The lever escapement is derived from Graham’s dead-beat escapement for clocks. Thomas Mudge was the first horologist who successfully applied it to watches in the detached form, about 1750. The locking faces of the pallets were arcs of circles struck from the pallet centers. Many improvements were made upon it until to-day it is the best form of escapement for a general purpose watch, and when made on mechanical principles is capable of producing first rate results. Our object will be to explain the whys and wherefores of this escapement, and we will at once begin with the number of teeth in the escape wheel. It is not obligatory in the lever, as in the verge, to have an uneven number of teeth in the wheel. While nearly all have 15 teeth, we might make them of 14 or 16; occasionally we find some in complicated watches of 12 teeth, and in old English watches, of 30, which is a clumsy arrangement, and if the pallets embrace only three teeth in the latter, the pallet center cannot be pitched on a tangent. Although advisable from a timing standpoint that the teeth in the escape wheel should divide evenly into the number of beats made per minute in a watch with seconds hand, it is not, strictly speaking, necessary that it should do so, as an example will show. We will take an ordinary watch, beating 300 times per minute; we will fit an escape wheel of 16 teeth; multiply this by 2, as there is a forward and then a return motion of the balance and consequently two beats for each tooth, making 16×2=32 beats for each revolution of the escape wheel. 300 beats are made per minute; divide this by the beats made on each revolution, and we have the number of times in which the escape wheel revolves per minute, namely, 300÷32=9.375. This number then is the proportion existing for the teeth and pitch Pallets can be made to embrace more than three teeth, but would be much heavier and therefore the mechanical action would suffer. They can also be made to embrace fewer teeth, but the necessary side shake in the pivot holes would prove very detrimental to a total lifting angle of 10°, which represents the angle of movement in modern watches. Some of the finest ones only make 8 or 9° of a movement; the smaller the angle the greater will the effects of defective workmanship be; 10° is a common-sense angle and gives a safe escapement capable of fine results. Theoretically, if a timepiece could be produced in which the balance would vibrate without being connected with an escapement, we would have reached a step nearer the goal. Practice has shown this to be the proper theory to work on. Hence, the smaller the pallet and impulse angles the less will the balance and escapement be connected. The chronometer is still more highly detached than the lever. The pallet embracing three teeth is sound and practical, and when applied to a 15 tooth wheel, this arrangement offers certain geometrical and mechanical advantages in its construction, which we will notice in due time. 15 teeth divide evenly into 360° leaving an interval of 24° from tooth to tooth, which is also the angle at which the locking faces of the teeth are inclined from the center, which fact will be found convenient when we come to cut our wheel. Pallets may be divided into two kinds, namely: equidistant and circular. The equidistant pallet is so-called because the lockings are an equal distance from the center; sometimes it is also called the tangential escapement, on account of the unlocking taking place on the intersection of tangent AC with EB, and FB with AD, the tangents, which is the valuable feature of this form of escapement. AC and AD, Fig.2, are tangents to the primitive circle GH. ABE and ABF are angles of 30° each, together The weak point of this pallet is that the lifting is not performed so favorably; by examining the lifting planes MO and NP, we see that the discharging edge, O, is closer to the center, A, than the discharging edge, P; consequently the lifting on the engaging pallet is performed on a shorter lever arm than on the disengaging pallet, also any inequality in workmanship would prove more detrimental on the engaging than on the disengaging pallet. The equidistant pallet requires fine workmanship throughout. We have purposely shown it of a width of 10°, which is the widest we can employ in a 15 tooth wheel, and shows the defects of this escapement more readily than if we had used a narrow pallet. A narrower pallet is advisable, as the difference in the discharging edges will be less, and the lifting arms would, therefore, not show so much difference in leverage. The circular pallet is sometimes appropriately called “the pallet with equal lifts,” as the lever arms AMO and ANP, Fig.3, are equal lengths. It will be noticed by examining the diagram, that the pallets are bisected by the 30° lines EB and FB, one-half their width being placed on each side of these lines. In this pallet we have two locking circles, MP Both equidistant and circular pallets have their adherents; the finest Swiss, French and German watches are made with equidistant escapements, while the majority of English and American watches contain the circular. In our opinion the English are wise in adhering to the circular form. We think a ratchet wheel should not be employed with equidistant pallets. By examining Fig.2, we see an English pallet of this form. We have shown its defects in such a wide pallet as the English (as we have before stated), because they are more readily perceived; also, on account of the shape of the teeth, there is danger of the discharging edge, P, dipping so deep into the wheel, as to make considerable drop necessary, or the pallets would touch on the backs of the teeth. In the case of the club tooth, the latter is hollowed out, therefore, less drop is required. We have noticed that theoretically, it is advantageous to make the pallets narrower than the English, both for the equidistant and circular escapements. There is an escapement, Fig.4, which is just the opposite to the English. The entire lift is performed by the wheel, while in the case of the ratchet wheel, We will now consider the drop, which is a clear loss of power, and, if excessive, is the cause of much irregularity. It should be as small as possible consistent with perfect freedom of action. In so far as angular measurements are concerned, no hard and fast rule can be applied to it, the larger the escape wheel the smaller should be the angle allowed for drop. Authorities on the subject allow 1½° drop for the club and 2° for the ratchet tooth. It is a fact that escape wheels are not cut perfectly true; the teeth are apt to bend slightly from the action of the cutters. The truest wheel can be made of steel, as each tooth can be successively ground after being hardened and tempered. Such a wheel would require less drop than one of any other metal. Supposing we have a |