CHAPTER IV. GENERAL METHODS OF EXCAVATION: SHAFTS: CLASSIFICATION OF TUNNELS.

Previous

A number of different modes of procedure are followed in excavating tunnels, and each of the more important of these will be considered in a separate chapter. There are, however, certain characteristics common to all of these methods, and these will be noted briefly here.

Fig. 14.—Diagram Showing Sequence of Excavation for St. Gothard Tunnel.

Fig. 15.—Diagram Showing Manner of Determining Correspondence of Excavation to Sectional Profile.

Division of Section.

—It may be asserted at the outset that the whole area of the tunnel section is not ordinarily excavated at one time, but that it is removed in sections, and as each section is excavated it is thoroughly timbered or strutted. The order in which these different sections are excavated varies with the method of excavation, and it is clearly shown for each method in succeeding chapters. As a single example to illustrate the proposition just made, the division of the section and the sequence of excavation adopted at the St. Gothard tunnel is selected (Fig. 14). The different parts of the section were excavated in the order numbered; the names given to each part, and the number of holes employed in breaking it down, are given by the table on page 35. Whatever method is employed, the work always begins by driving a heading, which is the most difficult and expensive part of the excavation. All the other operations required in breaking down the remainder of the tunnel section are usually designated by the general term of enlargement of the profile. The various operations of excavation may, therefore, be classified either as excavation of the heading or enlargement of the profile.

Excavation of the Heading.

—There is considerable confusion among the different authorities regarding the exact definition of the term “heading” as it is used in tunnel work. Some authorities call a small passage driven at the top of the profile a heading, and a similar passage driven at the bottom of the profile a drift; others call any passage driven parallel to the tunnel axis, whether at the top or at the bottom of the profile, a drift; and still others give the name “heading” to all such passages. For the sake of distinctness of terminology it seems preferable to call the passage a heading when it is located at the top of the profile, and a drift when it is located near the bottom.

Headings and drifts are driven in advance of the general excavation for the following purposes: (1) To fix correctly the axis of the tunnel; (2) to allow the work to go on at different points without the gangs of laborers interfering with each other; (3) to detect the nature of material to be dealt with and to be ready in any contingency to overcome any trouble caused by a change in the soil; and (4) to collect the water. The dimensions of headings in actual practice vary according to the nature of the soil through which they are driven. As a general rule they should not be less than 7 ft. in height, so as to allow the men to work standing, and have room left for the roof strutting. The width should not be less than 6 ft., to allow two men to work at the front, and to give room for the material cars without interfering with the wall strutting. Usually headings are made 8 ft. wide. The length of headings in practice varies according to circumstances. In very long tunnels through hard rock the headings are sometimes excavated from 1000 ft. to 2000 ft. in advance, in order that they may meet as soon as possible and the ranging of the center line be verified, and so that as great an area of rock as possible may be attacked at the same time in the work of enlarging the profile. In short tunnels, where the ranging of the center line is less liable to error, shorter headings are employed, and in soft soils they are made shorter and shorter as the cohesion of the soil decreases. When the material has too little cohesion to stand alone, the tops and sides of the heading require to be supported by strutting. To prevent caving at the front of the heading, the face of the excavation is made inclined, the inclination following as near as may be the natural slope of the material.

Enlargement of the Profile.

—The enlargement of the profile is accomplished by excavating in succession several small prisms parallel to the heading, and its full length, which are so located that as each one is taken out the cross-section of the original heading is enlarged. The number, location, and sequence of these prisms vary in different methods of excavation, and are explained in succeeding chapters where these methods are described. To direct the excavation so as to keep it always within the boundaries of the adopted profile, the engineer first marks the center line on the roof of the heading by wooden or metal pegs, or by some other suitable means by which a plumb line may be suspended. He next draws to a large scale a profile of the proposed section; and beginning at the top of the vertical axis he draws horizontal lines at regular intervals, as shown by Fig. 15, until they intersect the boundary lines of the profile, and designates on each of these lines the distance between the vertical axis and the point where it intersects the profile. It is evident that if the foreman of excavation divides his plumb line in a manner corresponding to the engineer’s drawing, and then measures horizontally and at right angles to the vertical center plane of the tunnel the distance designated on the horizontal lines of the drawing, he will have located points on the profile of the section, or in other words have established the limits of excavation.

Fig. 16.—Polar Protractor for Determining Profile of Excavated Cross-Section.

In the excavation of the Croton Aqueduct for the water supply of New York city, an instrument called a polar protractor was used for determining the location of the sectional profile. It was invented by Mr. Alfred Craven, division engineer of the work. This instrument consists of a circular disk graduated to degrees, and mounted on a tripod in such a manner that it may be leveled up, and also have a vertical motion and a motion about the vertical axis. The construction is shown clearly by Fig. 16. In use the device is mounted with its center at the axis of the tunnel. A light wooden measuring-rod tapering to a point, shod with brass and graduated to feet and hundredths of a foot, lies upon the wooden arm or rest, which revolves upon the face of the disk, and slides out to a contact with the surface of the excavation at such points as are to be determined. If the only information desired is whether or not the excavation is sufficient or beyond the established lines, the rod is set to the proper radius, and if it swings clear the fact is determined. If a true copy of the actual cross-section is desired, the rod is brought into contact with the significant points in the cross-section, and the angles and distances are recorded.

The general method of directing the excavation in enlarging the profile by referring all points of the profile to the vertical axis is the one usually employed in tunneling, and gives good results. It is considered better in actual practice to have the excavation exceed the profile somewhat than to have it fall short of it, since the voids can be more easily filled in with riprap than the encroaching rock can be excavated during the building of the masonry. In tunnels where strutting is necessary the excavation must be made enough larger than the finished section to provide the space for it. In soft-ground tunnels it is also usual to enlarge the excavation to allow for the probable slight sinking of the masonry. The proper allowance for strutting is usually left to the judgment of the foreman of excavation, but the allowance for settlement must be fixed by the engineer.

SHAFTS.

Shafts are vertical walls or passages sunk along the line of the tunnel at one or more points between the entrances, to permit the tunnel excavation to be attacked at several different points at once, thus greatly reducing the time required for excavation. Shafts may be located directly over the center of the tunnel or to one side of it, and, while usually vertical, are sometimes inclined. During the construction of the tunnel the shafts serve the same purpose as the entrances; hence they must afford a passageway for the excavated materials, which have to be hoisted out, and also for the construction tools and materials which have to be lowered down them. They must also afford a passageway for workmen, draft animals, and for pipes for ventilation, water, compressed air, etc. The character of this traffic indicates the dimensions required, but these depend also upon the method of hoisting employed. Thus, when a windlass or horse gin is used, and the materials are hoisted in buckets of small dimensions, the dimensions of the shaft may also be small; but when steam elevators are employed, and the material is carried on cars run on to the platform of the elevator, large dimensions must be given to the shaft. Generally the parts of the shaft used for different purposes are separated by partitions. The elevator for workmen and the various pipes are placed in one compartment, while the elevator for hoisting the excavated material and lowering construction material is placed in another.

Shafts may be either temporary or permanent. They are temporary when they are filled in after the tunnel is completed, and permanent when they are left open to supply ventilation to the tunnel. Permanent shafts are usually made circular, and lined with brick, unless excavated in very hard and durable rock. When sunk for temporary use only, shafts are usually made rectangular with the greater dimension transverse to the tunnel. They are strutted with timber. A pump is generally located at the bottom of the shaft to collect the water which seeps in from the sides of the shaft and from the tunnel excavation. The dimensions of this pump will of course vary with the amount of water encountered, as will also the capacity of the pump for forcing it up and out of the shaft, which has always to be kept dry.

The majority of engineers prefer to sink shafts directly over the center line of the tunnel. Side shafts are employed chiefly by French engineers. The chief advantage of the former method is the great facility which it affords for hoisting out the materials, while in favor of the latter method is the non-interference of the shaft with the operations inside the tunnel. Were it not that the side shaft requires the introduction of a transverse gallery connecting it with the tunnel, it would be on the whole superior to the center shaft; but the side gallery necessitates turning the cars at right angles, and consequently the use of a very sharp curve or a turntable to reach the shaft bottom, which is a disadvantage that may outweigh its advantages in some other respects. It is impossible to state absolutely which of these methods of locating shafts is the best; both present advantages and disadvantages, and the use of one or the other is usually determined more by the local conditions than by any general superiority of either.

When side shafts are employed they are sometimes made inclined instead of vertical. This form is used when the depth of the shaft is small. By it the hauling is greatly simplified, since the cars loaded at the front with excavated material can be hauled directly out of the shaft and to the dumping-place, surmounting the inclined shaft by means of continuous cables. The short galleries connecting the side shafts with the tunnel proper usually have a smaller section than the tunnel, but are excavated in exactly the same manner. Another form of side shaft sometimes used is one reaching to the surface when the tunnel runs close to the side of cliff, as is the case with some of the Alpine railway tunnels.

CLASSIFICATION OF TUNNELS.

Tunnels are classified in various ways, but the most logical method would appear to be a grouping according to the quality of the material through which they are driven; and this method will be adopted here. By this method we have first the following general classification: (1) Tunnels in hard rock; (2) tunnels in ordinary loose soil; (3) tunnels in quicksand; (4) open-cut tunnels; and (5) submarine tunnels. It is hardly necessary to say that this classification, like all others, is simply an arbitrary arrangement adopted for the sake of order and convenience in treating the subject.

Tunnels in Hard Rock.

—With the numerous labor-saving methods and machines now available, hard rock is perhaps the safest and easiest of all materials through which to drive a tunnel. Tunnels through hard rock may be excavated, either by a drift or by a heading. The difference depends upon whether the advance gallery is located close to the floor or near the soffit of the section.

Tunnels in Loose Soils.

—In driving tunnels through loose soils many different methods have been devised, which may be grouped as follows: (1) Tunnels excavated at the soffit—Belgian method; (2) tunnels excavated along the perimeter—German method; (3) tunnels excavated in the whole section—English, Austrian and American methods; (4) tunnels excavated in two halves independent of each other—Italian method.

(1) Excavating the tunnel by beginning at the soffit of the section, or by the Belgian method, is the method of tunneling in loose soils most commonly employed in Europe at the present time. It consists in excavating the soffit of the section first; then building the arch, which is supported upon the unexcavated ground; and finally in excavating the lower portion of the section, and building the side walls and invert.

(2) In excavating tunnels along the perimeter an annular excavation is made, following closely the outline of the sectional profile in which the lining masonry is built, after which the center core is excavated. In the German method two drifts are opened at each side of the tunnel near the bottom. Other drifts are excavated, one above the other, on each side to extend or heighten the first two until all the perimeter is open except across the bottom. The masonry lining is then built from the bottom upwards on each side to the crown of the arch, and then the center core is removed and the invert is built.

(3) This method, as its name implies, consists in taking out short lengths of the whole sectional profile before beginning the building of the masonry. In the English method the invert is built first, then the side walls, and finally the arch. The excavators and masons work alternately. The Austrian method differs in two particulars from the English: the length of section opened is made great enough to allow the excavators to continue work ahead of the masons, and the side walls and roof are built before the invert. In the American method the whole section of the tunnel is open at once: excavators and masons work simultaneously, but a very large quantity of timbering is required.

(4) The Italian method is very seldom employed on account of its expensiveness, but it can often be used where the other methods fail. It consists in excavating the lower half of the section, and building the invert and side walls, and then filling the space between the walls in again except for a narrow passageway for the cars; next the upper part of the section is excavated, as in the Belgian method, and the arch is built; and finally the soil in the lower part is permanently removed.

Tunnels in Quicksand.

—Tunnels through quicksand are driven by one of the ordinary soft-ground methods after draining away the water, or else as submarine tunnels.

Open-Cut Tunnels.

—Open-cut tunnels are those driven at such a small depth under the surface that it is more convenient to excavate an open cut, build the tunnel masonry inside it, and then refill the open spaces, than it is to carry on the work entirely underground. In firm soils the usual mode of operation is to excavate first two parallel trenches for the side walls, then remove the core, and build the arch and the invert. In unstable soils, since the invert must be built first, it is usual to open up a single wide trench. In infrequent cases where a tunnel is desired in a place which is to be filled in, the masonry is built as a surface structure, which in due time is covered.

Submarine Tunnels.

—The mode of procedure followed in excavating submarine tunnels depends upon whether the material penetrated is pervious or impervious to water. In impervious material any of the ordinary methods of tunneling found suitable may be employed. In pervious material the excavation may be accomplished either by means of compressed air to keep the water out of the excavation, or by means of a shield closing the front of the excavation, or by a combination of these two methods. Tunnels on the river bed are built by means of coffer dams which inclose alternate portions of the work, by sinking a continuous series of pneumatic caissons and opening communication between them, and by sinking the tunnel in sections constructed on land.

Methods of Excavating Tunnels. - In hard rock. - By drifts.
By a heading.
In loose soil. - By upper half:
the arch is built before the side walls.
- Belgian method.
By the perimeter:
excavated and lined before the central nucleus is removed.
- German method.
By whole section:
the lining begins after the whole section is excavated.
- English method.
Austrian method.
American method.
By halves:
the lower half is excavated and lined, followed by the work of the upper half.
- Italian method.
In quicksand.
Open-cut tunnels. - In resistant soils. - By two lateral narrow trenches.
In loose soils. - By one very large trench.
Built up. - By slices.
Submarine tunnels. - At great depths under the river bed. - By any method.
At small depths under the river bed. - By shield.
By compressed air.
By shield and compressed air.
On the river bed. - By coffer dams.
By pneumatic caissons.
By built-up sections.

The above diagram gives in compact form the classification of tunnels according to materials penetrated and methods of excavation adopted, which have been described more fully in the succeeding paragraphs. It may be noted here again that this is a purely arbitrary classification, and serves mostly as a convenience in discussing the different classes of tunnels without confusion.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page