CHAPTER XXI. SUBMARINE TUNNELING (Continued); TUNNELS AT VERY SHALLOW DEPTH. THE COFFERDAM METHOD. THE PNEUMATIC CAISSON METHOD. THE JOINING TOGETHER SECTIONS OF TUNNELS BUILT ON LAND. The tunnels on the river bed or at such a shallow depth that only a few feet of material will remain between the bottom of the river and the roof of the tunnel can be built in three different ways, viz., (1) by a cofferdam; (2) by pneumatic caissons; (3) by sinking and joining together whole sections of tunnels that were built on land. The Cofferdam Method.—The Van Buren Street Tunnel, Chicago River.—According to the cofferdam method, the work is attacked at one of the shores, and the tunnel built in sections of such length as not to interfere with the flow of water or the navigation of the river. Round the entire exterior line of the first section a double-walled cofferdam is built, and strongly braced transversely, so as to withstand the pressure of the water. When the water is pumped out, a single-walled cofferdam is built within the first, leaving sufficient distance between the two to allow of the construction of the masonry. The soil is then removed within the inner cofferdam, and the tunnel constructed from the foundation. When the end of the tunnel reaches the channel end of the cofferdam, a crib-wall is erected over the end of the completed tunnel. This crib, in turn, forms the end wall of another cofferdam, built in continuation of the first, so as to allow the second section to be proceeded with, and at the same time to facilitate the removal of the cofferdams of the first VAN BUREN STREET TUNNEL, CHICAGO.The Van Buren Street tunnel, built to carry a double-track street railway under the Chicago River, was completed in 1894 by the cofferdam method. The special features of the tunnel The special feature of the work for our present purpose was the construction of the tunnel across the river. To accomplish this a cofferdam was built out from the west shore of the river to its middle, and the tunnel constructed within it like the building of any other structure within a cofferdam. Transverse and longitudinal sections of this cofferdam are shown by Fig. 141. As will be seen, it was a simple double-wall cofferdam, with a clear width between the walls of 58 ft., and braced transversely as shown. Inside of this a single-wall cofferdam of piles was constructed, with a clear width just sufficient to allow the construction of the masonry within it. When the tunnel end reached the channel end of the cofferdam, a crib-wall was built over the end of the completed tunnel, as shown by the drawings. This crib-wall was intended to form the end wall of another cofferdam, which was built out from the east shore, and within which the remaining half of the tunnel was built as the first half had been. The drawings show the character of the tunnel masonry and of the centering upon which it was built. The Van Buren Street tunnel was the last of the three tunnels under the Chicago River, constructed according to the cofferdam method. At the time the tunnels were constructed the bed of[283] THE PNEUMATIC CAISSON METHOD.—THE TUNNEL UNDER THE HARLEM RIVER.In the early seventies Prof. Winkler proposed to construct a tunnel under the River Danube to connect the various portions of the Vienna, Austria, underground railway, and to use caissons in the construction. Prof. Winkler proposed to build caissons from 30 ft. to 45 ft. long, with a width depending upon the lateral dimensions adopted for the tunnel masonry. The caisson was to be made of metal plates and angle iron with riveted connections on all sides except those running vertically transverse to the tunnel axis, whose connections were to be bolted. In the middle of the roof an opening was to be left; this was for the shaft having the air-locks to allow the passage of men, materials, and compressed air. Across the river two parallel rows of piles were to be driven into the river bed, to fix the place where the caisson was to be sunk. Then the first caisson near the shore was to be lowered in the ordinary way, and a second caisson was to be immediately sunk very close to the first one. When both caissons had reached the plane of the tunnel floor, the sides which were in contact were to be unbolted and removed, and the small space between made water-tight. The chambers of the two caissons were to be opened into a single large one communicating above by means of two shafts. At the same time that the masonry was being built in the first two caissons, from the inverted arch up, a third caisson was to be sunk; and when by excavation it had reached the plane of the projected tunnel floor, the partitions were to be removed so that the three caissons were in communication, The Harlem River Tunnel.—The pneumatic caissons method was employed in the construction of the tunnel under the Harlem River for the New York Rapid Transit Railway. The tunnel proper consisted of two parallel tubes riveted to each other and surrounded by a cradle of concrete as shown in Fig. 121, page 216. The tunnel was built in three sections:—The first, from the Manhattan shore well towards the middle of the river; the second, from the shore of the Bronx towards the middle of the river; and the last, the section uniting the other two and completing the tunnel. Each section was built within a specially constructed working-chamber, consisting of timber side walls forming a wooden caisson, so constructed that compressed air could be used. This working-chamber of Mr. McBean presented some novel features, inasmuch as the caisson was not built on land, but under water. In building the tunnel, the Harlem River was dredged to a certain depth, so as to leave only 6 ft. or 8 ft. of excavation to be done before reaching the line of sub-grade of the proposed structure. Two service platforms were built on piles 10 ft. apart longitudinally, and cut off at a point above mean high-water mark, braced in the usual manner, and covered with heavy planks, to serve as the floor of the platform. On this platform were placed rails for the trains used in the transportation of materials. These platforms were also used in maintaining the perfect alignment of the caissons. Within the platforms and along the dredged channel four Fig. 142 shows the manner in which the working platforms were constructed, and also the rows of piles sunk in the dredged channel. Between the piles a very strong frame was placed, made up of waling pieces and two transverse beams 14 ins. by 14 ins. each, placed one below the other at a distance of 5 ft. 8 ins., and strongly braced together. Guiding-beams were fixed on each side of the frame for the sheeting piles. The frames were built in sections of different lengths, and placed directly above the cap-pieces of the pile-bents sunk in the dredged channel. The longitudinal sides of the caisson were constructed by sinking two rows of sheeting piles, each row being close to a service platform. The sheeting piles were made up of yellow-pine timbers 12 ins. by 12 ins.; three piles bolted together formed a section 3 ft. wide. Each section was grooved and tongued, so as to be firmly connected with the adjacent sections to be sunk. The lower ends of the piles were cut wedge-shaped, with a sharp edge to offer a small resistance while penetrating the soil. The sheeting-piles were then cut off under water, which operation was successfully carried out by means of a circular saw operated by a pile-driving machine. The sheeting was also extended between two platforms to make a bulkhead, and in this way the four sides of the caisson were built up. Particular attention was always given to the alignment of the sheeting piles, which was obtained by guiding the piles with the timbers placed longitudinally, The caisson was completed by placing a roof covering the sides. This roof was 40 ins. thick, made up of three layers of 12-in. beams placed transversely to the axis of the caisson, while between the beams planks 2 ins. thick were placed lengthwise and bolted together, so as to make a firm, solid structure. The roof was built ashore, in sections each varying from 39 ft. to 130 ft. long. The edges of the roof fitted the sides of the caisson perfectly; and when each section was towed to the proper spot, it was sunk and made secure. Under the roof were placed six longitudinal beams, 12 ins. by 14 ins., called “rangers,” resting on the cap-pieces of the pile-bents that were laid across the space of the proposed tunnel; while the extreme rangers were used for the purpose of fitting above the sheeting-piles of the caisson, in order to make the latter water-tight. The two extreme rangers were provided with T-irons, the flat side being laid on the sheeting-piles, while the web penetrated the ranger by reason of the weight of the load resting on the roof, for the purpose of sinking it to the required point. Earth was next heaped on the roof, and in this way a large working-chamber was prepared, as shown in Fig. 144. The working-chamber built on the Manhattan side of the When the working-chamber was constructed, the tunnel proper was begun by excavating the soil down to the required level; the concrete was then laid on. It was just at this point, when a large part of the roof was constructed and supported only by the sheeting-piles of the sides of the caisson, that the writer of this article feared that this novel method of tunneling would prove a failure. The tendency of the timber to float, aided as it was by the air pressure within the caisson, was counteracted only by the weight of the earth heaped on the roof, and by the friction of the soil against the feet of the sheeting-piles. This friction was only a small quantity, as the soil was loose, so that it was considered rather risky and dangerous to place reliance on such a feeble quantity. This fear was, unfortunately, justified on two occasions, when on cutting off a portion of the pile-bents some of the sheeting-piles got loose and water flooded the whole chamber, but, happily, without loss of life. As the chamber was one of large dimensions, the workmen had time enough to effect their escape. It may be remarked that during these troubles only a few of the sheeting-piles were displaced, while the caisson itself offered a stout and successful resistance, due to its being strongly braced transversely. The accidents were, therefore, limited to a few piles, instead of affecting the entire caisson. On the occasion of the first, the repairs were effected by sinking the piles to a greater depth, continuing down until rock was encountered. After that, the water was pumped out and the work resumed. In repairing the second accident, the sheeting-piles were driven down to bed-rock, and the surrounding soil strengthened On the concrete bed of the tunnel the segments of the metal lining were placed and surrounded by concrete, as required by the plans and specifications (Fig. 145). The contractors had planned to unbolt the roof from its holdings, to remove by means of dredgers the earth which had been heaped on it, and thus set the roof afloat, after which it was to be towed within the two working platforms already erected on the Bronx shore. But Mr. McBean devised a simpler and more economic, but at the same time more dangerous, way of constructing this second section of the tunnel. He thought that the upper half of the tunnel proper could be used instead of the timber roof, thereby reducing the capacity of the working chamber, and limiting the use of compressed air. In this way he dispensed with the removal of timber, and also of the earth heaped on the roof. In building this Bronx section, a channel was dredged along the line of the tunnel to a depth of 5 ft. from the foundation-bed of the proposed tunnel. The working platforms were constructed on both sides of this channel, quite similar to those erected on the other half of the tunnel; and between them pile-bents were sunk, capped with 12-in. by 12-in. beams. Over the cap-pieces rangers were placed longitudinally, which also rested on the sides of the wooden working caisson, Fig. 146. The sheeting-piles were cut off at level, but much lower down than in the first half of the tunnel. The roof was built on floats made of 12-in. by 12-in. timber laid transversely 4 ft. apart and supporting a floor of 3-in. by 12-in. On this float, the upper half of the tunnel was constructed by erecting the segments of the metal lining, which were strongly supported, so as to prevent any settling or distortion; the concrete was then built up in a large flange with vertical suspension rods, four to each bar. The rings of the tunnel were 6 ft. each, the weight of each lining being 41,000 lbs., the concrete covering 618 cubic feet. The second part of the tunnel was 300 ft. long, with roof constructed in three sections—two of 90 ft. in length each and the third of 84 ft. Each of these sections alternated with a smaller section, 12 ft. long, provided with air-locks. The shortest of the three sections was the first one set up, and was constructed close to the Bronx side of the Harlem River. For this purpose the two extreme ends of the section were closed by means of steel plates forming diaphragms, built 6 ft. inward, thus leaving one ring projecting out at each end. Openings were left on the top of these projecting rings for access by divers. The exterior of the upper half section of the permanent tunnel was filled with water until it was lowered into position. It was The remaining sections of the tunnel roof were built in the same way, until the last abutted against the part of the work constructed within the caisson under the high wooden roof on the Manhattan side of the river. The following method was adopted for the purpose of connecting the few parts of the tunnel which had been differently constructed. The diaphragm at the end of the last section of the tunnel roof was constructed so as to abut against the last circumferential flanges of the iron lining without leaving a projecting ring. It was continued above the metal and concrete lining of the roof in a rectangular form, and When the different sections were joined together, and all the openings closed and made water-tight, cement-grout was poured on the roof, and earth was heaped up to a height of 5 ft. The 300 ft. of the roof, resting on sheeting-piles and provided with diaphragms at the extreme ends, formed a water-tight working-chamber, or caisson, communicating with the exterior by means of the shafts and air-locks. The lower portion of the tunnel was built under air-pressure. The pile-bents were first cut off at the plane of the tunnel sub-grade, after which the foundation-bed of concrete was laid. The lower segments of the iron lining were then placed in position, and the structure made continuous by building up the lateral walls, consisting of concrete (Fig. 148). No accidents occurred while building the second part of the tunnel. The Harlem River tunnel was completed in contract time, although the opening of the subway was delayed by difficulties SINKING AND JOINING TOGETHER SECTIONS OF TUNNELS BUILT ON LAND. THE SEINE. THE DETROIT RIVER TUNNELS.In the year 1896, Mr. Erastus Wyman secured a patent for building subaqueous tunnels close to the river, by sinking and joining together small sections of tunnels previously built on land. Each section would have been provided with a long vertical tube for the air-lock when compressed air was to be admitted to expel the water and permit the construction of the lining within the sunken shell. Thus each section of the tunnel would have acted as a pneumatic caisson; being, however, an improvement on Professor Winkler’s suggestion inasmuch as the caisson was a portion of the tunnel itself, instead of a simple inclosure for facilitating the construction of the shield. Mr. Wyman proposed to use this method in the construction of a tunnel between South Brooklyn and Stapleton, Staten Island; a charter was granted him but the tunnel was never built. The Tunnel under the Seine River.—The caisson method of building tunnels under water was used at Paris, France, in the construction of the Metropolitan Railroad under the Seine River. The caissons designed by Mr. L. Chagnaud were for a double track line. They were sunk, ends to ends, and formed a portion of the tunnel lining which was enveloped by a framework of metal embedded in concrete. Built-up frames carried a shell of steel plating on the sides, from toes to springing lines, and on the sides and roof of the working-chamber. A temporary plate diaphragm closed the open ends. This construction formed a vessel capable of floating with a very light draft. The method of sinking the caissons was as follows: The caisson was erected on the river bank and when completed it was Previous to placing the caisson in position between the stagings, the portion of the river bed it was to rest upon had been leveled by dredging. Once in position, the first work was the erecting of the cast-iron lining segments within the framework. Work was then begun by filling the annular space between the lining and the shell with concrete; this additional weight gradually sunk the caisson to the river bottom. The working shafts, made up of steel cylinders, were placed as the sinking progressed to this point. After the caissons had been sunk to the required place and in continuation of one another, a space of nearly 5 ft. was left between them. The construction of the tunnel within the bank At the Pont Mirabeau crossing of the Seine, a slightly different method was used, described in “Eng. News,” May 18, 1911. The caissons were sunk to the required line and grade with an intervening longitudinal space of 153/4 ins. between two adjoining caissons. At each end of this space, which was filled with the river marl, was sunk against the edges of the caissons a hollow cylinder 20 ins. outside diameter. The interior of these cylinders was excavated and filled with concrete, thus forming a continuous wall on both sides of the two adjoining caissons. The earth from the intervening space was then removed and concrete deposited from bottom opening tremies up to the level of the top of the caisson. After nearly one month the tunnel was entered from the shaft and an opening the shape and size of the tunnel section cut through the diaphragms of the 153/4-in. wall and the concrete tunnel lining made continuous between the two sections. Fig. 150 shows the method of joining the caissons. The Detroit River Tunnel.Each section of the subaqueous tunnel is approximately 262 ft. long. There are ten of these sections and an eleventh a little over 60 ft. long. These tubes were built at the shipyards As a foundation for the sections, a grillage was constructed on the surface and sunk in place in the trench by derricks swung from a scow. The grillage was placed underneath each joint between the sections and built up of I-beams imbedded in concrete. This grillage is the width of the trench and about 30 ft. long, with posts projecting downward from the four corners, and these were seated into the river bottom, by means of pile drivers, to the desired grade. Then the eleven sections of the tunnel were lowered and connected, one at a time. By the aid of air tanks placed on each section the movement was controlled until the final sinking upon the grillage in the trench. This operation called into play the greatest engineering skill and ingenuity. When it is considered that the current velocity at the river bed is about 2 ft. per second and much higher along the surface, some idea can be gained of the problems to be overcome. The movement of the enormous sections must be absolutely under control. Thirty-five-ton blocks of concrete were sunk in the river bottom up and down stream to act as anchors, and through them cables were rigged and connected back to the hoisting engines on the derrick scows. These were prevented from moving by spuds at each corner, securely driven into the river bottom at depths sometimes as Steel masts had been previously attached to each end of the sections to enable the engineers on shore to determine the alignment and locate the exact position during the sinking. Concrete was then deposited in the pockets, completely surrounding This was done by means of the tremie process. A 32-ft. by 160-ft. scow was equipped with a concrete mixing plant and the tremie pipes, three in number, through which the concrete was deposited. Each pipe is 12 ins. in diameter, of spiral riveted steel, 80 ft. long. These pipes could be raised or lowered, reaching from the receiving hoppers on the scow to the bottom of the trench. When the pipes were filled with concrete and lowered into position, a continuous flow was maintained. As fast as the concrete escaped at the bottom end of the pipe it was replenished at the top; this process continuing until the entire space surrounding the section was filled to the desired level, and under the pressure produced not only by the depth of water under which it was submerged, but also by the weight of the long column of concrete contained in the tubes. It is interesting to note that this is the first time a large amount of concrete has been deposited at a depth of 70 ft. by this method, and upon the accomplishment of this task in a measure depended the successful building of the tunnel. Inside the tubes was placed a lining of reinforced concrete 20 ins. thick. Side walls were built up from this ring to provide ducts, which carry the electrical cables for the distribution of power, lighting, signal and telegraph wires. They also serve to provide a footwalk along the side of the tunnel. There are cross passages in the tunnel every 200 ft., and also various niches for the different equipment needed in connection with the signaling, telephone and fire alarm system. The tunnel is lighted with 800 16-candle-power incandescent lights. The track construction is new. There is no ballast used, the ties being laid in concrete. A ditch in the center of each track carries the rainfall that will flow down from the summits to sumps which are drained by centrifugal pumps. One remarkable feature of its construction is that compressed air was not used in the building of the subaqueous The trains are operated by very heavy electric locomotives, operated by the third-rail system. The tunnel was constructed under the supervision of W. S. Kinnear, Chief Engineer of the Detroit River Tunnel Co.; Butler Bros. of New York were the general contractors. |