ANATOMICAL STRUCTURE OF HIDE. Before speaking of actual processes of manufacture, it is necessary to devote some attention to the structure and chemical constitution of hide or skin, which forms the raw material. Although a great variety of skins are employed in tanning, they are all constituted on the same general type, and an anatomical description of the hide of the ox will apply almost equally to those of the calf, sheep, and goat; but from differences in thickness and closeness of texture, their practical uses differ widely. Fig. 1 shows a section of ox-hide, cut parallel with the hair, magnified about 50 diam.: a, epithelial layer or epidermis, consisting of horny layer above, and rete malpighi below; b, pars papillaris, and c, pars reticularis of corium, derma, or true skin; d, hairs; e, sebaceous or fat-glands; f, sudoriferous or sweat-glands; g, opening of ducts of sweat-glands; h, erectores pili muscles, for erecting the hair. The fresh hide consists of 2 layers: an outer, the epidermis; and an inner, the true skin. The epidermis is very thin as compared with the true skin which it covers, and is entirely removed preparatory to tanning; it nevertheless possesses important functions. It is shown in Fig. 1 at a, and more highly magnified in Fig. 2. Its inner mucous layer b, the rete malpighi, which rests upon the true skin c, is soft, and composed of living nucleated cells, which are elongated in the deeper layers, and gradually become flattened as they approach the surface, where they dry up, and form the horny layer a. This last is being constantly worn away, and thrown off as dead scales of skin; and as constantly renewed from below, by the continued multiplication of the cells. It is from Fig. 1. Fig. 2. Fig. 3. The hair itself is covered with a layer of overlapping scales, like the slates on a roof, but of irregular form. These give it a serrated outline at the sides, strongly developed in wool. Within these scales, which are sometimes called the "hair cuticle," is a fibrous substance, which forms the body of the hair; and sometimes, but not always, there is also a central and cellular pith, which is mostly transparent, though under the microscope it frequently appears black and opaque, from the optical effect of imprisoned air. On boiling or long soaking in water, alcohol, or turpentine, these air-spaces become saturated with the liquid, and then appear transparent. The fibrous part of the hair is made up of long spindle-shaped cells, and contains the pigment which gives the hair its colour. The hair of the deer differs from that of most other animals in being almost wholly formed of polygonal cells, which, in white hairs, are usually filled with air. At its Fig. 4. Outside the inner root-sheath is a layer of nucleated cells, continuous with those of the epidermis, and of the same Fig. 5. As already remarked, the sudoriferous or sweat-glands are also derived from the epidermis layer. They are shown at f, Fig. 1, and on a larger scale (200 diam.) in Fig. 6: a, windings laid open in making section; they consist, in the ox and sheep, of a large wide tube, sometimes slightly twisted. In this, they differ considerably from those of man, which form a spherical knot of extremely convoluted tube. The walls of these glands are formed of longitudinal Fig. 6. The corium or true skin is principally composed of interlacing bundles of white fibres, of the kind known as "connective tissue"; these are composed of fibrils of extreme fineness, cemented together by a substance of different composition from the fibres themselves. This may be demonstrated by steeping a small piece of hide for some days in a stoppered bottle in lime-, or baryta-water, in which the inter-fibrillar substance is soluble, and then teasing a small fragment of the fibre with needles on a glass microscope-slide, and examining with a power of at least 200-300 diam. In the middle portion of the skin, these bundles of fibre are closely interwoven; but next the body, they gradually become looser and more open, forming the pars reticularis (or netted part); and the innermost layer is a mere network of It is this adipose tissue which is removed in the "fleshing" process. On the other hand, the outermost layer, just beneath the epidermis, is exceedingly close and compact, the fibre-bundles that run into it being separated into their elementary fibrils, which are so interlaced that they can scarcely be recognised. This is the pars papillaris, and forms the lighter-coloured layer, called (together with its very fine outer coating) the "grain" of leather. It is in this part that the fat-glands are embedded, while the hair-roots and sweat-glands pass through it into the looser tissue beneath. Besides the connective-tissue fibres, the skin contains a small proportion of fine yellow fibres, called "elastic" fibres. If a thin section of hide be soaked for a few minutes in strong acetic acid, and then examined under the microscope, the white connective-tissue fibres become swollen and transparent, and the yellow fibres may then be seen, as they are scarcely affected by the acid. The hair-bulbs and sweat- and fat-glands are also rendered distinctly visible. The nerves of the skin are very numerous, each hair being supplied with fibres passing into both the papilla and sheath. They also pass into the skin papillÆ. They cannot readily be seen, without special preparation, and, so far as is known, exercise no influence on the tanning process. "Breaking the nerve" is a technical term, which signifies a thorough stretching and softening of the skin, but has nothing to do with nerves properly so called. The blood- and lymph-vessels are, from the present point of view, somewhat more important. They may often be seen in sections, and are lined with nucleated cells, similar to those of the glands. These are surrounded by coatings of unstriped muscular fibre, running both around and lengthways, and also by connective-tissue fibres. In the arteries, the muscular coating is much stronger than in the veins. It may be thought that the space devoted to a discussion of the anatomical structure of the skin is disproportionately As this instrument is a most useful means of investigation in the tanning industry, and one likely to be of increasing importance, it will be well, before proceeding further, to say a few words, both on the selection of a suitable instrument, and on its manipulation in general. To do useful work, it is not necessary to possess a very elaborate or expensive instrument, but it is essential that the microscope be well made and good of its kind. As high powers are often required in the examination, both of hide sections and of ferments, which are the principal objects of investigation in a tannery, it is of the first importance that the fine adjustment should be perfectly steady, without vibration or backlash. This, in the writer's experience, is never the case with cheap microscopes, in which the fine adjustment is made by a screw at the side of the tube moving the nose by means of a lever. A much more satisfactory arrangement is that in which the whole body of the microscope is raised or lowered by a screw in a pillar at the back of the stand on which it slides. A rack for the coarse adjustment is useful, but not essential. If a sliding tube only is provided, it must be tight enough not to slip, but must move easily up and down with a sort of screwing movement. A mechanical stage is not at all necessary, and for most purposes one of black glass is better as well as cheaper. The diaphragm for regulating the light should be as near level with the surface of the stage as possible, and when examined with a low power should appear in the centre of the field. For research work on the minuter ferments, an achromatic condenser and the finest oil- or water-immersion lenses are necessary, but directions for this are beyond the scope of the present work. It may, however, be mentioned that Prof. A frequent defect in cheap English microscopes is that the mirror for substage illumination does not bring the rays of a lamp to a focus exactly on the slide, but frequently some inches above it. This may be to a great extent overcome by the use of a bulls'-eye condenser between the lamp and the microscope. Another defect is that sometimes the centre of the mirror is not in a line with that of the microscope body. The objectives (or lenses at the lower end of the microscope) are the most important part of the instrument, and however good it may be in all other respects, if these are defective the whole is useless. The most useful lenses for our purpose, if only two are to be selected, are a 1-in., magnifying about 50 diam., and a 1/4-in., magnifying about 200 to 400, according to the eye-piece; a 1/8-in. giving, say, twice this magnification will be needed to see the smaller bacteria distinctly, but it is possible just to see even the small putrefaction bacteria with a really fine 1/4-in. In any case, the highest power should be as perfect and of as large an angle as attainable. A good 1/4-in. should resolve Pleurosigma angulatum with direct light, and should show the movement of the granules of protoplasm in the round corpuscles which are present in saliva. In using the latter test, it must be remembered that the motion only lasts a very short time on a cold slide. About 5l. is the very least for which a microscope can be obtained which is suitable for tanners' use; where it can be afforded, a better one is advisable. Without disparaging other makers, it may be mentioned that the writer has generally used both the eye-pieces and objectives of Dr. Hartnack of Potsdam; and that they are moderate in price, at least for the dry combinations, and perfectly satisfactory for all technical purposes. Numbers 2, 5, and 8 objectives with No. 3 eye-piece, are sufficient for all ordinary work. If only 2 objectives are to be obtained, High-power objectives of wide angle (which condition is essential to good defining power) necessarily work extremely close to the object, and it is always best to use the thinnest cover-glasses which can be got. Even then, with such glasses as Hartnack's No. 8, unless the sections are very thin, it will be impossible to examine their lower parts; and one of the greatest difficulties of microscopic research is to obtain them thin enough. It will be obvious, from what has been said, that the greatest care is needed to avoid screwing the objective down on the cover, and so breaking one or both of them. One way to avoid this is to screw down as close as possible to begin with, and then focus upwards. Another plan, when the object on the slide is small, is to keep continuously moving the slide gently with the fingers, while looking into the tube. It is then easy to notice when the dust and small particles on the slide come into focus, and if the point should happen to be overstepped the contact will generally be felt before serious damage is done. Illumination is one of the most important points in practical microscopy. With powers of not less than 1/2-in. focus, objects may generally be examined by light thrown upon them from above by a bulls'-eye condenser, or by good daylight. In this case they need not be transparent; and the plan is often convenient for a mere surface examination. In examining bodies illuminated in this way, prominences often appear as hollows and vice versÂ, by a sort of optical illusion, which, once established, is very difficult to overcome. By remembering the direction of the light, and that this appears reversed in the microscope, it is easy to decide the truth. For all finer work and higher powers, and most generally with the low powers also, it is necessary to render the object transparent, and to examine it by light transmitted from the mirror below the stage. Good daylight is least trying to the eyes. Where artificial light must be used, that of a small paraffin lamp is best; and a blue chimney, or blue glass interposed between the stage and mirror, or lamp and microscope, spares the sight, and makes it easier to distinguish colours. The light should be sufficient, but not too dazzling. Work should never be prolonged after the least strain is felt, nor should the microscope be used for some little time after a meal. It is well to accustom oneself to keep both the eyes open while observing. If it be required to see how far the cellular structures of the hide, such as hair-sheaths and fat-glands, are affected or destroyed in any stage of liming or bating, the following ready method may be employed. If a strip of hide be cut 2/3 through from the grain side, as shown at a in Fig. 7, and the flap be turned down, and held between the finger and thumb, the fibrous tissue will be put on the stretch, and will then allow a moderately thin shaving (including the grain and parts immediately below it) to be cut by a sharp razor. The hide should be held in the positions shown, and a steady drawing cut be made from flesh to grain, the razor being Fig. 7. To prepare the very thin sections necessary for detailed study of the hide, more complicated methods are required. Small slips of hide, not exceeding 1/4 in. wide, and cut exactly Franz Kathreiner, who has made very elaborate researches on skin, and the changes which take place in it during the processes of tanning, employs a mixture of osmic and chromic acids for hardening, and at the same time staining the tissue. This mixture was first used by a German histologist They are then placed for 4-8 days, according to the thickness of the hide, in about 12 times their volume of a solution consisting of
This solution must be kept from dust and light, in a glass stoppered bottle, and in a cool place. On removing the hide-pieces from this solution, they are placed in about 12 times their volume of absolute alcohol for 4-8 days, during which time the spirit must be at least 3 times renewed. The sections are cut with a razor flooded with absolute alcohol, so that the thin shavings float without friction upon it. The hide-pieces may be held either between soft cork, or, as is generally preferable, simply between the forefinger and thumb as shown in Fig. 7. The cut must be made exactly parallel with the direction of the hair roots, and from the grain towards the flesh; and the sections cannot possibly be too thin. After lying for 1/2-1 hour in In these sections, fat and the oily contents of the fat glands are stained black, and the limits of the cells both of these glands and of other elements of the hide (rete malpighi, hair-bulb, &c.) are made very distinct, so as to be capable of the most delicate investigation under the highest powers; but the beginner will learn most easily to recognise the different tissues by studying at first some sections stained with picrocarmine as before described. The method is admirably adapted for the study of hide as affected by the limes and bates. |