Among the objects in view, when the recent Polar expedition was fitted out, was the hope that during the winter of 1875-76 the scientific observers who accompanied the expedition might be able to study the Aurora Borealis under unusually favourable conditions. This hope was, as most of my readers doubtless know, disappointed. Few auroras were seen, and those seen were not remarkable either for brilliancy or for beauty of colour. Yet in the very disappointment of the hope which had been entertained on this subject there was very significant evidence respecting the aurora, as will presently be shown. The quiescence, at that time, of the forces which produce the auroral streamers had its meaning, and a very strange one. The aurora is one of those phenomena of nature which are characterized by exceeding beauty, and sometimes by I do not purpose to consider here at any length those facts respecting the aurora which properly find their place in text-books of science, but those only which are less commonly dealt with, and seem at once most suggestive and most perplexing. The reader is no doubt aware that auroras, or polar streamers, as they are sometimes called, are appearances seen not around the true poles of the earth, but around the magnetic poles, which lie very far away from those geographical poles which our arctic and antarctic seamen have in vain attempted to reach. We in England, though much nearer to the north pole than the inhabitants of Canada, see far fewer auroras than they do, and those we see are far less splendid, simply because we are farther away from the northern magnetic pole. This will be seen from the accompanying pair of maps (from my "Elementary Physical Geography"), showing where the northern and southern magnetic poles lie. Again, you will see from the northern map, that from England the northern magnetic pole lies towards the west of due north. That is why when we see a fully developed Fig. 9.—The Northern Magnetic Meridians and Lines of Equal Dip. Fig. 10.—The Southern Magnetic Meridians and Lines of Equal Dip. The formation of auroral streamers around the magnetic poles of the earth shows that these lights are due Remembering that the aurora is due to electrical discharges in the upper regions of the air, it is interesting to learn what are the appearances presented by the aurora at places where the auroral arch is high above the horizon,—these being, in fact, places nearly under the auroral arch. M. Ch. Martins, who observed a great number of auroras at Spitzbergen in 1839, thus writes (as translated by Mr. Glaisher) respecting them: "At times they are simple diffused gleams or luminous patches; at others, quivering rays of pure white which run across the sky, starting from the horizon as if an invisible pencil were being drawn over the celestial vault; at times it The association between auroral phenomena and those of terrestrial magnetism has long been placed beyond a doubt. Wargentin in 1750 first established the fact, which had been previously noted, however, by Halley and Celsius. But the extension of the relation to phenomena occurring outside the earth—very far away from the earth—belongs to recent times. The first point to be noticed, as showing that the aurora depends partly on extra-terrestrial circumstances, is the fact that the frequency of its appearance varies greatly from time to time. It is said that the aurora was hardly ever seen in England during the seventeenth century, though the northern magnetic pole was then much nearer to England than it is at present. Halley states that before the great aurora of 1716 none had been seen (or at least recorded) in England for more than eighty years, and no remarkable aurora since 1574. In the records of the Paris Academy of Sciences no aurora is mentioned between 1666 and 1716. At Berlin one was recorded in 1707 as a very unusual phenomenon; and the one seen at Bologna in 1723 was described as the first Here, then, we seem to find the evidence of some cause external to the earth, as producing auroras, or at least as tending to make their occurrence more or less frequent. The earth has remained to all appearance unchanged in general respects during the last three centuries, yet in the sixteenth her magnetic poles have been frequently surrounded by auroral streamers; during the seventeenth these streamers have been seldom seen; during the last two-thirds of the seventeenth century auroras have again been frequent; and during the present century they have occurred sometimes frequently during several years in succession, at others very seldom. Let us inquire a little more closely into the circumstances attending auroral displays, in order to ascertain what external cause it is which thus influences their occurrence. Connected as auroras are with the phenomena of Now it appears certain that magnetic phenomena are partly influenced by changes in the sun's condition. We may well believe that they are in the main due to the sun's ordinary action, but the peculiarities which affect them seem to depend on changes in the sun's action. It is found that the daily oscillation of the magnetic needle corresponds with the diurnal change in the position of the sun owing to the earth's rotation. An annual change affecting that oscillation depends on the varying distance of the sun as the year proceeds. The daily change is not only greater than the annual, but is characterized by irregularities, when the face of the sun shows the greatest number of spots. It was found by General Sabine, says Mr. Balfour Stewart, "that the aggregate value of magnetic disturbances at Toronto attained a maximum in 1848, nor was he slow to remark that this was also Schwabe's period of maximum sun-spots. It was afterwards found, by observations made at Kew, that 1859 (another of Schwabe's years) was also a year of maximum magnetic disturbance.... There is also some reason to believe that on one occasion our luminary was caught in the very act. On the first of September, 1869, two astronomers, Carrington and Hodgson, were independently observing the sun's disc, which exhibited at that Nor are we left in any doubt as to the connection between such well-marked disturbances of the magnetic needle. While the needle was thus violently displaced, vivid auroras occurred over the greater part of both the northern and southern (magnetic) hemispheres. They were seen in latitudes where usually auroras are as infrequent as rain in Peru,—at Rome, in the West Indies, even within eighteen degrees of the equator. The disturbance of the earth's electrical condition was well shown in other ways. Mr. C. V. Walker, the telegraphist, found that strong electrical currents affected the various telegraphic lines throughout England. These currents changed in direction every two or three minutes. In many places it was impossible to send telegraphic Many of my readers will doubtless remember the auroras of May 13, 1869, and October 24, 1870, both of which occurred when the sun's surface was marked by many spots, and both of which were accompanied by remarkable disturbance of the earth's magnetism. It may, then, fairly be assumed that the occurrence of auroras depends in some way, directly or indirectly, on the condition of the sun. But what the real nature of that connection may be is not to be easily determined. It is clear that the eleven-year-period of sun-spots is not the only, or even the chief period affecting auroras, for we have seen that sometimes for a full century, or even more, very few auroras are seen. It is not by any means certain that the connection between the sun's condition and the occurrence of auroras is of the nature of cause and effect; quite probably sun-spots and auroras depend on some common cause as yet undetected,—and possibly never to be detected by man. Regarding the auroral streamers as terrestrial lights only, but in some sense like the light reflected by planets I would venture, however, to express strong doubts as to the possibility of discerning, either on Venus or on any other planet, the auroral gleams which may very probably illuminate at times their nocturnal skies. It must be remembered that the aurora, when at its brightest and covering a large part of the sky, only The glimmering phosphorescent light, supposed to have been seen on parts of Venus not lighted by the moon, is a phenomenon about which experienced telescopists are somewhat doubtful, though Webb speaks of the appearance as remarkably well attested, quoting, amongst others, the following cases. In 1715, Derham, in his "Astro-Theology," says that "the sphericity or rotundity is manifest in our moon, yea, and in Venus, too, in whose greatest falcations" (i.e., when they appear One of the most remarkable observations ever made on Venus must here be mentioned. MÄdler states that on one occasion, when he was observing the planet, he saw a number of brushes of light diverging from the circular side (i.e., the outside of the planet's crescent), lasting as long as the planet could be seen that evening, and remaining unchanged when he changed the position of the telescopic eye-piece, or used a different one. "He attempts no explanation," says Webb, "but However, whether we have telescopic evidence or not respecting auroral lights surrounding the polar regions of other planets, we can have very little doubt that some among the planets, if not all of them, resemble our earth in this as in so many other respects. The aurora is a cosmical phenomenon, not one peculiar to our own earth. It is not, indeed, altogether certain that our sun himself may not be girt round by mighty auroral streamers, and that the light of these may not constitute a noteworthy portion of the corona of glory seen around him during the time of total eclipse. This view, indeed, although it has not been definitely entertained as I have here expressed it, has been suggested by reasoning which led others to suppose that the All this and much more may be said of the solar corona. Its streamers extend not 70,000 or 80,000 miles, but 700,000 or 800,000 miles, from the surface of the sun, where the pressure must be far smaller than near the summits of even the loftiest prominences. They are curved and striated, like those of the aurora, whereas the shapes of the prominences bear only a distant resemblance to auroral streamers. They possess a high actinic (i.e., photographic) power, as is shewn by the readiness with which, during the total eclipse of December, 1871, they were photographed, no less than six well-defined negatives being taken both by Col. Tennant, at Ootacamund, and by Mr. Davis, at Baikal, during the brief continuance (only a few minutes) of total obscuration. In every respect the solar corona accords far better than do the solar coloured prominences with the appearance we should expect to recognise in solar auroras. In particular, it has always seemed to me that the curved, especially the doubly curved, streamers of the It must not be understood, however, that I regard the corona as simply a great solar aurora. It is certain that the whole region filled by the corona is occupied by immense numbers of scattered meteors, and extremely probable that large quantities of cometic matter exist within the same region. Vaporous masses may also be there, circling independently around the sun. But that this region is illuminated constantly by auroral light, varying greatly in intensity and position, seems very strongly indicated by all that we know about the If we so viewed the solar corona, and found our earth, therefore, in this respect resembling the great central orb of the solar system, we could not but regard as extremely probable the theory that other planets also resemble the central body in this respect. We might then picture to ourselves every orb in the solar system carrying onward its faintly luminous crowns of boreal and austral light, not shining with constant lustre, or in the same constant position, but at one time leaping in coloured steamers to a great distance from the body they adorned, and anon sinking down and growing fainter and fainter, or occasionally disappearing altogether. Then, when some great disturbance affected the central sun, and caused his auroral banners to shine out more brilliantly and to attain a greater extension, suddenly the auroral streamers of all the planets would leap out into new light and life, playing around the northern and southern magnetic poles of those orbs, even as electric brushes play around the positive and negative electrodes of a Geissler's tube. "Suddenly" at least so far as each planet is concerned, but not suddenly throughout the whole system. For the magnetic influences, like the light and heat of the sun, require time for their transmission. Yet, so rapidly do they It remains that I should make a few remarks on the evidence which that wonderful instrument of research, the spectroscope, has afforded respecting the light of the aurora. AngstrÖm was the first to observe the spectrum of the aurora borealis. He found that the greater part of the auroral light, as observed in 1867, was of one colour, yellow, but three faint bands of green and greenish blue colour were also seen. The aurora of April 15, 1869, was seen under very favourable conditions in America. Prof. Winlock, observing it at New York, found its spectrum to consist of five bright lines, of which the brightest was the yellow line just mentioned. One of the others seems to agree very nearly, if not exactly, in position with a green line, which is the most conspicuous feature of the spectrum of the solar corona. During the aurora of October 6, 1869, FlÖgel noticed the strong yellow line and a faint green band. Schmidt, on April 5, 1870, made a similar observation. He saw the strong yellow line, and from it there extended towards the violet end of the spectrum a faint greenish band, which, however, at times showed three defined lines, fainter, than the yellow line. It was not till the magnificent aurora of October 24, 25, 1870, that any red lines were seen in the spectrum of an aurora. On that occasion the background of auroral light was ruddy, and on the ruddy background there were seen three deep red streamers very well defined. The ruddy streamers, on the night of October 25, converged towards the auroral crown, which was on that occasion singularly well seen. FÖrster of Berlin failed to see any red line or band despite the marked ruddiness of the auroral light. But Capron at Guildford saw a faint line in the red part of the spectrum; and Elger at Bedford observed a red band in the light of the red streamers, the band disappearing, however, when the spectroscope was directed on the white rays of the aurora. As yet the auroral spectrum has not been interpreted. It is not a spectrum which can be (at present) artificially produced. We understand the spectrum of the sun and stars, because spectra of the same order can be produced in our laboratories. The spectra of the planets, so far as they differ from the spectrum of reflected sunlight in showing signs of the absorptive action of the planetary atmosphere, have been similarly interpreted. So also the spectra of the coloured solar prominences are understood, while those of nebulÆ and comets, though not as yet thoroughly explained, have been |