1. It is something extraordinary that, though ether, as I found, cannot be made to assume the form of air (the vapour arising from it by heat, being soon condensed by cold, even in quicksilver) yet that a very small quantity of ether put to any kind of air, except the acid, and alkaline, which it imbibes, almost instantly doubles the apparent quantity of it; but upon passing this air through water, it is presently reduced to its original quantity again, with little or no change of quality. I put about the quantity of half a nut-shell full of ether, inclosed in a glass tube, through a body of quicksilver, into an ounce measure of common air, confined by quicksilver; upon which it presently began to expand, till it occupied the space of two ounce measures. It then gradually contracted about one sixth of an ounce measure. Putting more ether to it, it again expanded to two ounce measures; but no more addition of ether would make it expand any farther. Withdrawing the quicksilver, and admitting water to this air, without any agitation, All the phenomena of dilatation and contraction were nearly the same, when, instead of common air, I used nitrous air, fixed air, inflammable air, or any species of phlogisticated common air. The quantity of each of these kinds of air was nearly doubled while they were kept in quicksilver, but fixed air was not so much increased as the rest, and phlogisticated air less; but after passing through the water, they appeared not to have been sensibly changed by the process. 2. Spirit of wine yields no air by means of heat, the vapours being soon condensed by cold, like the vapour of water; yet when, in endeavouring to procure air from it, I made it boil, and catched the air which had rested on the surface of the spirit, and which had been expelled by the heat together with the vapour, in a vessel of quicksilver, and afterwards admitted acid air to it, the vessel was filled with white fumes, 3. Having been informed by Dr. Small and Mr. Bolton of Birmingham, that paper dipped in a solution of copper in spirit of nitre would take fire with a moderate heat (a fact which I afterwards found mentioned in the Philosophical Transactions) it occurred to me that this would be very convenient for experiments relating to ignition in different kinds of air; and indeed I found that it was easily fired, either by a burning lens, or the approach of red-hot iron on the outside of the phial in which it was contained, and that any part of it being once fired, the whole was presently reduced to ashes; provided it was previously made thoroughly dry, which, however, it is not very easy to do. With this preparation, I found that this paper burned freely in all kinds of air, but not in vacuo, which is also the case with gunpowder; and, as I have in effect observed before, all the kinds of air in which this paper was burned received an addition to their bulk, which consisted partly of nitrous air, from the nitrous precipitate, and partly of inflammable air, from the paper. As some of the circumstances Firing this paper in inflammable air, which it did without any ignition of the inflammable air itself, the quantity increased regularly, till the phial in which the process was made was nearly full; but then it began to decrease, till one third of the whole quantity disappeared. A piece of this paper being put to three ounce measures of acid air, a great part of it presently turned yellow, and the air was reduced to one third of the original quantity, at the same time becoming reddish, exactly like common air in a phial containing smoking spirit of nitre. After this, by the approach of hot iron, I set fire to the paper; immediately upon which there was a production of air which more than filled the phial. This air appeared, upon examination, to be very little different from pure nitrous air. I repeated this experiment with the same event. Paper dipped in a solution of mercury, zinc, or iron, in nitrous acid, has, in a small degree, the same property with paper dipped in a solution of copper in the same acid. 4. Gunpowder is also fired in all kinds of air, and, in the quantity in which I tried it, did not make any sensible change in them, except that the common air in which it was fired would not afterwards admit a candle to burn in it. In order to try this experiment I half exhausted a receiver, and then with a burning-glass fired the gunpowder which had been previously put into it. By this means I could fire a greater quantity of gunpowder in a small quantity of air, and avoid the hazard of blowing up, and breaking my receiver. I own that I was rather afraid of firing gunpowder in inflammable air, but there was no reason for my fear; for it exploded quite freely in this air, leaving it, in all respects, just as it was before. In order to make this experiment, and indeed almost all the experiments of firing gunpowder in different kinds of air, I placed the powder upon a convenient stand within my receiver, and having carefully exhausted it by a pump of Mr. Smeaton's construction, I filled the receiver with any kind of air by the apparatus described, p. 19, fig. 14, taking the greatest care that the tubes, &c. which conveyed the air should contain little or no common air. In the experiment with inflammable air a Sometimes, I filled a glass vessel with quicksilver, and introduced the air to it, when it was inverted in a bason of quicksilver. By this means I intirely avoided any mixture of common air; but then it was not easy to convey the gunpowder into it, in the exact quantity that was requisite for my purpose. This, however, was the only method by which I could contrive to fire gunpowder in acid or alkaline air, in which it exploded just as it did in nitrous or fixed air. I burned a considerable quantity of gunpowder in an exhausted receiver (for it is well known that it will not explode in it) but the air I got from it was very inconsiderable, and in these circumstances was necessarily mixed with common air. A candle would not burn in it. |