Questions of evaporation, whether for raising steam, or for the concentration of tanning extracts and other solutions are of considerable importance in the tanning industry, and as the same natural laws which apply to these equally govern the drying of leather, it is convenient to study the theory of the whole subject in one chapter, rather than to divide it, and place each part in a different portion of the book. The modern conception of evaporation and vapour pressures has been described on page 75, but it will be necessary to recapitulate a little. It is a well-known fact that most liquids, if left exposed in an open vessel, gradually disappear by evaporation into the air, even at ordinary temperatures. If the vessel is heated sufficiently, the liquid “boils”; that is, bubbles of vapour are formed in it, and escape, and the evaporation is therefore much more rapid. To avoid complication, let us first imagine a liquid sealed in a glass flask, which contains no air, but which is only partially filled by the liquid. It has been pointed out that the motion of heat by which the molecules of the liquid are agitated, enables some of them to break away from the attraction by which liquid particles are held together, and pass into the form of gas or vapour, which will fill the empty part of the flask. This evaporation will, however, soon reach a limit, since the vapour cannot escape from the flask. The flying molecules of vapour produce pressure by striking the walls of the flask, while a proportion of them will strike the surface of the liquid, and again be caught and retained by its attraction; and as the pressure rises, the number of these necessarily increases till a point is reached when as many fall back and are retained (or “condensed”), as those which evaporate, and the pressure will then remain constant. The amount of the pressure If a piece of iron is placed over a powerful gas-burner, it will go on getting hotter till its temperature is nearly or quite equal to that of the gas-flame. On the other hand, a pan of water, in the same condition, once it has reached its boiling point, becomes no hotter till all the water is evaporated. It is evident that the whole available heat or energy of the gas-flame is consumed in converting the water into steam. We might convert a proportion of this energy into mechanical work, by using the steam in a steam engine; but even without this, work is actually being done by the escaping steam in raising the weight of the atmosphere, and in overcoming the attractive force which holds the particles of water together in the liquid form. It is of course known to everyone, that energy may change its form, as from heat to work, but that it cannot be destroyed, diminished or increased; and therefore the whole of the work performed in converting the water into steam is again recovered as heat when the steam is condensed. In this connection a clear distinction must be made between quantity of heat, and temperature, which in popular language are often confused. It is for instance obvious that if we mix a pound of water at boiling temperature with another pound at freezing point, the temperature is altered to 50° C., but the total quantity of heat is unchanged. It is equally clear that no change in quantity of heat takes place when 1 lb. of mercury at 100° is mixed with 1 lb. of water at 0°, though in this case, owing to the small capacity of mercury for heat, the common temperature would only be raised to about 3°. We must therefore have some measure of heat apart from the mere direct indications of the thermometer, and that most generally used is the quantity of heat required to raise 1 kilo of water 1° C. (kilogram-calorie). [180] A gram-calorie of one-thousandth part of the above is also in use for some scientific purposes, but the kilogram-calorie only is used in the following pages. [181] This is equal to 76·04 kilogrammeters per sec., but the metrical horse-power is only taken at 75 kilogrammeters in France and Germany. In evaporating liquids in the open pan 536 calories is required to evaporate 1 kilo of water already raised to boiling temperature, and a larger amount for salt-solutions, and it makes comparatively little difference whether this is done at 100° or at a lower temperature. Where, however, evaporation is done in vacuo, considerable economy can be effected by what are known as multiple “effects,” in which the steam from one vacuum-pan is employed to boil a second under a reduced Where liquids are evaporated in the open air at temperatures below boiling, it is advisable by some means to spread the liquid in a thin film, so as to expose a large surface, which must be continuously removed by agitation, so as to prevent the formation of a skin. A good apparatus for this purpose is the Chenalier evaporator (Fig. 92), which consists of steam-heated copper discs rotating in a trough containing the liquid, which is taken up by buckets attached to the rims of the discs, and poured over their heated surfaces. In other forms, the liquid is allowed to trickle over steam-heated pipes or corrugated plates. Such evaporators should be placed in a current of air so as to rapidly carry off the vapour formed. Their use is very objectionable for liquids, like tannin-liquors, which are injured by oxidation, and they are not nearly so economical as vacuum-pans. The drying of leather depends on the same laws as the evaporation of liquids, but demands special consideration from its very different conditions of temperature and supply of heat. It The rapidity of evaporation, and the quantity of moisture which can be taken up by a given volume of air depends on the vapour-pressure, which increases with temperature. The relation between the two, and the weight of water in grams per cubic meter which can be dissolved in dry air is given in the following table. (Grams per cubic meter is practically equivalent to ounces per 1000 cubic feet. Vapour-pressure is given in millimeters of mercury of the barometer, p. 422.) Vapour Pressure of Water.
Air is practically never dry, and in damp weather is frequently saturated with moisture to the full extent corresponding to its temperature. In England the average quantity of moisture contained in the air throughout the year is 82 per cent. of the total possible, and even in the driest summer weather it is never less than 58 per cent. So long as the water is in the form of vapour, the air remains quite clear and does not feel damp; in fogs, the air is not only saturated with moisture, but contains small liquid particles floating in it. Of course when the air is really saturated with moisture, it has no drying power whatever. As is evident from the table, the amount of water which can be dissolved in a given volume of air rapidly increases with temperature. Air at 0° C. is only capable of containing 4·9 grams per cubic meter, or not much more than 20 per cent. of what it can contain at 25° C. It hence rapidly increases in drying power as it is warmed, and consequently the air in a warm well-ventilated drying room in winter is generally much drier, and has greater capacity for absorbing moisture than the open air in the driest summer weather. This is the principal cause of the tendency to harsh and irregular drying by the use of artificial heat; and may be remedied by a proper circulation of the air by a fan without too frequent change with the colder air outside. On the other hand the use of a little artificial heat in damp summer weather, when the air is saturated with moisture, may be quite as necessary as in winter. The amount of moisture in the air is most easily ascertained by a device known as the “wet and dry bulb thermometers.” This consists of two thermometers mounted on a board; one of which has the bulb covered with muslin, and kept moist by a lamp-wick attached to it, and dipping in a vessel of water. The temperature of the wet bulb is lowered by the heat consumed in evaporation, and the difference of its temperature from that of the dry bulb is proportionate It is of course obvious that not only the wet thermometer, but the wet hides or skins are cooled by evaporation, and they, in their turn, cool the air with which they are in contact, which not only becomes moistened, but is lessened in its capacity for moisture by cooling, and thus rapidly reaches a condition when it can absorb no more moisture. It is thus necessary to maintain its temperature by artificial heat, or to replace it constantly by fresh air from the outside, and which of these expedients is most economical will depend on the temperature of the air outside as compared with that which it is required to maintain. If the outside air is sufficiently warm, and not saturated with moisture, it is generally best to use it in large quantities without artificial heat, wind usually supplying the necessary motive power for its circulation. Wet goods from the pits may thus be dried to a “sammed” condition by any air which is not saturated, and above freezing point; though the drying will often be slow. For drying “off,” artificial heat is generally necessary, since the attraction of the fibre for the last traces of moisture is very considerable, and to remove it the drying power of the air must be considerably higher than that required for the evaporation of free water. [182] Commercially-dry leather generally, if unstuffed, contains about 15 per cent. of residual moisture, which varies in amount with the weather, and can be more or less completely removed by drying at high temperatures. If leather has been over-dried, it only slowly regains its weight on exposure to cold air. Commercial disputes not unfrequently arise on the dryness of leather. In the opinion of the writer, a customer can only claim that the leather should be sufficiently dry not to lose weight when exposed to dry air at the ordinary temperature and degree of dryness of a warehouse or factory, and claims based on re-drying in hot drying rooms are distinctly fraudulent. We must now consider the heat consumed by the actual evaporation of the water in the leather. The actual evaporation of water already raised to 100° C. consumes 536 k.-calories, but the evaporation of water which has not previously been heated so far consumes more heat, and we may take that required at ordinary temperatures as in round numbers 600 k.-calories per kilo, or 1080 lb. × F. units per lb. Disregarding small fractions, this is equivalent to the cooling to the same temperature of an equal weight of steam in the heating pipes, and this, as we have The cooling takes place, in the first instance, in the leather, the temperature of which is reduced like that of the wet-bulb thermometer; and this in its turn cools the air in contact with it. Thus in air-drying without artificial heat, the whole heat must be supplied by the air and the loss reduces its capacity for moisture, greatly increasing the volume required. This is not of much consequence in open-air drying, since even a light wind will supply air in enormous volume. A moderate breeze of ten miles an hour moves about 15 feet or 41/2 meters per second. When, however, the air must be moved by fans, the power required becomes important. The evaporation of 1 kilo of water at summer temperature will cool about 2000 cubic meters, and that of 1 lb. 32,000 cubic feet of air 1° C. In calculating the ventilating and heating power required in fitting up drying rooms, it is usually necessary to ascertain that required under the most unfavourable circumstances, and then add a liberal margin to cover errors and accidents. As the calculations are, in consequence of the many varying conditions, somewhat complex, it may be convenient to give as examples the quantities of air and heat required to evaporate 1 kilo (2·205 lb.) of water under different ordinary conditions, and these may serve as a basis of calculation of the drying power which must be provided for different tanneries. 1. Indifferent Open-Air Drying.—Air at 10° C. (50° F.), wet-bulb thermometer 7° C. (44·3° F.), indicating a total capacity for moisture of about 2 grm. per cubic meter; air not to be cooled beyond 7·75° C. (46° F.), leaving a residual capacity for moisture of 0·5 grm. per cubic meter. Each cubic meter will therefore take up 1·5 grm. of moisture, and as 1 kilo contains 1000 grm. we have 10001·5 = 666 cubic meters per kilo required to absorb moisture; and 6002·25° × 0·3 = 888 cubic meters reduced 2·25° to furnish the 600 cal. required for evaporation. Total air used 1554 cubic meters or 54,900 cubic feet. 2. Drying with Heat.—Outside-air at 10° saturated with moisture, heated to 20° C. (68° F.) acquires a capacity for 10005·9 = 170 cubic meters or 6000 cubic feet, and to heat this 10° C. will require 510 cal. Evaporation of 1 kilo will consume 600 cal. Total heat 1110 cal. 3. Drying with Heat.—Outside-air at 10° as above, heated to 25° C., giving an effective capacity for moisture of 13·5 - 2·0 = 11·5 grm. per cubic meter. 100011·5 = 87 cubic meters or 3070 cubic feet. To warm this 15° requires 391 cal.; and 600 cal. added for evaporation gives a total of 991 cal. Comparing 2 and 3 we see that the higher temperature is more economical, where it can be allowed, than the lower, both in air and heat, though this is partly compensated by the greater loss of heat by cooling of the building, etc., which it entails. 4. Air at 0° C. heated to 20° requires about 97 cubic meters, or 3430 cubic feet of air, and a total of 1180 cal. 5. Air at 0° C. and heated to 25° C. requires 63 cubic meters or 2230 cubic feet, and a total of 1075 cal. 6. Air at -15° C. (5° F.) requires 4·5 cal. per cubic meter to raise it to 0° C., and acquires a capacity for drying of about 2 grm. per meter. We will apply these figures to a drying room arranged with a screw-fan with a central division, or two floors, so that the air can be either circulated or replaced with fresh air from the outside at will (see Fig. 94, p. 435). Such a room with 100 feet of length clear of space required for fans, air passages, and heating pipes, and 20 feet × 8 feet in section, should hang about 800 medium butts, weighing say 121/2 kilo (27 lb.) each, and when wet from the yard, containing the same weight of water. A 48-inch Blackman fan, under these conditions would probably move say 20,000 cubic feet (565 cubic meters) of air per minute, at the cost of 2 or 21/2 horse-power. This, in a room of the section named, would give an average velocity of 125 feet per minute or rather under 11/2 miles an hour; not at all too much to keep the air freely circulating among closely hung leather. If we assume that these butts are to be dried in a week (practically 10,000 Under the conditions of No. 4, only 97 cubic meters of air per minute would be required, or about 5/6 might be circulated without change, but the total heat required would be about the same, 1180 cal. Under the conditions of Nos. 4 and 6 some 1620 cal. per minute would be employed. It is hardly necessary to provide for the full amount of heat required by No. 6, since in this country such conditions occur but seldom, and never for more than a few days at a time, and during such a period, much less heat would suffice to carry on the drying at a slower rate, and keep out the frost. Beside the heat required for actual drying, it is necessary to provide for that lost by the building during cold weather, and this is much more difficult to calculate. If, by arranging the outlet for moist air on the pressure side of the fan, the internal pressure of the building be kept a little lower than the outside, there can be no loss by escape of hot air, any leakage being inwards, and supplying a part of the change of air which, we have seen, is necessary. In a brick building with glass windows, the loss of heat is far less than in the old-fashioned wooden louvre-boarded structure, and where fan-drying is in constant use, the brick structure is much to be preferred. Frequent windows, with casements horizontally pivoted at the centre, will supply enough air for favourable conditions of air-drying, and when the weather is bad, resort is had to the fan. Most modern drying rooms in the Leeds district are built upon this plan. Where louvre-boarded structures must be used for fan-drying, the sides should be made as tight as possible in winter by sheets of canvas or sail-cloth nailed on, for which purpose old sails can be bought in seaport towns at reasonable rates, a few louvre-boards only being kept open for the admission of air in suitable positions. Box, in his ‘Practical Treatise on Heat’ [183] E. & F. N. Spon, Ltd., London. Loss of Heat through Walls.
If the building is of several stories, the loss to the roof in the intermediate ones need hardly be taken into account, but if the ceiling is not tight, and open to the roof, the loss may be great, but difficult to estimate. If we consider the drying room already described, the total area of the walls and ceiling is about 4000 feet, and to maintain its temperature 30° F. above the atmosphere at 1·2 cal. per sq. foot would require 4800 cal. per hour or 80 cal. per minute, a very small amount compared to that consumed in drying. The following table calculated from data given by Box will give some idea of the amount of steam or hot-water piping required for heating. The sizes given are for the internal diameter of the pipe, allowance being made for the increased heating surface of pipes of ordinary thickness. Small pipes are considerably more effective in proportion to their surface than large ones, and for high-pressure heating 11/2 or 2-inch wrought-iron pipes are to be recommended as in many ways preferable to cast iron. The gilled or ribbed pipes now often used are also advantageous as giving a greatly increased heating surface. Heat given by Steam-pipes.
The temperature of the air to be heated is understood to be 60° F.; at lower temperatures the quantity of heat given off by the pipes would be greater, and at higher temperatures less; the amount being approximately proportional to the difference of temperature between the air and the hot pipes. It is also important to note that the table refers to steam-pipes in still air, and that if placed in a powerful draught, (as immediately before or behind the fan), their heating effect may be at least doubled. This has not been considered in the following calculations. Applying these figures to the estimate of 1110 calories per minute required for drying in our building, and assuming 80 calories per minute for the loss of heat through the walls, we have a total of about 71,400 calories per hour, and to obtain this would require 736 feet of 4-inch pipe at 220° F. (heated by exhaust steam) or 700 feet of 2-inch pipe heated to 300° F. by steam at 52 lb. pressure. If we adopt the estimate of 1620 calories of No. 5 and 6, we shall require 1050 and 1000 feet of the two pipes respectively, and this covers approximately the worst conditions. We must, however, remember that these estimates are made for continuous drying during the twenty-four hours, and that if the fan and steam are only applied during a portion of this time, the supply both of air and steam must be proportionately increased, or the time of drying correspondingly lengthened. It is very desirable, however, that the fan should be driven by a small separate engine, the steam for which will only form a small proportion of that required for heating, and of which the whole of the heat will be recovered, since even that utilised in driving the fan will again be converted into heat by the friction of the air, and will therefore cost nothing. This arrangement will enable the drying to proceed so long as the necessary steam is maintained, which in bad weather can easily be done by the night watchman. It may also be pointed out that, during a great part of the year, the goods can be dried to a “sammied” condition without heat, or in the open air, or in the case of dressing It must be left to the reader to apply the same calculation to other sorts of leather than sole, but it may be pointed out that the essential point, as regards heating and ventilation, is the weight of water to be evaporated in a given time, and that the actual size and shape of the drying room is unimportant, so long as adequate heating and circulation of the air between the leather is secured; and these remarks also apply to the particular form of fan or other ventilation employed, and to the means of heating. As the quantity of heat consumed is very considerable, it is well to look out for sources of waste heat which can be employed, or for means by which the heat of the fuel can be more directly and completely utilised than it is in raising steam. Thus a large amount of heat can sometimes be obtained by passing air through pipes or “economisers” fitted in a chimney-flue; [184] These pipes should be provided with scrapers to remove soot as in Green’s economiser, or their efficiency will be much diminished. Large section (150 kB) Figs. 93 and 94, furnished by the James Keith and Blackman Co., Ltd., give a good idea of the construction of screw fans, and Screw fans like the Blackman can be used either to suck or to blow the air, though the former is preferable where it can be arranged, because it produces a more uniform current in the room. On the blowing side the air issues with considerable velocity in a sort of cone, but little coming through the centre of the fan, while that near the edges spreads rapidly from its centrifugal motion. This is rather advantageous where the fan blows into an open room, but involves waste of power where it discharges into narrow and square air-ways. The ends of the vanes of the Blackman are turned in at the rim of the fan to prevent this tangential discharge, but it is probable that where a fan is to blow into a room, it would be more advantageous to put it on the inner side of the wall, and without curved ends to the vanes, so as to distribute the air as widely as possible. A somewhat similar result would be attained with a Blackman, by placing it in a position the reverse of that for which it is intended, and running it also the reverse way; but its “efficiency” might possibly be lessened. Screw-fans are good for moving large volumes of air at comparatively low velocities, and against little or no resistance, but they are quite unsuitable for forcing air against high resistance, or through narrow channels, and for this purpose centrifugal fans like the Capel (Fig. 95) are much more suitable, and mechanically more efficient. In any case there is much loss of power in forcing air through narrow airways, and if a screw fan must be employed for the purpose, the channel should be as large in section as the area of the fan, and all sharp angles in its course should be avoided. There is great loss of power where a current of air or water has to pass suddenly either from a wider to a narrower channel, or the reverse, and in both cases the resistance is diminished by making the enlargement or contraction gradual or “bell-mouthed.” Thus a pipe conveying water at a given head into or out of a cistern will discharge a much larger quantity, if the ends are bell-mouthed, than if it terminates abruptly. For Systems in which air is drawn or forced over systems of heating pipes by a centrifugal fan, and then distributed through comparatively small airways among the leather which is to be dried are in some cases convenient and advantageous. Among these may be mentioned the Sturtevant and the Seagrave-Bevington. There can be no valid patent on the general Apart from wind, natural ventilation is seldom to be relied on for drying on any considerable scale. Heated air is, of course, lighter than cold, and this is the cause of chimney-draught, but to get a good circulation in this way, a high shaft, and high temperature is required. Nevertheless, in one of its best forms, the method has been a good deal used in America, in the so-called “turret-dryer,” a building of seven or eight stories in height, constructed of wood with latticed floors, and heated by steam-piping at the bottom, where the air is admitted. The method is not likely to be much used in this country, as apart from the questions of cost of building, fire-risk, and trouble of raising and lowering the leather, a good draught will only be obtained when the outer temperature is low in comparison to that inside, and in our milder and moister climate the conditions are not nearly so favourable as in the United States. As the air is rendered heavier by the cooling of evaporation to a larger extent than it is lightened by the water vapour, there is a tendency in drying by upward ventilation for the warm air to form local upward currents, while the cold and damp air falls back; and from this irregularity of flow, it is difficult to saturate the air equally. This may be avoided by downward ventilation, One or two points in the practical arrangement of steam-pipes may be mentioned, as they are often overlooked even by professional engineers. The steam must always be admitted at the highest point in the system, and there must be a steady descent, without hollow places where condensed water can accumulate, to the steam-trap by which it is removed. In horizontal pipes, about 1 inch descent in 100 is sufficient. If water accumulates, there is not merely serious danger in case of frost, but during use, by the sudden condensation of the steam, a vacuum is frequently formed, into which the water is shot like the liquid in a “water hammer,” producing violent and noisy concussions, and in some cases even fracture of the pipes, or loosening of their joints. If high-pressure steam is used, a very It is useless to attempt to regulate the temperature of low pressure steam-pipes by turning down the steam, since, so long as the pipe is supplied with sufficient steam to fill it, its temperature cannot be less than 100°, and even with high-pressure pipes, the power of regulation by altering the steam-pressure is very limited. It is far better to arrange the pipes or radiators in groups, from some of which the steam can be turned off entirely when less heat is needed. It must not be forgotten that if these discharge into a common steam-trap, it will be necessary to turn off their exits as well as their steam supply, or steam will come back into them from the other pipes, and probably prevent the escape of condensed water. In some cases it is more convenient to give the several sections independent exits or steam-traps. Many good steam-traps are now on the market, depending either on the expansion and contraction of metals, or on floats in a closed box, which open a valve as the water accumulates. Traps of the latter class with closed copper balls are to be avoided, as the ball is sure eventually to become filled with water. Several traps have been devised in which an open vessel is used as a float, which is always kept empty by the discharge of the water through a pipe dipping into it. The condensed water from steam-pipes is rarely suitable for use in the tannery, from the dissolved and suspended iron-oxide which it contains, from which it can only be freed by boiling and filtering, or treatment with precipitants (p. 95). Its most appropriate use is generally return to the boiler. Systems were formerly in vogue by which it was allowed to run back to the boiler as it condensed, but these could only answer when the pressure in the pipes was equal to that in the boiler, which is rarely the case. It must generally be forced in by the feed-pump or injector. Hot water has often been advocated in preference to steam for heating, but is more costly, as it requires a separate boiler, and much larger pipe-surface for the same effect. Its only important advantage is that the pipes maintain their heat for some time, even when the fire has gone down, while steam-pipes cool at once if steam is allowed to go down in the boiler. In any considerable tannery, however, this will seldom or never be the case, since if a good pressure of steam is up at night, when |