Tunnels in soft soils and in loose rock, and rock liable to disintegration, are always provided with a lining to hold the walls and roof in place. This lining may cover the entire sectional profile of the tunnel, or only a part of it, and it may be constructed of timber, iron, iron and masonry, or, more commonly, of masonry alone. Timber Lining.—Timber is seldom employed in lining tunnels except as a temporary expedient, and is replaced by masonry as soon as circumstances will permit. In the first construction of many American railways, the necessity for extreme economy in construction, and of getting the line open for traffic as soon as possible, caused the engineers to line many tunnels with timber, which was plentiful and cheap. Except for their small cost and the ease and rapidity with which they can be constructed, however, these timber linings possess few advantages. It is only the matter of a few years when the decay of the timber makes it necessary to rebuild them, and there is always the serious danger of fire. In several instances timber-lined tunnels in America have been burned out, causing serious delays in traffic, and necessitating complete reconstruction. Usually this reconstruction has consisted in substituting masonry in place of the original timber lining. In a succeeding chapter a description will be given of some of the methods employed in replacing timber tunnel linings with masonry. Various forms of timber lining are employed, of which Fig. 44 and the illustrations in the chapter Iron Lining.—The use of iron lining for tunnels was introduced first on a large scale by Mr. Peter William Barlow in 1869, for the second tunnel under the River Thames at London, England, and it has greatly extended since that time. The lining of the second Thames tunnel consisted of cylindrical cast-iron rings 8 ft. in diameter, the abutting edges of the successive rings being flanged and provided with holes for bolt fastenings. Each ring was made up of four segments, three of which were longer than quadrants, and one much smaller forming the “key-stone” or closing piece. These segments were connected to each other by flanges and bolts. To make the joints tight, strips of pine or cement and hemp yarn were inserted between the flanges. Since the construction of the second Thames tunnel, iron lining has been employed for a great many submarine tunnels in England, Continental Europe, and America, some of them having a section over 28 ft. in diameter. Where circular iron lining is employed, the bottom part of the section is leveled up with concrete or brick masonry to carry the tracks, and the whole Iron and Masonry Lining.—During recent years a form of combined masonry and iron lining has been extensively employed in constructing city underground railways in both Europe and America. Generally this form of lining is built with a rectangular section. Two types of construction are employed. In the first, masonry side walls carry a flat roof of girders and beams, which carry a trough flooring filled with concrete, or between which are sprung concrete or brick arches. Sometimes the roof framing consists of a series of parallel I-beams laid transversely across the tunnel, and in other cases transverse plate girders carry longitudinal I-beams. In the second type of construction the roof girders are supported by columns embedded in the side walls. Where the tunnel provides for two or four tracks, intermediate column supports are in some cases introduced between the side columns. In this construction the roofing consists of concrete filled troughs or of concrete or brick arches, as in the construction first described. Examples of combined masonry and iron tunnel lining are illustrated in the succeeding chapter on tunneling under city streets. Masonry Lining.—The form of tunnel lining most commonly employed is brick or stone masonry. Concrete and reinforced concrete masonry lining has been employed in several tunnels built in recent years. The masonry lining may inclose the whole section or only a part of it. The floor or invert is the part most commonly omitted; but sometimes also the side walls and invert are both omitted, and the lining is confined simply to an arch supporting the roof. The roof arch, the side walls, and the invert compose the tunnel lining; and all three may consist of stone or brick alone, or stone side walls may be employed with brick invert Concrete and reinforced concrete linings are now extensively used on account of cheapness and facility of handling, but they have the great disadvantage of resisting pressure after they become hard, which is some time after being placed. The strutting should, therefore, be left to support the roof so as to prevent direct pressure on the fresh material. The roof, as a rule, is supported by longitudinal planks held in position by five or seven segments of arched frames placed across the tunnel. A large quantity of timber and carpenter work is thus entirely wasted and these costly items, in many cases, make the concrete Foundations.—In tunnels through rock of a hard and durable character the foundations for the side walls are usually laid directly on the rock. In loose rock, or rock liable to disintegration, this method of construction is not generally a safe one, and the foundation excavation should be sunk to a depth at which the atmospheric influences cannot affect the foundation bed. In either case the foundation masonry is made thicker than that of the side walls proper, so as to distribute the pressure over a greater area, and to afford more room for adjusting the side-wall masonry to the proper profile. In yielding soils a special foundation bed has to be prepared for the foundation masonry. In some instances it is found sufficient to lay a course of planks upon which the masonry is constructed, but a more solid construction is usually preferred. This is obtained by placing a concrete footing from 1 ft. to 2 ft. deep all along the bottom of the foundation trench, or in some cases by sinking wells at intervals along the trench and filling them with concrete, so as to form a series of supporting pillars. The form given to the foundation courses and lower portions of the side walls varies. Where a large bearing area is required, the back of the wall is carried up vertically as shown by the line AB, Fig. 45, otherwise the rear face of the wall follows the line of excavation AC. For similar reasons the front face of the wall may be made vertical, as at FG, or inclined, as at FH. The line FE indicates the shelf construction designed to support the feet of the posts used to carry the arch centers during the construction of the roof arch. Side Walls.—The construction of the side walls above the foundation courses is carried out as any similar piece of masonry elsewhere would be built. To direct the work and insure that the inner faces of the walls follow accurately the curve of the chosen profile, leading frames previously described are employed. Roof Arch.—For the construction of the roof arch, the centers previously described are employed. Beginning at the edges of the center on each side, the masonry is carried up a course at a time, care being taken to have it progress at the same rate on both sides, so that the load brought onto the centering is symmetrical. As soon as the centers are erected, the roof strutting is removed, and replaced by short props which rest on the lagging of the centers and support the poling-boards. These props are removed in succession as the arch masonry rises along the curve of the center, and the space between the top of the arch masonry and the ceiling of the excavation is filled with small stones packed closely. The keystone section of the arch is built last, by inserting the stones or bricks from the front edge of the arch ring, there being no room to set them in from the top, as is the practice in ordinary open-arch construction. The keying of the arch is an especially difficult operation, and only experienced men skilled in the work should be employed to perform it. The task becomes one of unusual difficulty when it becomes necessary to join the arches coming from opposite directions. Invert.—In all but one or two methods of tunneling, the invert is the last portion of the lining to be built. In the English method of tunneling, the invert is the first portion of the lining to be built, and the same practice is sometimes necessary in soft soils where there is danger of the bottoms of the side walls being squeezed together by the lateral pressures unless the invert masonry is in place to hold them apart. The ground molds previously described are employed to direct the construction of the invert masonry. General Observations.—In describing the construction of the roof arch, mention was made of the stone filling employed between the back of the masonry ring and the ceiling of the excavation. The spaces behind the side walls are filled in a similar manner. The object of this stone filling, which should be closely packed, is to distribute the vertical and lateral pressures in the walls of the excavation uniformly over the lining masonry. As the masonry work progresses, the strutting employed previously to support the walls of the excavation has to be removed. This work requires care to prevent accident, and should be placed in charge of experienced mechanics who are familiar with its construction, and can remove it with the least damage to the timbers, so that they may be used again, and without causing the fall of the roof or the caving of the sides by removing too great a portion of the timbers at one time. Thickness of Lining Masonry.—It is obvious, of course, that the masonry lining must be thick enough to support the pressure of the earth which it sustains; but, as it is impossible to estimate these pressures at all accurately, it is difficult to say definitely just what thickness is required in any individual case. Rankine gives the following formulas for determining the depths of keystone required in different soils: For firm soils d = v(0.12 r2s), and for soft soils, d = v(0.48 r2s), where d = the depth of the crown in feet, r = the rise of the arch in feet, and s = the span of the arch in feet. Other writers, among them Professor Curioni, attempt to give rational methods for calculating the thickness of tunnel lining; but they are all open to objection because of the amount of hypothesis required The thickness of the masonry lining is seldom uniform at all points, as is indicated by Table II. Figs. 46 and 47 show common methods of varying the thickness of lining at different points, and are self-explanatory. Side Tunnels.—When tunnels are excavated by shafts located at one side of the center line, short side tunnels or galleries are built to connect the bottoms of the shafts with the tunnel proper. These side tunnels are usually from 30 ft. to 40 ft. long, and are generally made from 12 ft. to 14 ft. high, and about 10 ft. wide. The excavation, strutting, and lining of these side tunnels are carried on exactly as they are in the main tunnel, with Culverts.—The purpose of culverts in tunnels is to collect the water which seeps into the tunnel from the walls and shafts. The culvert is usually located along the center line of the tunnel at the bottom. In soft-ground tunnels it is built of masonry, and forms a part of the invert, but in rock tunnels it is the common practice to cut a channel in the rock floor of the excavation. Both box and arch sections are employed for culverts. The dimensions of the section vary, of course, with the amount of water which has to be carried away. The following are the dimensions commonly employed:
It should be understood that the dimensions given in the table are those for ordinary conditions of leakage; where larger quantities of water are met with, the size of the culverts has, of course, to be enlarged. To permit the water to enter the culvert, openings are provided at intervals along its side; and these openings are usually provided with screens of loose stones which check the current, and cause the suspended material to be deposited before it enters the culvert. In cases where springs are encountered in excavating the tunnel, it is necessary to make special provisions for confining their outflow and conducting it to the culvert. In all cases the culverts should be provided with catch basins at intervals of from 150 ft. to 300 ft., in which such suspended matter as enters the culverts is deposited, and removed through covered openings over each basin. At the ends of the tunnel the culvert is usually divided Niches.—In short tunnels niches are employed simply as places of refuge for trackmen and others during the passing of trains, and are of small size. In long tunnels they are made larger, and are also employed as places for storing small tools and supplies employed in the maintenance of the tunnel. Niches are simply arched recesses built into the sides of the tunnel, and lined with masonry; Fig. 48 shows this construction quite clearly. Small refuge niches are usually built from 6 ft. to 9 ft. high, from 3 ft. to 6 ft. wide, and from 2 ft. to 3 ft. deep. Large niches designed for storing tools and supplies are made from 10 ft. to 12 ft. high, from 8 ft. to 10 ft. wide, and from 18 ft. to 24 ft. deep, and are provided with doors. Refuge niches are usually spaced from 60 ft. to 100 ft. apart, while the larger storage niches may be located as far as 3000 ft. apart. The niche construction shown by Fig. 48 is that employed on the St. Gothard tunnel. Entrances.—The entrances, or portals, of tunnels usually consist of more or less elaborate masonry structures, depending upon the nature of the material penetrated. In soft-ground tunnels extensive wing walls are often required to support the earth above and at the sides of the entrance; while in tunnels through rock, only a masonry portal is required, to give a finish to the work. Often the engineer indulges himself in an elaborate architectural design for the portal masonry. There is “The designs for such constructions should be massive to be suitable as approaches to works presenting the appearance of gloom, solidity, and strength. A light and highly decorated structure, however elegant and well adapted for other purposes, would be very unsuitable in such a situation; it is plainness combined with boldness, and massiveness without heaviness, that in a tunnel entrance constitutes elegance, and, at the same time, is the most economical.” Fig. 49 is an engraving from a photograph of the east portal of the Hoosac tunnel, which is an especially good design. The portals of the Mount Cenis tunnel were built of samples of stone encountered all along the line of excavation. The stones were cut and dressed and utilized for walls and voussoirs. The only ornament that is usually allowed on the portals is the date of the opening of the tunnel prominently cut in the stone above the arch. Table II. Showing Thickness of Masonry Lining for Tunnels through Soft Ground.
TABLE III. Showing Thickness of Masonry Lining for Side Tunnels through Soft Ground.
|