CHAP. XXII.

Previous

CURIOSITIES RESPECTING INSECTS.

To their delicious task the fervent bees,
In swarming millions, tend; around, athwart,
Through the soft air the busy nations fly,
Cling to the bud, and with inserted tube
Suck its pure essence, its ethereal soul;
And oft, with bolder wing, they, soaring, dare
The purple heath, or where the wild thyme grow,
And yellow load them with the luscious spoil.
Thomson.
What various wonders may observers see
In a small insect—the sagacious bee!
Mark how the little untaught builders square
Their rooms, and in the dark their lodgings rear;
Nature’s mechanics, they unwearied strive
And fill, with curious labyrinths, the hive.
See what bold strokes of architecture shine
Through the whole frame, what beauty, what design!
Blackmore.

The Honey Bee.

This important insect has been long and justly celebrated for its wonderful polity, the neatness and precision with which it constructs its cells, and the diligence with which it provides, during the warmth of summer, a supply of food for the support of the hive during the rigours of the succeeding winter. The general history of this interesting insect has been amply detailed by various authors, as Swammerdam, Reaumur, &c. &c. Among the most elaborate accounts of later times, may be mentioned that of Mr. John Hunter, which made its appearance in the Philosophical Transactions for the year 1792; and that of M. Huber, contained in his Nouvelles Observations sur les Abeilles, addressed to M. Bonnet, the celebrated author of the “Contemplations de la Nature.” The following account is drawn principally from Hunter and Huber.

There are three periods, observes Hunter, at which the history of the bee may commence: first, in the spring, when the queen begins to lay her eggs; in the summer, at the commencement of a new colony; or in the autumn, when they go into winter-quarters. We shall begin the particular history of the bee with the new colony, when nothing is formed. When a hive sends off a colony, it is commonly in the month of June; but that will vary according to the season, for, in a mild spring, bees sometimes swarm in the middle of May, and very often at the latter end of it. Before they come off, they commonly hang about the mouth of the hole or door of the hive for some days, as if they had not sufficient room within for such hot weather, which we believe is very much the case; for if cold or wet weather come on, they stow themselves very well, and wait for fine weather. But swarming appears to be rather an operation arising from necessity; for they do not seem to remove voluntarily, because if they have an empty space to fill, they do not swarm; therefore, by increasing the size of the hive, the swarming is prevented. This period is much longer in some than in others. For some evenings before they come off, is often heard a singular noise, a kind of ring, or sound of a small trumpet; by comparing it with the notes of a piano-forte, it seemed to be the same sound with the lower A of the treble. The swarm commonly consists of three classes; a female or females, males, and those commonly called mules, which are supposed to be of no sex, and are the labourers; the whole, about two quarts in bulk, making about six or seven thousand. It is a question that cannot easily be determined, whether this old stock sends off only young of the same season, and whether the whole of their young ones, or only a part.

As the males are entirely bred in the same season, part go off; but part must stay, and most probably it is so with the others. They commonly come off in the heat of the day, often immediately after a shower. When one goes off, they all immediately follow, and fly about, seemingly in great confusion, although there is one principle actuating the whole. They soon appear to be directed to some fixed place; such as the branch of a tree or bush, the cavities of old trees, or holes of houses leading into some hollow place; and whenever the stand is made, they immediately repair to it till they are all collected. But it would seem, in some cases, that they had not fixed upon any resting-place before they come off, or, if they had, that they were either disturbed, if it was near, or that it was at a great distance; for, after hovering some time, as if undetermined, they fly away, mount up into the air, and go off with great velocity. When they have fixed upon their future habitation, they immediately begin to make their combs for they have the materials within themselves. “I have reason,” says Mr. Hunter, “to believe that they fill their crops with honey when they come away, probably from the stock in the hive. I killed several of those that came away, and found their crops full, while those that remained in the hive had their crops not near so full: some of them came away with farina on their legs, which I conceive to be rather accidental. I may just observe here, that a hive commonly sends off two, sometimes three swarms in a summer, but that the second is commonly less than the first, and the third less than the second; and this last has seldom time to provide for the winter.

“The materials of their dwelling or comb, which is the wax, is the next consideration, with the mode of forming, preparing, or disposing of it. In giving a totally new account of the wax, I shall first shew it can hardly be what it has been supposed to be. First, I shall observe that the materials, as they are found composing the comb, are not to be found in the same state (as a composition) in any vegetable, where they have been supposed to be got. The substance brought in on the legs, which is the farina of the flowers of plants, is, in common, I believe, imagined to be the materials of which the wax is made, for it is called by most, the wax: but it is the farina, for it is always of the same colour as the farina of the flower where they are gathering; and, indeed, we see them gathering it, and we also see them covered almost all over with it like a dust: nevertheless, it has been supposed to be the wax, or that the wax was extracted from it. Reaumur is of this opinion.

“I made several experiments, to see if there was such a quantity of oil in it, as would account for the quantity of wax to be formed, and to learn if it was composed of oil. I held it near the candle; it burnt, but did not smell like wax, and had the same smell when burning, as farina when it was burnt. I observed, that this substance was of different colours on different bees, but always of the same colour on both legs of the same bee; whereas a new-made comb was all of one colour. I observed, that it was gathered with more avidity for old hives, where the comb is complete, than for those hives where it was only begun, which we could hardly conceive, admitting it to be the materials of wax. Also we may observe, that at the very beginning of a hive, the bees seldom bring in any substance on their legs for two or three days, and after that, the farina gatherers begin to increase; for now some cells are formed to hold it as a store, and some eggs are laid, which, when hatched, will require this substance as food, and which will be ready when the weather is wet.

“The wax is formed by the bees themselves; it may be called an external secretion of oil, and I have found that it is formed between each scale of the under side of the belly. When I first observed this substance, in my examination of the working bee, I was at a loss to say what it was: I asked myself if it were scales forming, and whether they cast the old, as the lobster, &c. does? but it was to be found only between the scales on the lower side of the belly. On examining the bees through glass hives, while they were climbing up the glass, I could see that most of them had this substance, for it looked as if the lower or posterior edge of the scale was double, or that there were double scales; but I perceived it was loose, not attached. Finding that the substance brought in on their legs was farina, intended, as appeared from every circumstance, to be the food of the bee, and not to make wax; and not having yet perceived any thing that could give me the least idea of wax; I conceived these scales might be it, at least I thought it necessary to investigate them. I therefore took several on the point of a needle, and held them to a candle, where they melted, and immediately formed themselves into round globules; upon which I no longer doubted that this was the wax, which opinion was confirmed to me by not finding those scales but in the building season.

“The cells, or rather the congeries of cells, which compose the comb, may be said to form perpendicular plates, or partitions, which extend from top to bottom of the cavity in which they build, and work downwards; but if the upper part of this vault to which their combs are fixed, is removed, and a dome is put over, they begin at the upper edge of the old comb, and work up into the new cavity at the top. They generally may be guided, as to the directions of their new plates, by forming ridges at top, to which they begin to attach their combs. In a long hive, if these ridges are longitudinal, their plates of comb will be longitudinal; if placed transversely, so will be the plates; and if obliquely, the plates of comb will be oblique also. Each plate consists of a double set of cells, whose bottoms form the partition between each set. The plates themselves are not very regularly arranged, not forming a regular plane where they might have done so, but are often adapted to the situation or shape of the cavity in which they are built.

“The bees do not endeavour to shape their cavity to their work, as the wasps do, nor are the cells of equal depths, also fitting them to their situation; but as the breeding cells must all be of a given depth, they reserve a sufficient number for breeding in, and they put the honey into the others, as also into the shallow ones. The attachment of the comb round the cavity is not continued, but interrupted, so as to form passages in the middle of the plates, especially if there be a cross-stick to support the comb; these allow of bees to go across from plate to plate. The substance which they use for attaching their combs to surrounding parts, is not the same as the common wax; it is softer and tougher, a good deal like the substance with which they cover in their chrysalis, or the humblebee surrounds her eggs. It is probably a mixture of wax with farina. The cells are placed nearly horizontal, but not exactly so; the mouth raised a little, which probably may be to retain the honey the better: however, this rule is not strictly observed, for often they are horizontal, and towards the lower edge of a plane of comb they are often declining. The first combs that a hive forms are the smallest, and much neater than the last or lowermost. Their sides or partitions, between cell and cell, are much thinner, and the hexagon is much more perfect. The wax is purer, being probably little else but wax, and it is more brittle. The lower combs are considerably larger, and contain much more wax, or perhaps, more properly, more materials; and the cells are at such distances as to allow them to be of a round figure; the wax is softer, and there is something mixed with it. I have observed that the cells are not all of equal size, some being a degree larger than others; and that the small are the first formed, and of course at the upper part, where the bees begin; and the larger are nearer the lower part of the comb, or last made: however, in hives of a particular construction, where the bees may begin to work at one end, and can work both down and towards the other end, we often find the larger cells both on the lower part of the combs, and also at the opposite end; these are formed for the males to be bred in: in the hornet and wasp combs there are larger cells for the queens to be bred in; these are also formed in the lower tier, and are the last formed.

“The first comb made in a hive is all of one colour, viz. almost white; but is not so white towards the end of the season, having then more of a yellow cast.”

What follows is principally abridged from Huber, who in many instances is more correct than Hunter.—A hive contains three kind of bees. 1. A single queen bee, distinguishable by the great length of her body, and the proportional shortness of her wings. 2. Working-bees, female non-breeders, or, as they were formerly called, neuters, to the amount of many thousands; these are the smallest bees in the hive, and are armed with a sting. 3. Drones, or males, to the number perhaps of fifteen hundred or two thousand; these are larger than the workers, and of a dark colour; they make a great noise in flying, and have no sting. The whole labour of the community is performed by the workers: they elaborate the wax, and construct the cells; they collect the honey, and feed the brood. The drones, numerous as they are, serve no other purpose than to ensure the increase of the hive, and are regularly massacred by the workers at the beginning of autumn.

It is the office of the queen-bee to lay the eggs. These remain about three days in the cells before they are hatched. A small white worm then makes its appearance, (called indifferently, worm, larva, maggot, or grub;) this larva is fed with honey for some days, and then changes into a nymph or pupa. After passing a certain period in this state, it comes forth a perfect winged insect.

M. Huber, after noticing the propagation of this industrious race, next states the accidental discovery of the very singular and unexpected consequences which follow from retarding the impregnation of the queen-bee beyond the twentieth or twenty-first day of her life. In the natural order of things, or when impregnation is not retarded, the queen begins to lay the eggs of workers forty-six hours after, and she continues for the subsequent eleven months to lay none but these; “and it is only after this period, that a considerable and uninterrupted laying of the eggs of drones commences. When, on the contrary, impregnation is retarded after the twenty-eighth day, the queen begins, from the forty-sixth hour, to lay the eggs of drones; and she lays no other kind during her whole life.” It would be tedious to detail the experiments; they were numerous, and the results uniform. “I occupied myself (says M. Huber) the remainder of 1787, and the two subsequent years, with experiments on retarded fecundation, and had constantly the same results.” It is undoubted, therefore, that when the course of natural instinct is retarded beyond the twentieth day, only an imperfect generation is produced; as the queen, instead of laying the eggs of workers and of males equally, will lay those of males only.

This discovery is entirely M. Huber’s own: and so difficult is it to offer any plausible explanation of the fact, that he himself has scarcely attempted it.

The working-bees had been for ages considered as entirely destitute of sex; and hence, in the writings of many authors, they are denominated neuters, but from the experiments of Schirach and Huber, it seems now to be clearly ascertained, that the workers are really of the female sex.

M. Huber confirms the curious discovery of M. Schirach, that when bees are by any accident deprived of their queen, they have the power of selecting one or two grubs of workers, and of converting them into queens; and that they accomplish this by greatly enlarging the cells of those selected larvÆ, by supplying them more copiously with food, and with that of a more pungent sort than is given to the common larvÆ.

M. Huber gives the following curious account of the manner in which bees proceed in forming capacious cells for the workers’ grubs destined to royalty.—“Bees soon become sensible of having lost their queen, and in a few hours commence the labour necessary to repair their loss. First they select the young common worms, which the requisite treatment is to convert into queens, and immediately begin with enlarging the cells where they are deposited. Their mode of proceeding is curious; and the better to illustrate it, I shall describe the labour bestowed on a single cell, which will apply to all the rest containing worms destined for queens. Having chosen a worm, they sacrifice three of the contiguous cells; next they supply it with food, and raise a cylindrical enclosure around, by which the cell becomes a perfect tube, with a rhomboidal bottom; for the parts forming the bottom are left untouched. If the bees damaged it, they would lay open three corresponding cells on the opposite surface of the comb, and consequently destroy their worms, which would be an unnecessary sacrifice, and nature has opposed it. Therefore, leaving the bottom rhomboidal, they are satisfied with raising a cylindrical tube around the worm, which, like the other cells in the comb, are horizontal. But this habitation remains suitable to the worm called to the royal state, only during the first three days of its existence: another situation is requisite for the other two days it is a worm. During that time, though so small a portion of its life, it must inhabit a cell nearly of a pyramidical figure, and hanging perpendicularly. The workers, therefore gnaw away the cells surrounding the cylindrical tube, mercilessly sacrifice their worms, and use the wax in constructing a new pyramidical tube, which they solder at right angles to the first, and work it downwards. The diameter of this pyramid decreases insensibly from the base, which is very wide, to the point. In proportion as the worm grows, the bees labour in extending the cell, and bring food, which they place before its mouth, and near its body, forming a kind of cord around it. The worm, which can move only in a spiral direction, turns incessantly to take the food before its head: it insensibly descends, and at length arrives at the orifice of the cell. Now is the time of transformation to a nymph. As any further care is unnecessary, the bees close the cell with a peculiar substance appropriated for it, and there the worm undergoes both its metamorphoses.”

M. Huber relates some experiments which confirm the singular discovery of M. Riems, concerning common working bees that are capable of laying eggs,—which, we may remark, is certainly a most convincing proof of their being of the female sex. Eggs were observed to increase in number daily, in a hive in which there were no queens of the usual appearance; but small queens considerably resemble workers, and to discriminate them, required minute inspection. “My assistant,” (says M. Huber,) “then offered to perform an operation that required both courage and patience, and which I could not resolve to suggest, though the same expedient had occurred to myself. He proposed to examine each bee in the hive separately, to discover whether some small queen had not insinuated herself among them, and escaped our first researches. It was necessary, therefore, to seize every one of the bees, notwithstanding their irritation, and to examine their specific character with the utmost care. This my assistant undertook, and executed with great address. Eleven days were employed in it; and, during all that time, he scarcely allowed himself any relaxation but what the relief of his eyes required. He took every bee in his hand; he attentively examined the trunk, the hind limbs, and the sting; and he found that there was not one without the characteristics of the common bee, that is, the little basket on the hind legs, the long trunk, and the straight sting.”

When a supernumerary queen is produced in a hive, or is introduced into it in the course of experiment, either she or the rightful owner soon perishes. The German naturalists, Schirach and Riems, imagined that the working bees assailed the stranger, and stung her to death. Reaumur considered it as more probable, that the sceptre was made to depend on the issue of a single combat between the claimants; and this conjecture is verified by the observations of Huber. The same hostility towards rivals, and destructive vengeance against royal cells, animates all queens, whether they be virgins, or in a state of impregnation, or mothers of numerous broods. The working bees, it may here be remarked, remain quiet spectators of the destruction, by the first-hatched queen, of the remaining royal cells; they approach only to share in the plunder presented by their havock-making mistress, greedily devouring any food found at the bottom of the cells, and even sucking the fluid from the abdomen of the nymphs before they toss out the carcase.

The following fact, connected with this subject, is one of the most curious perhaps in the whole history of this wonderful insect. Whenever the workers perceive that there are two rival queens in the hive, numbers of them crowd around each; they seem to be perfectly aware of the approaching deadly conflict, and willing to prompt their Amazonian chieftains to the battle; for as often as the queens shew a disinclination to fight, or seem inclined to recede from each other, or to fly off, the bees immediately surround and detain them; but when either combatant shews a disposition to approach her antagonist, all the bees forming the clusters instantly give way, to allow her full liberty for the attack. It seems strange that those bees, who in general shew so much anxiety about the safety of their queen, should, in particular circumstances, oppose her preparations to avoid impending danger,—should seem to promote the battle, and to excite the fury of the combatants.

When a queen is removed from a hive, the bees do not immediately perceive it; they continue their labours, “watch over their young, and perform all their ordinary occupations. But, in a few hours, agitation ensues; all appears a scene of tumult in the hive. A singular humming is heard; the bees desert their young, and rush over the surface of the combs with a delirious impetuosity.” They have now evidently discovered that their sovereign is gone; and the rapidity with which the bad news spreads through the hive, to the opposite side of the combs, is very remarkable. On replacing the queen in the hive, tranquillity is almost instantly restored. The bees, it is worthy of notice, recognize the individual person of their own queen. If another be palmed upon them, they seize and surround her, so that she is either suffocated, or perishes by hunger; for it is very remarkable, that the workers are never known to attack a queen bee with their stings. If, however, more than eighteen hours have elapsed before the stranger queen be introduced, she has some chance to escape: the bees at first seize and confine her, but less rigidly; and they soon begin to disperse, and at length leave her to reign over a hive, in which she was at first treated as a prisoner. If twenty-four hours have elapsed, the stranger will be well received from the first, and at once admitted to the sovereignty of the hive. In short, it appears that the bees, when deprived of their queen, are thrown into great agitation; that they wait about twenty hours, apparently in hopes of her return; but that, after this interregnum, the agitation ceases, and they set about supplying their loss by beginning to construct royal cells. It is when they are in this temper, and not sooner, that a stranger queen will be graciously received; and upon her being presented to them, the royal cells, in whatever state of forwardness they may happen to be, are instantly abandoned, and the larvÆ destroyed. Reaumur must therefore have mistaken the result of his own experiments, when he asserts, that a stranger queen is instantly well received, though presented at the moment when the other is withdrawn. He had seen the bees crowding around her at the entrance of the hive, and laying their antennÆ over her; and this he seems to have taken for caressing. The structure of the hives he employed prevented him from seeing further: had he used the leaf-hive, or one of similar construction, he would have perceived that the apparent caresses of the guards were only the prelude to actual imprisonment.

It is well known, that after the season of swarming, a general massacre of the drones is commenced. Several authors assert, in their writings, that the workers do not sting the drones to death, but merely harass them till they are banished from the hive and perish. M. Huber contrived a glass table, on which he placed several hives, and he was thus able to see distinctly what passed at the bottom of the hive, which is generally dark and concealed: he witnessed a real and furious massacre of the males, the workers thrusting their stings so deep into the bodies of the defenceless drones, that they were obliged to turn on themselves as on a pivot, before they could extricate them. The work of death commenced in all the hives much about the same time. It is not, however, by a blind or indiscriminating instinct, that the workers are impelled thus to sacrifice the males; for if a hive be deprived of its queen, no massacre of the males takes place in it, while the hottest persecution rages in all the surrounding hives. In this case, the males are allowed to survive the winter. Mr. Bonner had observed this fact; he supposed, however, that the workers thus tolerated the drones for the sake of the additional heat they generated in the hive; but we now see the true reason to be, that without them the new queen would not be fruitful. The drones are also suffered to exist in hives that possess fertile workers, but no proper queen; and, what is remarkable, they are likewise spared in hives governed by a queen whose fecundity has been retarded. Here, then, we perceive a counter-instinct opposed to that which would have impelled them to the usual massacre.

Upon the subject of swarming, M. Huber commences with an interesting account of the hatching of the queen bee. When the pupa is about to change into the perfect insect, the bees render the cover of the cell thinner, by gnawing away part of the wax; and with so much nicety do they perform this operation, that the cover at last becomes pellucid, owing to its extreme thinness. This must not only facilitate the exit of the fly, but, M. Huber remarks, it may possibly be useful in permitting the evaporation of the superabundant fluids of the nymph. After the transformation is complete, the young queens would, in common course, immediately emerge from their cells, as workers and drones do; but the bees always keep them prisoners for some days in their cells, supplying them in the mean time with honey for food; a small hole being made in the door of each cell, through which the confined bee extends its proboscis to receive it. The royal prisoners continually utter a kind of song, the modulations of which are said to vary. The final cause of this temporary imprisonment, it is suggested, may possibly be, that they may be able to take flight at the instant they are liberated. When a young queen at last gets out, she meets with rather an awkward reception; she is pulled, bitten, and chased, as often as she happens to approach the other royal cells in the hive. The purpose of nature here seems to be, that she should be impelled to go off with a swarm as soon as possible. A curious fact was observed on these occasions: when the queen found herself much harassed, she had only to utter a peculiar noise, (the commanding voice, we may presume, of sovereignty,) and all the bees were instantaneously constrained to submission and obedience. This is, indeed, one of the most marked instances in which the queen exerts her sovereign power.

The conclusions at which M. Huber arrives on the subject of swarms are the following:—

First, “A swarm is always led off by a single queen, either the sovereign of the parent hive, or one recently brought into existence. If, at the return of spring, we examine a hive well peopled, and governed by a fertile queen, we shall see her lay a prodigious number of male eggs in the course of May, and the workers will choose that moment for constructing several royal cells.” This laying of male eggs in May, M. Huber calls the great laying; and he remarks, that no queen ever has a great laying till she be eleven months old. It is only after finishing this laying, that she is able to undertake the journey implied in leading a swarm; for, previously to this, “latum trahit alvum,” which unfits her for flying. There appears to be a secret relation between the production of the male eggs, and the construction of royal cells. The great laying commonly lasts thirty days; and regularly, on the twentieth or twenty-first, several royal cells are founded.

Secondly, “When the larvÆ hatched from the eggs laid by the queen in the royal cells are ready to transform to nymphs, this queen leaves the hive, conducting a swarm along with her; and the first swarm that proceeds from the hive is uniformly conducted by the old queen.” M. Huber remarks, that it was necessary that instinct should impel the old queen to lead forth the first swarm: for, that she being the strongest, would never have failed to have overthrown the younger competitors for the throne. An old queen, as has already been said, never quits a hive at the head of a swarm, till she has finished her laying of male eggs; but this is of importance, not merely that she may be lighter and fitter for flight, but that she may be ready to begin with the laying of workers’ eggs in her new habitation, workers being the bees first needed, in order to secure the continuance and prosperity of the newly-founded commonwealth.

Thirdly, “After the old queen has conducted the first swarm from the hive, the remaining bees take particular care of the royal cells, and prevent the young queens, successively hatched, from leaving them, unless at an interval of several days between each.” Under this head he introduces a number of general remarks, some of which may prove useful. “A swarm (he observes) is never seen unless in a fine day, or, to speak more correctly, at a time of the day when the sun shines, and the air is calm. Sometimes we have observed all the precursors of swarming, disorder and agitation: but a cloud passed before the sun, and tranquillity was restored; the bees thought no more of swarming. An hour afterwards, the sun having again appeared, the tumult was renewed; it rapidly augmented, and the swarm departed.” A certain degree of tumult commences as soon as the young queens are hatched, and begin to traverse the hive: the agitation soon pervades the whole bees; and such a ferment soon rages, that M. Huber has often observed the thermometer in the hive to rise suddenly from about 92° to above 104°: this suffocating heat he considers as one of the means employed by nature for urging the bees to go off in swarms. In warm weather, one strong hive has been known to send off four swarms in eighteen days.

The cause of the bees, which has been so eloquently and pathetically pleaded by the Poet of the Seasons, is supported by M. Huber, on a principle more intelligible, perhaps, and more persuasive, to most country bee-masters, viz. interest. He deprecates the destruction of bees, and recommends to the cultivator to be content with a reasonable share of the wealth of the hive; arguing very justly, we believe, that a little taken from each of a number of hives, is ultimately much more profitable than a greater quantity obtained by a total destruction of a few.

We conclude our observations on this curious insect by two poetical quotations.

“Of all the race of animals, alone
The bees have common cities of their own.
Mindful of coming cold, they share the pain,
And hoard for winter’s use the summer’s gain.
Some o’er the public magazines preside,
And some are sent new forage to provide;
These drudge in fields abroad, and those at home
Lay deep foundations for the labour’d comb;
To pitch the waxen flooring some contrive;
Some nurse the future nation of the hive.
Their toil is common, common is their sleep;
They shake their wings when morn begins to peep:
Rush through the city gates without delay,
Nor ends their work but with declining day.”Churchill, after the following beautiful and picturesque description, introduces a sovereign, drawing from it, in a soliloquy, the most natural reflections on the momentous duties of his station.

********
Strength in her limbs, and on her wings dispatch,
The bee goes forth; from herb to herb she flies,
From flow’r to flow’r, and loads her lab’ring thighs
With treasur’d sweets, robbing those flow’rs, which left,
Find not themselves made poorer by the theft,
Their scents as lively, and their looks as fair,
As if the pillager had not been there.
Ne’er doth she flit on pleasure’s silken wing,
Ne’er doth she loit’ring let the bloom of spring
Unrifled pass, and on the downy breast
Of some fair flow’r indulge untimely rest.
Ne’er doth she, drinking deep of those rich dews
Which chemist Night prepar’d, that faith abuse
Due to the hive, and, selfish in her toils,
To her own private use convert the spoils.
Love of the stock first call’d her forth to roam,
And to the stock she brings her honey home.”


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page