Copyright laws are changing all over the world, be sure to check the copyright laws for your country before posting these files!! Please take a look at the important information in this header. We encourage you to keep this file on your own disk, keeping an electronic path open for the next readers. Do not remove this. **Etexts Readable By Both Humans and By Computers, Since 1971** *These Etexts Prepared By Hundreds of Volunteers and Donations* Title: The first 498 Bernoulli Numbers Editor: Simon Plouffe April, 2001 [Etext #2586] Mathematical constants and numbers edited by Simon Plouffe Associate Professor LaCIM, University of Quebec at Montreal http://www.lacim.uqam.ca/pi : Plouffe's Inverter plouffe@math.uqam.ca We are now trying to release all our books one month in advance of the official release dates, leaving time for better editing. We produce about two million dollars for each hour we work. The time it takes us, a rather conservative estimate, is fifty hours to get any etext selected, entered, proofread, edited, copyright searched and analyzed, the copyright letters written, etc. This projected audience is one hundred million readers. If our value per text is nominally estimated at one dollar then we produce $2 million dollars per hour this year as we release thirty-six text files per month, or 432 more Etexts in 1999 for a total of 2000+ If these reach just 10% of the computerized population, then the total should reach over 200 billion Etexts given away this year. We need your donations more than ever! For these and other matters, please mail to: When all other email fails. . .try our Executive Director: Michael S. Hart <hart@pobox.com> hart@pobox.com forwards to hart@prairienet.org and archive.org if your mail bounces from archive.org, I will still see it, if it bounces from prairienet.org, better resend later on. . . . We would prefer to send you this information by email. ****** Mac users, do NOT point and click, typing works better. Example FTP session: ftp metalab.unc.edu login: anonymous password: your@login cd pub/docs/books/gutenberg cd etext90 through etext99 dir [to see files] get or mget [to get files. . .set bin for zip files] GET GUTINDEX.?? [to get a year's listing of books, e.g., GUTINDEX.99] GET GUTINDEX.ALL [to get a listing of ALL books] *** (Three Pages) ***START**THE SMALL PRINT!**FOR PUBLIC DOMAIN ETEXTS**START*** Why is this "Small Print!" statement here? You know: lawyers. They tell us you might sue us if there is something wrong with your copy of this etext, even if you got it for free from someone other than us, and even if what's wrong is not our fault. So, among other things, this "Small Print!" statement disclaims most of our liability to you. It also tells you how you can distribute copies of this etext if you want to. To create these etexts, the Project expends considerable efforts to identify, transcribe and proofread public domain works. Despite these efforts, the Project's etexts and any medium they may be on may contain "Defects". Among other things, Defects may take the form of incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other etext medium, a computer virus, or computer codes that damage or cannot be read by your equipment. If you discover a Defect in this etext within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending an explanatory note within that time to the person you received it from. If you received it on a physical medium, you must return it with your note, and such person may choose to alternatively give you a replacement copy. If you received it electronically, such person may choose to alternatively give you a second opportunity to receive it electronically. THIS ETEXT IS OTHERWISE PROVIDED TO YOU "AS-IS". NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, ARE MADE TO YOU AS TO THE ETEXT OR ANY MEDIUM IT MAY BE ON, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.INDEMNITY You will indemnify and hold the Project, its directors, officers, members and agents harmless from all liability, cost and expense, including legal fees, that arise directly or indirectly from any of the following that you do or cause: [1] distribution of this etext, [2] alteration, modification, or addition to the etext, or [3] any Defect. [1] Only give exact copies of it. Among other things, this requires that you do not remove, alter or modify the etext or this "small print!" statement. You may however, if you wish, distribute this etext in machine readable binary, compressed, mark-up, or proprietary form, including any form resulting from conversion by word pro- cessing or hypertext software, but only so long as *EITHER*: [*] The etext, when displayed, is clearly readable, and does *not* contain characters other than those intended by the author of the work, although tilde (~), asterisk (*) and underline (_) characters may be used to convey punctuation intended by the author, and additional characters may be used to indicate hypertext links; OR [*] The etext may be readily converted by the reader at no expense into plain ASCII, EBCDIC or equivalent form by the program that displays the etext (as is the case, for instance, with most word processors); OR [*] You provide, or agree to also provide on request at no additional cost, fee or expense, a copy of the etext in its original plain ASCII form (or in EBCDIC or other equivalent proprietary form). [2] Honor the etext refund and replacement provisions of this "Small Print!" statement. We are planning on making some changes in our donation structure in 2000, so you might want to email me, hart@pobox.com beforehand. *END THE SMALL PRINT! FOR PUBLIC DOMAIN ETEXTS*Ver.04.29.93*END* Mathematical constants and numbers edited by Simon Plouffe Associate Professor LaCIM, University of Quebec at Montreal http://www.lacim.uqam.ca/pi : Plouffe's Inverter plouffe@math.uqam.ca The first 498 Bernoulli numbers are the coefficients of the series expansion of t*exp(x*t)/(exp(t)-1) = sum( B(n,x)/n!*t^n, n=0..infinity ). Bernoulli(2) 1/6 Bernoulli(4) -1/30 Bernoulli(6) 1/42 Bernoulli(8) -1/30 Bernoulli(10) 5/66 Bernoulli(12) -691/2730 Bernoulli(14) 7/6 Bernoulli(16) -3617/510 Bernoulli(18) 43867/798 Bernoulli(20) -174611/330 Bernoulli(22) 854513/138 Bernoulli(24) -236364091/2730 Bernoulli(26) 8553103/6 Bernoulli(28) -23749461029/870 Bernoulli(30) 8615841276005/14322 Bernoulli(32) -7709321041217/510 Bernoulli(34) 2577687858367/6 Bernoulli(36) -26315271553053477373/1919190 Bernoulli(38) 2929993913841559/6 Bernoulli(40) -261082718496449122051/13530 Bernoulli(42) 1520097643918070802691/1806 Bernoulli(44) -27833269579301024235023/690 Bernoulli(46) 596451111593912163277961/282 Bernoulli(48) -5609403368997817686249127547/46410 Bernoulli(50) 495057205241079648212477525/66 Bernoulli(52) -801165718135489957347924991853/1590 Bernoulli(54) 29149963634884862421418123812691/798 Bernoulli(56) -2479392929313226753685415739663229/870 Bernoulli(58) 84483613348880041862046775994036021/354 Bernoulli(60) -1215233140483755572040304994079820246041491/56786730 Bernoulli(62) 12300585434086858541953039857403386151/6 Bernoulli(64) -106783830147866529886385444979142647942017/510 Bernoulli(66) 1472600022126335654051619428551932342241899101/64722 Bernoulli(68) -78773130858718728141909149208474606244347001/30 Bernoulli(70) 1505381347333367003803076567377857208511438160235/4686 Bernoulli(72) -5827954961669944110438277244641067365282488301844260429/140100870 Bernoulli(74) 34152417289221168014330073731472635186688307783087/6 Bernoulli(76) -24655088825935372707687196040585199904365267828865801/30 Bernoulli(78) 414846365575400828295179035549542073492199375372400483487/3318 Bernoulli(80) -4603784299479457646935574969019046849794257872751288919656867/230010 Bernoulli(82) 1677014149185145836823154509786269900207736027570253414881613/498 Bernoulli(84) -2024576195935290360231131160111731009989917391198090877281083932477/3404310 Bernoulli(86) 660714619417678653573847847426261496277830686653388931761996983/6 Bernoulli(88) -1311426488674017507995511424019311843345750275572028644296919890574047/61410 Bernoulli(90) 1179057279021082799884123351249215083775254949669647116231545215727922535/ 272118 Bernoulli(92) -1295585948207537527989427828538576749659341483719435143023316326829946247/1410 Bernoulli(94) 1220813806579744469607301679413201203958508415202696621436215105284649447/6 Bernoulli(96) -211600449597266513097597728109824233673043954389060234150638733420050668349987 259/4501770 Bernoulli(98) 67908260672905495624051117546403605607342195728504487509073961249992947058239/6 Bernoulli(100) -945980378191221252952274330694937218727028415330669361333856962043113954151972 47711/33330 Bernoulli(102) 3204019410860907078243020782116241775491817197152717450679002501086861530836678 158791/4326 Bernoulli(104) -319533631363830011287103352796174274671189606078272738327103470162849568365549 721224053/1590 Bernoulli(106) 3637390317261741440815182015159342716923129864058169003893081637828187987338620 2346572901/642 Bernoulli(108) -346934224784782878955208865932385254139976678576049114687000589137150126631972 4897592306597338057/209191710 Bernoulli(110) 7645992940484742892248134246724347500528752413412307906683593870759797606269585 779977930217515/1518 Bernoulli(112) -265087960215509971335259721468516201444315149919250989645178842768096675651487 5515366781203552600109/1671270 Bernoulli(114) 2173783231936916333331076108665299147572115667909083136080611011493360548423459 3650904188618562649/42 Bernoulli(116) -309553916571842976912513458033841416869004128064329844245504045721008957524571 968271388199595754752259/1770 Bernoulli(118) 3669631199697131115349471515855850066846063610806992043010594406764144850458064 61889371776354517095799/6 Bernoulli(120) -515074865350791090618439968578499832740951703532626752130928691671992974749229 85358811329367077682677803282070131/2328255930 Bernoulli(122) 4963366607926258191253263747599075743872279031106013977030931179315068321410043 1329033113678098037968564431/6 Bernoulli(124) -958767753342471287507749031075424446205788300132973368195535127293585933544359 44413631943610268472689094609001/30 Bernoulli(126) 5556330281949274850616324408918951380525567307126747246796782304333594286400508 981287241419934529638692081513802696639/4357878 Bernoulli(128) -267754707742548082886954405585282394779291459592551740629978686063357792734863 530145362663093519862048495908453718017/510 Bernoulli(130) 1928215175136130915645299522271596435307611010164728458783733020528548622403504 078595174411693893882739334735142562418015/8646 Bernoulli(132) -410951945846993378209020486523571938123258077870477502433469747962650070754704 863812646392801863686694106805747335370312946831/4206930 Bernoulli(134) 2645901718707177256336357372488790151512545255931686884119185548406677655916905 40727987316391252434348664694639349484190167/6 Bernoulli(136) -842902263433674051312875780603661936493366123975474357671892069122304422426282 12786558235455817749737691517685781164837036649737/4110 Bernoulli(138) 2694866548990880936043851683724113040849078494664282483862150893060478501559546 243423633375693325757795709438325907154973590288136429/274386 Bernoulli(140) -328949098643589880393069954885188400688053747693113098130746708516250480297361 8096693859598125274741604181467826651144393874696601946049/679470 Bernoulli(142) 1473185328088858956587008044245321423980421702399064267619487899740754606158164 3106569966189211748270209483494554402556608073385149191/6 Bernoulli(144) -305024469837360756503515583690172635740500710425656676188419185243485103374476 1276392695669329626855965183503295793517411526056244431024612640493/2381714790 Bernoulli(146) 4120570026280114871526113315907864026165545608808541153973817680034790262683524 284855810008621905238290240143481403022987037271683989824863/6 Bernoulli(148) -169173714561401897986556109511216618960768285214730140081648067591695787117864 8433284821493606361235973346584667336181793937950344828557898347149/4470 Bernoulli(150) 4633655793891627414432844258118062649822337254252957998522998073253793155015723 05760030594769688296308375193913787703707693010224101613904227979066275/2162622 Bernoulli(152) -373701814115510850210589288849128216583748953148893295176850712718240973132847 2084456653639812530140212355374618917309552824925858430886313795805601/30 Bernoulli(154) 1025971868203802105102779423837918446102573865246056923399277648975088133750686 3808448685054322627708245455888249006715516690124228801409697850408284121/138 Bernoulli(156) -817180860832626285107564597536734523135957103961164675821520905960925486991383 4694299550948828465080397683633716467049473386655982976884836350662433481896141 9869/1794590070 Bernoulli(158) 1716726769011532100721830835061033951375139222740295641505001352653081481973585 51999205867870374013289728260984269623579880772408522396975250682773558018919/6 Bernoulli(160) -424086079420331037606556349236115694998939808708637321471062577845844194047783 9981850928830420029285687066701804645453159767402961229305942765784122421197736 180867/230010 Bernoulli(162) 1584451495144416428390934243279426140836596476080786316960222380784239380974799 8803643636479781686345904182158544197937165493888659053485343756299287320087862 33507729/130074 Bernoulli(164) -205380646091432162655719795866926468378053310231486450681333723839303449483166 0059120392638854094081483317332279380432508494509482852486062609201354728133535 6200073083/2490 Bernoulli(166) 5734032969370860921631095311392645731505222358555208498573088911303001784652122 9647032057527091941930952463086112641216788342507044680826483137881247541686718 15815821441/1002 Bernoulli(168) -138448285151763960812383465850635172285311091569843452492604539343177727548367 9125898751654032498361156975864952598334740858904573417658927014305850902639224 6407576578281097477/3404310 Bernoulli(170) 1953342076266375304149767792384622344814103373509884272151399957073469791246869 1826768817153635265057253533036981817697995193147742759487278301874989469915791 7782460035894085/66 Bernoulli(172) -114437022113333284471871799429918466130080465060324217317552581486652878322649 3102478136596263330170177308847084162180432820100802012999695554946757321765958 7609679405537739509973/5190 Bernoulli(174) 4166161554662042831884959593250717297395614318182561412048180684077407803317591 2708311946192938321074824269456551433579098072518528592794831763734356976076398 83085093246499347128331/2478 Bernoulli(176) -136934791048670570764562136251282433222036077447659434835693871536660804458861 4657557436131706543948464159947970464346070253278291989696390096800799614617317 655510118710460076077638883999/1043970 Bernoulli(178) 1124251816617941290026484851206299982774720467712867275292043701618829826708395 7454596541707183631821434183145140854266928570184286149354127360639468530330943 28968069656979232446257101741/1074 Bernoulli(180) -617313645401624892464052227226347096019955932829065533753020205585339779174734 1312347030141906500993752700612233695954532816018207721731818225290076670213481 102834647254685911917265818955932383093313/7225713885390 Bernoulli(182) 4277269279349192541137304400628629348327468135828402291661683018622451659989595 5107129158104362387211395469635586552603843289887732196880914435296265313356879 51612545946030357929306651006711/6 Bernoulli(184) -857321333523056180131194437347933216431403305730705359015465649285681432317514 0106860290793244796596346423848090617113194810200307159890091405951705569561967 62318625529645723516532076273012244047/1410 Bernoulli(186) 2225864609843696805063960222181638518159656791851533816994667050059961222574248 7595012775838387331550474751212260636163500086787417640903770807353228157478339 547041472679880890292167353534100797481/42 Bernoulli(188) -141582777506237587933093868704013973331128236327174780514265220297120012607479 2078947371156216503110166561822565432921047360528161969691806131624063485798401 9071572591940586875558943580878119388321001/30 Bernoulli(190) 5411555842544259796131885546196787277987837486638756184149141588783989774511509 6087334290675173837507062994868227021716725222031067309935812427778258642034872 38429479957280273093904025319950569633979493395/12606 Bernoulli(192) -346465752997582699690191405750952366871923192340955593486485715370392154894102 0004069801625217284925019175980127114021635301665169911151221313985420290562869 59857727373568402417020319761912636411646719477318166587/868841610 Bernoulli(194) 2269186825161532962833665086968359967389321429297588337232986752409765414223476 6968631997599816118176607357538313239004564952539618371759243121088729150895349 70310604331636484174526399721365966337809334021247/6 Bernoulli(196) -627531351104611936725531066998937136031530541533118953055906391070178246402413 7848048462555457857614211583578896086553453221456098292554979868376270523131661 1716668749347221458005671217067357943416524984438771831113/171390 Bernoulli(198) 8852791486134800496840058101053056522054452640033954842943984390872119634957949 4069282285662653465989920237253162555666526385826449862863083834096823053048072 002986184254693991336699593468906111158296442729034119206322233/244713882 Bernoulli(200) -498384049428333414764928632140399662108495887457206674968055822617263669621523 6875688658023022109991326014126976132793910586545271453405158400992904780263503 82802884371712359337984274122861159800280019110197888555893671151/1366530 Bernoulli(202) 2250525326187264545900714460628885135841050444551247116222631411681549780530233 5160699575343945749225792906081804275203182356211236861094743438878579446118424 38698399885295153935574958275021715116120056995036417537079471/6 Bernoulli(204) -110636644250856903590976481422794879200517231299540994715372334521128669716264 1963338110257097477461932107868201143690258498973457225310980427605309226568788 91556664782168465095563132092311332073097630676251482491663634626858373/281190 Bernoulli(206) 2525292668891404920279427026668969389456388249389889339455604316691573384284678 2936201000669243616936664447223387438391982213479316519168076511988009359424930 38194104759967208073711284671045255047521429204396148980705984836743/6 Bernoulli(208) -124073906684330234127114734836969907263347958964127614725878540721428004033735 7708702129854106109463337735432696662327884942363192480804439782265113590564081 2063181221280972334965193338438214107578486417026806166184210160001817890901/ 27030 Bernoulli(210) 4708181368529492614110644197951837317202610608341257204206693195241245204360822 8759106130104335721332278317410972616188332065375191988858122543472191504820055 4342299722544020404147351818763644224133262180471896777520393840396571039563276 2155/9225988926 Bernoulli(212) -185611066994738826838936104068976402746416046043667192325313117685322408774192 4378432403442710398247642246902212818749685974336641529240178398124235555437625 2514810445260249103561318190166700479496616365399646623703756226308633271686963 07/3210 Bernoulli(214) 4005748930070152861935826766476856180706477227448622268042052745245798242539770 5463397898995461603415900691094670235170855786189860559691872027318782716854324 6070884111850631094386559256879136029424445176574691180899448206378373069370360 7/6 Bernoulli(216) -119931227701086178585364433229648780036181560695597948031178092796080391208188 2908800010335503659286487795456356483193236341488681178605460131851720693754960 5059298307895591515771731031691422489377098686236263367916404512751010916862894 129855138281961/15270994830 Bernoulli(218) 5646413644023523531472659729552574911763686780871700375627426663366507837122353 9970758917367068113376982486608387542434867781903315227859036615564586511750614 6982520482120661127399025066364738126136065995051973573092520211760615067217012 7523599/6 Bernoulli(220) -871706480996007465133204367979654447442005318962180320994115476487724257557961 7540185166306094852502223738126111951612525627910517501081576202264770178546608 7109374740057429699502124049557324731984516230241089343734886411617511589017123 23446768306053/7590 Bernoulli(222) 1336805315855217266521085253935989334036987065195149797611188289129665000800395 5172160792457229376320993686817755409436399268291095350295968657381088168219133 4902779142690647238320626154317300612246499805666932586030993409969885423019145 19271322675688591/9366 Bernoulli(224) -301824001508139208762097868831192538039998322963312026887269591180756298211115 4053235820050168829922189401964755775948260724401542319799566237745986245598102 2551919229357426105082809664626440225408396198610910490931293597990537815431954 92373882916779852781709/1671270 Bernoulli(226) 3168221108903401670436878558215734893322849540781208738796672473984272484396317 8495969786302720313420241946898714679161868981927712674389822287105250798869562 9510619743140121735789346089722138141066738563604926458338074963177669112159201 6493432807733153743581/1362 Bernoulli(228) -190650290999788816612320192317738583356772903915141314387627187059905770444593 9156075718972624235764657102074902610737729027517674632609562387841658709266014 3290054075335219507444491098072158087702012477249322314952529816329080423713079 65561986133763291349835081839/625170 Bernoulli(230) 1262073704490981856183285609035555562401688731960526176299768957106264664974510 7532482632213152948299491122977690702642386377706799989565320538433072623252159 4641159180572947113966254365067360415424033700252584772051018080635940567599772 72469883621048184279331863155/3102 Bernoulli(232) -227778296274954464778619309384471000058456114552786104359486685207159644007658 7235747852022645695523676561694856919437156369375152041285055935622032497285897 1513593450401719557868990117188918770657603457221630639211777231026314287675009 63315657655779698470644544064472947/412410 Bernoulli(234) 4808672247710016971165136836990116494968551598781529318057420685176269502042794 9928193240796699781588872703914400117719478370061890074078263751656225642188368 6495287564849123342843286211825800198337962453448529082007644439295666002669973 893196613894216505936316966183107269/63042 Bernoulli(236) -321467133590936589398380572003196190798000628347443663674019204361034039315014 3708698849729814044608882728557732330801864852303165442465411683644683436319692 2548032479902806701562176993971844341971211085796540917994745699497068700513404 2835903494172569465751671057323145801/30 Bernoulli(238) 2195482808481981623062342737639115494662851052441547847136583164948726943856544 2138452375719697629394886161086199009071745032148355699097673730377547354631757 0009246880326744542083860763606992730021293301610982289626534661120323000565343 80609136268347425707537340996253935261001/1434 Bernoulli(240) -212191008579182060478563837945461872287372869333130175188325135660897759482730 0354481463888582059665932472055728423562795871908467589256590386433953443963348 2134886151859611237360536546092182191540994943645639475725217311330828877695184 4012432992719925522001911419529928297005743854184672707/9538864545210 Bernoulli(242) 4535049728315239205021018362829154800039522502549714840841943960634084990270225 5350438921355494086085728775139633845303257581042481331243929599974858490046631 6206106590984659821598454767750696159329288090283032586862751504716828673852724 1360778218692535254144583771935549805772798793/138 Bernoulli(244) -148067786867881034706213581457472789049099645990315390961261179176813401590890 0253197632543925157559965099005581639883558125985134242978146873558628010545299 8791782998569291002171788915241595436738037854816075409545330575605547042837183 20006046424881681934129216249889269701182688055001/30 Bernoulli(246) 2626686052061021184301959449530583873153195896132630798531898116743386445899393 5667604739473742565198909211542463521278534160195859180678259934541606494511333 8168378810138043832891536358769753916174695061208903056552776976154338169779827 414504134808495078925108569042616724875466536400029203/3486 Bernoulli(248) -350744554637525331834266774194965125351698611334967218009546875814550592113317 2244240023419466113277413785800736682458966212429373095894934752041434119711352 2151645970948865302784292066370663020315014124991662636424475422897857232250644 37740655097573160922291075175522551466276032634749948001/30 Bernoulli(250) 3053985414762198703102020975667535181880294373982570358384262712216099013630127 3812260646712489701687011648418591776351395612203731023162737109807574092950392 3169736053673611338047351599358018820496680832320177208166869532131642597750371 3933894934399351348240918411922863059423248058823372368106375/16566 Bernoulli(252) -897742888716303078436445205805986526326135594094133440338930199388988621138764 4018394330772429050916553981576435425458416217690946397167518935169971718945495 9415964995262823025743004001915975128242680213612581748367743077774468104545056 300803334120339537905702856877606246855867891786763741486735368783092237/ 303940201110 Bernoulli(254) 2884759276650094186013272224259584433367802183845217969121665253431996536437413 8507164880269714807470225801829319408120354727523438539994838164560129575511208 1211522401848061769539868110287053579527883204733070961095295256696235478785408 7985127629191094880078635434933391568643930279007460403102076327/6 Bernoulli(256) -104203435297641800915507592803138769896333127491490532929531166632958450572751 9290260805334565313825687466304288058398986061317055037227125673791728358134975 8270676379026329737258680437265409027141273365440974202940525915613066356041259 9913831518338400385290760913773448329773518728092595019422753511174189569/ 131070 Bernoulli(258) 5608169358688946227505158944748461768265648626246569382218117278552421833895164 1908717980184709547885060218908068568000776767834360070429300833879662707069272 4581737458833163463691962707616413251768387381536061759636653832166267249693705 09650128327157862121275587666040290047452303859942885949047756404247033/42 Bernoulli(260) -521850747996151380189059639242126136103693562431225832506537914329594830081204 0703848766095836974598734762472300638625802884257082786883956679824964010841565 0511751677174517473289119352826395839723724701055871877364950555012087015220999 2136323931737361785421705043567071393635797855524677946090221080900900953923217 3/2291190 Bernoulli(262) 6225500408881102797510043328034969466304425964851480796588968345345616249056035 4790804896913235295977693771272379103266261063536396404308626627582760371558183 1379736192606305678462935734624605008567491048471233121195548340050738694449261 4175497512823803191508029088188458205305675244351279445756172428826335261196513 /1578 Bernoulli(264) -259790040816289605871057265894981852446821926693129183547995941809489012080370 7468900281325124704535527442908101022615930505212028093980003061941163493997948 3674733012699371525411902546788214149798007597852152403087730605687705633337526 1474157967390906132257441403942177277395190738112438908312364218787710672732483 1409104559/374416770 Bernoulli(266) 7433378205465388942374346921315265579914317310442168171995314028009953929567334 1397636592724713785397334372991707306538931885461890982390991361955644690371434 5180086262670567138988563504494715187706346245681886987341996878486341365778158 8400765166054615537660265187819984733697566907570502922002494298880159654047983 2623/6 Bernoulli(268) -181215287752963297591649028858266281596159320543301504003425598637697061538040 5226961260182379836593297005166967391488413519129571745257853154141444291365915 5413121570056032594973325695467481314969978301631841533809439574315293254272325 6830883071638325957369194991055197776850603497527503600109515880553950890416293 966947553269/8070 Bernoulli(270) 3046520935696995573515824242272701117754774305790084108344788704634810391537752 2466733860491337838213954860962391484156417221996231779563667991333145310414020 2134556279925445988685657134103647044753614334935369430918736361622260584801249 0292828963830868021774140963898080446961958927794750526681977409210580806334902 707423302910890705/73743978 Bernoulli(272) -538947928701982885901220044234332619235550901238216799744422193949920234058193 2428533725140323939479047999949436682248001244967154707104896269136682582392582 1104849723394085108222300354124301728909256582301520849549038261433905888543184 5818572950688941724489137138548266065883489292508958450183325347653774440028386 4408173645832802729/69870 Bernoulli(274) 8769216401026017603831682730828013247880390555648369014092342980022539957820341 2100732276650839136433131336422203561391820639763679056925031116550944101094517 0696883786500399759308075144882184008248023432975450281978336106603716700929424 2107179248975708274982528930670627754900585633568069306809352009453263516817144 40032862515566687/6 Bernoulli(276) -138818277275348022452425954353842602329478112011984076676099395045629725653753 6762358314128425435909635398077811882539199662711471185655335807263675649242817 3490832774755190357868951071267640494075493598567122492351235864685925413281150 9976085117813579226228043816896540277492813678955116696340112447278252220205829 6880872854126156007513528607131/4940319930 Bernoulli(278) 3288574272791325983707258196648395370596305758341699742238893225440550539879910 0980024261644789356677596669076696389866167091377992003771605595161258127954571 2499250778556026626546917239932911324742106976560473082284930318446400772765940 7021486798188927253139176046166778181472669994161900278671855691024038916704559 966546186751742476372279/6 Bernoulli(280) -849022824259531119911992056584900976021779102357279891826637435055024636622543 5144540895862924269878096526376888988896473279190955432566511173411205746712397 6921878875377794377181730501589511059242543228757754984497914367693119677413274 8963698569487428146051608207528929572430551280038645629924190704927063667946981 5489106102786158831873003971980149529/7828173870 Bernoulli(282) 2587559349934812883322085725654413384310919994262917266157157583189600900271737 9314993110538912888759932261638883397790531299585084426973156913779915781848556 3115558189277550714226378727412391466965017246647885654192510025002480363963126 5629799342199681140702938684706343978231161798181820654631104114299131232261971 7261878315979033851316268092742291/11886 Bernoulli(284) -132959963583526612558423182997702578242047892089625754241387587021938995020766 5639899901859871099820647861362764024067956089815406441330055688455987337010272 6713493089587220775607893710741660512332309274991118076352427194097515731256809 1937739185681066178901105822385739566191012805835839265694429000135104051173197 039224461050364993416415448157657001/30 Bernoulli(286) 1262786340764743836543650366374180273258073609841543441787781675688541881984249 2683603250125101679182864126657107853324950024702567245354512015185842613632845 4462608877814028135357480684003645692740424404849750633939325832438637957404856 2781825209799628261527492591555049229691481538713081331723845462120745928641410 668923052992096071568118182416749081409/138 Bernoulli(288) -442615812201599765691808122866758980149980894097089792430708687025264687594884 1652238923933674489065786806672342321537012751674084821846458685429618183214525 2892766580125943491547962849601205964238118312590414109656617177099586590621475 3458317167114165518201658019936448544962973243846954250115368951795790676303616 9880300563526920600913900347892060168169080524563821/231026334630 Bernoulli(290) 1583789604599337453537326739833777046220864186820001114075420055809865441453527 1543564952863119764521176201972276766112207895806421717733622588098873795574046 1066476486097551548991955116319546315427449493825430704787375985685635337262886 1365705044128276635909901981634343422083675015617772308706601640686686504161763 68657029205310526817730948015526849382859712055/3894 Bernoulli(292) -769496271232217048566454403451119653773906354892060893481293713784107951847019 8573107397677704630765165605752496196216597189856461269640396599818255776462253 0118908228726419813478701353817417838395849447373427701258680935193078127734529 0942985827690026019144748986116319143448962997698665018791994064217597704711709 748695678908604180272686662449493086793580970828093/8790 Bernoulli(294) 3449773681856373803043338987306141539965254192819867705223859157201392155548477 6094987083498220230343258762599723479511813492334366326554820459479284181143930 3451011251437993865656175552484850145014444202587617378736472160288579064961864 0042753824989941649236796441508184505583027508852340588600466843815569548789621 53088786251490404112306387375170114820733240249707147/1806 Bernoulli(296) -188857559015849599644010843392678895885945044950582706910852922191173760549109 4242128180304966356165162290173103044092702582217959772178183606221416867140355 1064767990946535511234698279062816902280476046778388084857526581969649350313795 8755653042768030653787972037747931081731858474471152245338707262764843883020028 5728320936098194745411999104991803838665658699650727659349/4470 Bernoulli(298) 5683175611528696607080062478072501820703250802520963611339740016328084145085898 1752516163593431685958581086241677621316796814169778955360250037610075989131772 7978927107188060064388530290767057228836881638543921870779372555512626937709064 5484013184046265389329719449523663221529092764894703813815177897980268745011893 371899061378940560801507189664711567121796987700152153839/6 Bernoulli(300) -186387899520485901199504534184815606618219184663590593751871532065577595817436 0523134990756922303410810482600528769479642021001218415879006164302955370460829 1464348079647177371953569351441515834248331542500477474335755849990291267751862 9338872151497018335112980997697160322763393043492384398482958031159337256539857 4762880028289167635570012415606941367995702212211519561707046505473575241/ 866054419230 Bernoulli(302) 2973291465200532630806903829904687722816594748928577539823277555432682165499728 4254954541436759755619186929818878962419179787160694148360451817997811323189321 7305704368472385273922040800836707137461041231809273634503655528337433968870029 6688429684891348113278558668312073236985859715307626112797507640656445951869582 1788635361711463230165952857117226399909961673058570176834883271/6 Bernoulli(304) -589675230297158695281788013755354803752295210138571786221986959795954071470823 5406233632122536677446426246295692119684486036889235399687553979484886254426933 5876370804510037897699613232981352579536578917217268540854988864027790319217013 6418042712834671973954220336310692060343618525697088254494779404204319481511369 3600814746189709447821507079960920412101317160689806936226622681106017/510 Bernoulli(306) 6897357391928647909388698422004485224916221740655301817552190675058172679651899 7877656996868039998308960063096834110217838077771363058330614010356266902742455 2384203113812510243331805627699809267240054344772443480095752572066698167737729 1903461482978315474317326070917319421729056589446455762339503516758597563678332 38423434368779109181349635099892383418900862720397266277623080279813067604999/ 25233558 Bernoulli(308) -131002831387856790711469249590831570312119175591113111198436026801033929195852 7789632281425987720420051304810543373657881574797353695997625625576992435250954 1156474190755449447360548540157110742488736861553733277769463486445670491299841 4480719878023410727873385962814533473195211579855176810181775344373602365908034 8249001450368140437083583099127029870537678245450148711191680759214684176445667 /20010 Bernoulli(310) 3260606235276851195099437047707916012280054709370077715052312896011476347066426 3137569061479299763246396174870790381827183158505869129986818900401541012170236 0174635854844213935688176120949187934444814423547102451991673028031440640119705 7752850694124801781598205133338269426259564611182358074475139266646779460335469 7005594348845404064852996320133446903527008500489356136774933641526013474789769 55/20526 Bernoulli(312) -219310221923496085124921823808404575155215719519880743817262187359846676808720 9339634961932873204413121354799812430854107803299205525957462517069794529295542 4940928320898831030553117958335524295334473124061085211019948034784218328090588 1606393786883347661578747110380713468900860626627458517735797820729101052113795 3994775163763305088891021061630677200039733393593143027498574533156207727067805 05888813811597/561706691910 Bernoulli(314) 5831963211655227469096364047000879785191356939385161602680269994879257080042651 4955313346203698994313311897550498332426841700731679786431087060191663246884471 1222777875778441595662461445780848421256813210893747663034424053574110541569291 1032767001030027558118855855057952089777910853586423077582781831060554157175555 0952336300769014556310739198880207114652836975369297328995687695253857459754731 55407/6 Bernoulli(316) -233067620361809547072399023037331827099784685803250931492390400516341497452585 4459656213454096023152593544127001579959962113568241401538231186153459784375673 0857227145200622246509066032795288017634942726754909458234645264430702930529842 4566530803785443652150664665969869536013859984325545357091969172293504784492214 0649650643216766436923947887297424791260110042630633931227556547559566964009221 6631914518917/9510 Bernoulli(318) 2812296709019528798105501952374642102617461115460660788141083455382157119560007 7156388139504050817072318352135336014937133504488344591033637378875175488860842 1422002155449524574622515517283055458627031464716474833941385057429898633362315 9576460033941886621832268128526690181797728456957304460454187242251773619570306 9383015638214571378546092320911382385141634160156861783095114673655212399723765 743717305197851/4494 Bernoulli(320) -372182298114796354347362872171816038967539589743750377922680786048256669121470 5959016239951890193486758232537597591642279654459920857716018601998378015710967 4580025076608606245689244483284525608083767962245418996857568217934343211388385 1292530721642055470398317117154079538710079980935339051910764771797621303275275 2815159815739322121041527686676774334782328158773314452206678687770745486976844 581551304048486668867/230010 Bernoulli(322) 1194701120251368376772310448927147109786850187339975888751433693459282282997664 6702161909309680237660201998669294617552009638464244432709441651377979627696796 3858882633059158119246167943030934495504166401076413042315715523222043632291104 9729923603439658368190665798519817730297257802768811738244766184808347628329689 3356637990999976607059658190271101386708876477455968880271181353449021120174672 279118531405266405457/282 Bernoulli(324) -382939382669485144236796360534598641464412319414905512671323836952119988303258 4377556163984602775965899294620028160948209504229098195604243661949859717087550 5407499412061150205464900091758847003071995515741074078554024242076867751557265 7924549702183455169967855380465117709578624959367223624074442219555371133295420 4942399883879329051596664648871055498926334411033125995310873151284771962309916 237507813788879633942447325937291/34098248730 Bernoulli(326) 1808383072515392862130370135635372000131626793093148880779287649928820293768508 5927075210556280277082761658297056708380640310685745276129307990789815786767911 2901521943879321373403686342611036062390075785581242602354115977490536551875669 2026508213803668789819570234151094586211640196633499617063941661470860479560003 4748754276790617501738435096855283531518261466844055352065049361360267960303652 88231301797295663647612503/6 Bernoulli(328) -203892095573216670456354467587153929853466454883234459494041921103100468624488 7980129990722833481906996574995006272283772989552251711645339529824674672295721 3874449897651970943566256862772587598875290638840634417294644666953048171548797 5393601336024481447017125531286042005245945659596667739616513230190662881830774 4454944935388834925108370678592735494494812411438800013100442226704887804736057 100084506757161238437561170752083/2490 Bernoulli(330) 1645074026176120148828651408666634138584441258081394972400015503830887018872071 9658119876451207931032748030811189911338403495201879917853940007778344522354341 1867488322718098218284092982079687391392270146095981067032374720432289322985638 0098439686594375579575836908295488843730286650040809710916301855565569769559411 4688192421141599313689189778427690359665256283948257291245464556741556264558183 330312680675299274129472749543281530376155/7305236862 Bernoulli(332) -314047405731393870136073238990607884611297344032678777408390794685221172163370 8362506172510706634702922447097017783029079745710482106017053436314827665116057 1699094881049180803660482733644591278636224534484481850814754420273709821201199 9082097604691915678402522477068760758560907812094567642327670866884913570874699 0090669234292333606492817972454637079110995697480078930395170959989224638658296 1297095349501749155074025993332911366367/5010 Bernoulli(334) 1059594507121393585616143267506787482916278495501915126623804132940681074072478 8656671352535083819878853423812167842916641966404123623380360605181762773157593 9553790154021616196778501189528768078400811107009317850171384096998455082824610 4379199691974213851894753587755965370260923745196450529750595954878886186142755 4570357719194738371176184923271585550132544505745204387511298084152885559401376 4288125280661970576229405994478822053767/6 Bernoulli(336) -110968358518556750910569006059104612436322304793290197896476208195051113971187 3042566718826132010635437108874910069892032134688620957280864213276497579267063 7537316003247906088141428531680505004999825009662929869171471233773103313306324 4894833650574221421335477496494331790029997128928883270452912343595756835759921 0824990277156331874835082271739544210074457390764522152344639539520293776122750 96135644427285378787750547213980148328191792731369493029/2203871994870 Bernoulli(338) 8716676138762899471522592139986413243594383671132459785102770025622109222882091 8015015179385255873602918987636309673620831503560016764927346467813464622970816 1579214485318416128870291425640987624153304026736765522468963515580422620761261 1953141562520823037267994522383193592201128797250784519797918409123130593469325 5077141601872154192220711933362048083101448836843985821242677046180932418707999 7350701358985200574078187666941445255865364959/6 Bernoulli(340) -139969199374294532188729693702577000000465664934371179035889932037927222630615 1618710085682587608580935602129709555120579837002849041396629887964715888438379 1466487133901727883452491575071706997348776015272296636310318052713919926107295 9205960570607504345672675033426810959288741490491658133099197637151741354653719 4487952555051206433941672142138068377852076260779912263833447744222838058546287 74864645574223075309564129905544107459811288704862611/330 Bernoulli(342) 9998668693505573637224584790043958308479531692401521180304829729848562541393432 8556305971042614200131081860430027855591110488355718632533315391712433004836824 9458087059040520529706556642732809436335612822769043297715578151918469336944179 4838609465063340041860073244678648429785592501741082638997030856922741423537618 0511357095230883842694509391795399664266277656193069598848869500616623370110438 6823791719249365863288962981240951731129450241042813203/798 Bernoulli(344) -194356679464122366000063557526803181773780189986865586930470468471859228425694 0585047864332662480710702413578529979967468584658403023059800832946165496464006 2557602833521189158599030670653044302429200521250792329717629531968392422269289 9007109181484350605033720455977537412753391449552230076184112225466977758107807 4744647866179074301908758829861199380922484355941243732828725677985648233775482 7908028601591041648043989896358637724179061858684905231780173/5190 Bernoulli(346) 2357481509540470157500613834267781473761111700218916888451462558812459108832155 8700476292561495266316421750730681754426899890383276767887403267480686627676268 6859664936770230725545347704885864836420622598430157374668204179638548021664582 3296808238283621621206384489731250510555262637883050401445208843392623999725828 0111620289793360632141212087877945966075033938687737132829040482438463044913103 827680386355585682702291192692673999705957317036687127526488661/2082 Bernoulli(348) -194695824492640851981992854003531231979402523115431228384694144553383388568488 4185938663359749293528922631351379885288320544746558558870084671027543542465268 8012456296382730908464900146964812930581729452255732499201813217364530626290229 8168843323357732912745992876511360630017664883210987513988845498732688663688098 8465878410619882237596781152380489370724295257792104332503696582825373077048086 525583941198173749084587321884232599450628448598711165788748886648206781/ 56213430 Bernoulli(350) 5021720891096379730799051573085173241660483518103511594223753375743325735140467 4213986136511779076279539832275546238954087649868632551993338602454299845646750 4352201616875674226702066988781736776780983675270711591178536297327588046501114 2731159249422400891958772771702111459554795376045618765306635220614914925481716 6412986125572849261353785977266554620536587240384285146558861694196601835656518 1922169705164734493393477247978508055348618032704534473742084629023675/4686 Bernoulli(352) -123595612458163473336102111542838674764831835495331502431774135351050074096606 4583901899479498558999332249563820904546595065237338528429098863513249662746848 2309183354235563610377651291484274983125139258984606382689516336611547002063107 6054800071496634622909233303706997995125130120515859762839469193960001284685791 2774670692305399536165345325498984488273870712756678571647877650072531390879445 5149509141863220008487339387394404640749069955014825600846412710922328376313724 7/368521410 Bernoulli(354) 4458695880012678679045241483345173727648526921760404149395783215384774877669101 9563443875873891685730191225792159808508144405955278309411839337401759278396174 6096241926858841239939685011047671843464779390679038465124395229271596498987619 6581652528679172885434648568672742027529256951131154558770505288898896914003133 0003151200601432709893613802729701685072968681090703554561525613786761794587069 881004247080811531298610122589066840923344874780872870506826198179146216889/42 Bernoulli(356) -182495206046873904911888730195578392542742158189419165572201483058631713239993 2863107300071535471234944282480487747301120843564792457739397612156419407039179 0525169749128982828132077146902780721841387850162775862442199934474879939605150 4258838307066367023610840523355688698436281986262212424940765387676142291868035 1635313026317983464924228878796031453114956450654475209761451384789902062977670 1115098262552562151629993531946710430672386743677617308205579019072302696542508 379/5370 Bernoulli(358) 2369814649308935043228021398516266995926284111110247054687145623732369361843591 1411642184657663645971277792033537906347762183635901158641375259341789919760310 5681460352445932378792454366478006099883273862981279429149811312127273076915557 8453172162326268591237478265380289893420091132435309649054870604396285246590795 8751649549222286885339380268684947173053181005751121488921877337975992137735046 5287299000379375481876741110444691063088672260104977000219302771368094730410104 32321/2154 Bernoulli(360) -778920925563520089023277887716919839298513486135455047496265119151473505464734 9576909376350483945372944159721224210868774785339674113489944741713882560741450 3523779780215482276161752817270001573106865754709267983609554304217968136499196 8425138238530710252585175316218097390905698054739393609117605669741881868029805 2379837722283224245024915839950840658787871046095423820450501855770235750495486 1644475014053958267630939139585943626066477864173370849965704755073932530073272 2680932200039559718809/21626561658972270 Bernoulli(362) 7153411022580989403199123439967078116850845513562446455409333088104139281608917 2429827685161964955182997369703358718106927138069240713231716173910928401194522 7649892560360729074672778640720680874112214109997197387525352062913504682830983 7727253935704683264910831873003319706684490415942960730652766928876787296911149 1607964257990028802688143223597913754482364072986870509377464524145462283622317 6904124630526882732099120398430089179339282190314646212515622936459121100998906 169917551/6 Bernoulli(364) -183994704284560509080143331178864945957306510140556362887227174299509178095001 3627255711740297705283904210569359740469325761763420160059889535970821330273820 6862242849606975947076539483777341046657860376203296993121539300815161693660027 5278502730815274946735504403576344305962086433603582043712329571511656576075090 1725324315291611671971235084328617227448799050784012403075483301193072180872965 9207188165402273267771908929719004881279785191361391914450528631012111465559730 900716078151518537/46110 Bernoulli(366) 2081324367967019740265786459470036224833310562873557450540774875219432921036336 4029904045498683920274785904391711886368296491226342074760936891789529952828353 7128619646155369384340380796319852058383198301591487844668907655774787107504112 3908670727931411334042350252815108953825677465729289506737256043386826128593266 9643784461912885034984352745012134324851266880718011466493208024572308839966018 4314807010670380724658486771064683185071514502241671483171013576410513348441511 54035628560478914687/15414 Bernoulli(368) -110725230879881321879568054811797526267115166186538309029826133137308115277324 2072705710402634419202623862420763420569490478663535345142669800244123704342201 8735956006205049344045722103544008922604669601469021912275106915663076431336096 0761587856716000690131098571105908045239988081704908481660126863809763243757816 0633494310213325366325872986533997729205356610740132396709534260887428332526534 9976365444693844705084679004587031711205053444484096877881567670717595463105972 8590843972403931253118799/23970 Bernoulli(370) 1054364681019267121830159662373420279818225480653781839149178920561555806813202 0302690033052949897841042134898904263325098281199203997126891871846497116894158 3528038472099497987423279686033847352373713634524328902029631237087627685630315 8404225225651223912805235434755784151235675589206423964860803286777387807480810 9633551462297232745241469484894178841185378523869768267544472464691534807166210 4156310859630089274744684862265845975500290596918123665582220429778397569235238 1312064835994355860201685/66 Bernoulli(372) -568689887479725062546595969356838834637165735244271465973763661719818022334876 3053726160045251592818050278521482012458623268746033382205619045167810748544640 0177877446417556715711032055230455854240595868388654451080202675047744244991416 1921155240250848138122279301631232871455887057274294567790829683908770938979791 6096532390599319570627898548589644059563677512384767934591084504671416330132522 4520710766325936895600819434580574518875433796519293151389916795779147962584026 929392606854485528272956190655743/1018290 Bernoulli(374) 2723352199884411746657116444168170377882223168882265641892084901752398169649491 1618651082582707143082377020546888216407884466480834780583096823087696141619926 2466469270666791566377066677591980435489655129480366457251098317170822303846655 4266059653621241318840763778221635339312999545256821971375091832344657163446281 6666446106121343241772625570723451925602179037604045813434065564118195563426039 2208809071001560270930905476873636208670386352442356434023554492321216980902574 32456131056504444320853157345201/138 Bernoulli(376) -211448863259688474211368626409336057907308780651582311178948123307648749408172 3270965528744920377697491098857650356166180024927899131911330958233528159264744 2495030553208258548341339318764197461147432848991686338242711098654931144304725 1485414372153709953470517135177735029061691740899442592315104849351444284380910 6726613124239420112267088825277206485642395837237408261597068559738699173717984 4349495505700142239123902982043714578671787314293339023048726217119025452344630 237832665698519639606247957083240801/30 Bernoulli(378) 4202152324841490851582198491734154054898910989229835692416027795481485467411812 5168923660953486196733374905502804259896914090928561770278468934278787386406331 9780937598384842703648747867883936235575961080852921211093650147700809742931981 7529927993776215011685533261432410077791728458394351343228912812829117361997697 7934334489084905316976607258938295196444541399673187582471353770254443521700891 6655393980145141973517955089130955730531962484492375119815462800173963869199820 6529289924753014269328705445340396548203417533/1651635762 Bernoulli(380) -585016197049150516429606755440285431916223316191798033687181061470667150509536 1136712582010547178662265701699764018503602306596996993019630577431663707143392 5900098105806098867713284437059053896204424709229753767290541098564831291179653 5010450651733583075122028847986584025427113069993778348629306554503407744980050 3770579690611705088104129279199307896374389163837636364754432749556537255589634 5482499897693655950433738779659670972754753872927763302254513603238686082514797 3153846428111580196229784765036789760566304701/63030 Bernoulli(382) 7863197960928934505546950111939500837911809651372358963456887700479992720249586 3945986283823608714469880713486237817037414979036031006235383025032476262083964 3879732438980608407229360095903011655438122640893141975156888387279010186446870 5338943528995151562674033920875868237506141659719595175929045869729860277010981 8453665947288873748972700580769864649544946817207071904078063454972954577208463 9275300568570302009860577097868105330198386061748720507464608374758342605660554 41410395805129523481902672214740177851314801113/2298 Bernoulli(384) -110754162756402172153014550168566972984876925083693264831143127544432717811904 9929840772402313518506200454421589757524762094379450039212922572896559061121742 0829463050369195924100934681462677996141725794840014638901114092921099307567106 9409245612465372014808443841918963732454979635619634196765514065569765406021995 9512403640202700704114373771870813530459318373028548504525928935234822987991366 9813358585507046530460523465482162681784716015125227737121173202197874098111893 5331815732788765628347320001270460720535171080710693555387/868841610 Bernoulli(386) 2879114883186609620826723532068276104139845449825894019948530676086618349883233 2451390846634169294587605970366674137179785300214721482640705972860706168578931 8380725915877198087771183697336447022728991956882235888659007323457891007577518 4060367188577311832614887005612354400063672439629984465735358226535865532910705 0942421327006352640962962050523706268382526774187498015180776642893902628289655 8562307089700264076891047932443887866093895344106726376456045227910893045747525 8025425810584201571774449957241464340109525100976383/6 Bernoulli(388) -212991147880947573971537067247145364132920777752220091972964875702763685497676 6848373990565475962979428972205908857439147439438411638884239347219877989084579 2835783368209072403070166818305644992935634095949389005892015797599060514475400 3513006656860950276684281585201054902456125782263083320640198748322382966038588 4999174198988545409225388966089275443675963590452072551977162279156780662563656 8537908996210911982475409155309551762403125143065067389753960600797968698009862 634474184891040512288957749239742206998790145616588343479389/11670 Bernoulli(390) 1039554412204304060999050471842935871664238236129525031050621197904673190252061 8163060767830046521926161335277747234937493944615458161377516766911656373639449 3048382631903692742255314133010448329629034247650705334420681764871912900141730 1179730182909494636606795995576156560517060235847592695182729113023238975218843 9129965387795437476499993582526045900893451189212571046394459132362111490245382 1635861655611589968733715513678100756311255168497746510831950445025073543747101 1340987371661862741413337000516697089619657504784045957077408711185/148218378 Bernoulli(392) -466695632025751781692648017848987870271938714890023252252791233979618871440977 6663856362141719980502875970806945762712937180144475887677992558175799481301586 0192020600281853070563114326873197998541353402410622313952599196293054906353542 3989009021707255789079152868947926798749669926359814617149589320301348557522754 7175970131771602894568516495986613037151863666577390670765165933422564746168996 9944131254849692510711894112622003445367468796490163284225239013749165694046133 35757056186544409616787583076594896302119414868190918059336879970513/171390 Bernoulli(394) 6408089123503561743780733337153307953099129474318012960355144963059569241940504 7872499730827630253193345884471662331289551634330620802493218379065535184410296 7791249508631724180677304236114904329953319103713608769803340518450516179464461 2848060091105023422207435680346821332734436564659061020584620737334419861526379 3221945526269049878303336679680789559545196897417001858979026517387173254021920 3496470134837096254721957294282692027321105998231580155273075570903000709400332 769684568638209079266772432973508791091418552966827434770217964847/6 Bernoulli(396) -988721621966561148765332193626328913917748393420050004369569387264811916954171 2272599143599192048500378488651642094915140827440375089712405308604847080970538 7715020563676318491207223028465413318847625119271235350352217955302858427960756 2867103486123224635715566628419901003148442704056714596051123460682634021450708 8984169700753045593228260069131402870241631072314741775594294587713198659984061 0369192441659461647425950295710718456957848137284733782503430592302360661270817 8208624164266478304393420250983951166030567160158076429357475405669518125043546 52379/233649143825370 Bernoulli(398) 1016190031321556631995342159138863740232818042534921104881669898031907281690352 1145345726221163084105611450343443221137527690722856383209708142471452342875346 5396668635584828350191568047516691169323227550857214608779387901814143411744215 8363016980224840985221472480193976670162670766222990479700877970643757887433699 7303238218116573968772216970036489561373747407630110362020821819680854208929607 1120138556683484262445969614805973815951370165282708156036520187784573149198251 82032768360703403384404569260876760458965758437801728169587522360995301639/6 Bernoulli(400) -637836392102899987100889736245882339465660750081315394597463772253285515127634 0233027890560615096594286121865475344097985513522508075159945576230337432280137 6784474875903535720147084146967619965166480436166324915138652313161158459147438 4405795632554144028686794686434437254523165897512578873435193473769624127965433 5337851032922764032596035480043437277746989044846001746196415212741100764966319 8873691188302850776549851095445319674329831032713432828366945325817352958745749 4121255252316276625903081894890171319044022983838553037495237790938203023796810 27746367/9315635010 Bernoulli(402) 1174239835539994552190497513182360535032387583605057260007722004883059102557958 1447049406742874923042262472128490599898339102504451259220321276654363882395386 6169848798193251300057957776699932592960622329147266422457617829171374287272312 7632853994169543584403270186239889883934311766077803787140536031309605772620994 7201581774324812547378775010951844029726569177451752266619131308789601386187308 4074195816378819585090156084323257364071014313800115972968251161029118723455461 0346621711370121346135534129198492308718185558865166313048808914617330314355609 497/42 Bernoulli(404) -345903891842694980732015048493395694585324315959535041305307560112247052191695 5664973829953506019998422380872167968566067266857401026670310184013796611289015 8844121346238967055265586337720563656945076973896008866961540151608623371400321 9411111793857968115791408542448654532635534101776458785227188431801015221049888 3089816668030790992239717499457275164513815414692072356653908445653642502944394 6230331314008122422463051367099273933311113172059726718966311854174867477988713 3320822699283834465342129392489341643379455851358901161130937004156377928687672 5823001/30 |