticed that the fury of a sea-cyclone increases as the range of the ‘whirl’ diminishes, and vice versÂ. There seems, however, no special reason why cyclones should follow the storm-? in one direction rather than in the other. We must, to understand this, recall the fact that under the torrid zones the conditions necessary for the generation of storms prevail far more intensely than in temperate regions. Thus the probability is far greater that cyclones should be generated at the tropical than at the temperate end of the storm-?. Still, it is worthy of notice, that in the land-locked North Pacific Ocean, true typhoons have been noticed to follow the storm-track in a direction contrary to that commonly noticed. The direction in which a true tornado whirls is invariably that I have mentioned. The explanation of this peculiarity would occupy more space than I can here afford. Those readers who may wish to understand the origin of the law of cyclonic rotation should study Herschel’s interesting work on Meteorology. The suddenness with which a true tornado works destruction was strikingly exemplified in the wreck of the steamship ‘San Francisco.’ She was assailed by an extra-tropical tornado when about 300 miles from (From Temple Bar, December 1867.) |