Age of Renovation (continued).—Student-life During the Fifteenth and Sixteenth Centuries. Ceremonials Previous to Dissection.—Reform Period: The Seventeenth, Eighteenth, and Nineteenth Centuries. Modern Realism in Medicine and Science. Introduction of the Cell-doctrine. Discovery of the Circulation. William Harvey, 1578-1637. Malpighi, 1628-1694. Leuwenhoek, 1632-1723. Correct Doctrine of Respiration. Discovery of the Lymphatic Circulation. The Nervous System. Discovery of Cinchona. Development in Obstetric Art, in Medical Jurisprudence, in Oral Clinical Teaching. Van Helmont, 1578-1644.—The Iatrochemical System: Le BÔe, 1614-1672. Thomas Willis, 1622-1675.
For a long time the Italian universities held the first rank; next came the French; and last the German, although all were well attended. The most famous were the medical faculties of Bologna, Pisa, Padua; then Paris, Montpellier, and, finally, Basel.
A little of what concerned the student-life of this period may not be amiss. The students chose the rector and officers of the universities, sometimes even the teachers, and assisted in determining the curriculum of study, the execution of which they watched. In some of the Scotch universities even now the students choose the rector.
The students were divided, usually according to country, into bodies denominated "nations" (some having special seals), which were the parents of the present stu-dent-corps in German universities. Certain representatives, known as vice-rectors, were chosen from each of these corps and constituted a so-called college of rectors which negotiated with the officials of the State, and possessed a power that was preserved until the end of the sixteenth century.
The poorer class of students passed from one school to another, supporting themselves by singing, begging, or stealing, and were sometimes guilty of great barbarities. The younger scholars, called "Schutzen," were compelled to perform most menial duties for their older comrades, the "Bacchanten,"—much like the system of fagging still in vogue in English grammar-schools; and when the bacchantes were admitted to the university proper they were required to pass through an initiation, or hazing, which eclipsed anything known in these days; indeed, the antiquity of fagging may be traced back even to the philosophic schools of Athens. The habits of the traveling scholars led many of them into dissolute and vicious ways, though some attained respectable positions,—possibly even eminence. The students who were better situated financially; for the most part entered the Italian universities.
Already mention has been made of the enormous number of students congregated during this age in Bologna and in Naples. In the small University of Wettenburg there were, in 1520, only about six hundred students; in Erfurt, three hundred, and this number dwindled two years later to fifteen; in 1500 Leipzig had four hundred students; at the same time there were about seven thousand in the University of Vienna. Students and teachers migrated from one place to another, and faculties were constantly changing. Great teachers were received with great ceremony. Bitter struggles and disputes between teachers sometimes occurred; it is related of Pistorius, who died in 1523, and Pollich, deceased in 1513, that they conceived a violent enmity toward each other because of antagonistic views relative to the epidemic or contagious character of syphilis, and both ultimately left Leipzig for other schools.
Some curious customs prevailed. In teaching anatomy, while the learned teachers explained the parts as exposed, the dissections were left to barbers as being unworthy of an educated medical gentleman. While the cadavers were mainly the corpses of executed criminals, it was thought that before and after each special dissection religious ceremonies were appropriate, and such were often held; it was also believed that all who came in contact with such a corpse would be made disreputable unless it were itself first made reputable; hence the professors first read aloud a decree to that effect from the magistrate, and then, by order of the senate of the faculty, stamped upon the breast of the corpse the seal of the university. The body was next carried into the anatomical hall, and the cover of the box in which it had been transported was returned to the executioner, who remained at some distance for this purpose. If the corpse was one that had been decapitated, during these solemn ceremonies the head was placed between its legs. Finally, an entertainment with music, often furnished by itinerant actors, was given. But this folly was gradually discontinued, and by the second half of the sixteenth century public dissection was performed without recourse to such mummeries. The price of skeletons in those days was high; the University of Hiedelberg, in 1669, paid seventy-two dollars for one.
The practitioners of the sixteenth century were often quite as roving as the students and professors, though those who held positions as State physicians were bound by contract to a fixed residence for a certain time. In 1519 the State physician of Heilbronn received a salary of twenty-one dollars per year and his firewood, but could not leave the city over night without permission of the burgomaster. Medical attendants of the King of Spain were required to kneel down when they felt the king's pulse. There were few physicians who acquired wealth, although Fabricius ab Aquapendente left a fortune of two hundred thousand ducats.
The Reform Period is the name which Renouard has given to the time beginning with the commencement of the seventeenth century,—a time when the domain of natural science was daily enlarged, and when observation had enriched human knowledge with multitudes of new facts, some of which harmonized with, and some of which were in opposition to, prevailing doctrines. Men whose knowledge equaled their genius began to need a radical reform, and by such men intellectual improvement was begun by which the decrepit theories of the schools of the Middle Ages were eradicated and by which there were substituted for them others which harmonized much better with known phenomena. To the period of worship of ancient authority succeeded one characterized by a desire to shake off the yoke of the same, and men now struggled, as it were, to free themselves from the tyranny of the past. As Galileo was the torch-bearer for regeneration of the knowledge of physics, and as Kepler, and others already named, or to be named, did as much for other branches of science, so there were not lacking those who broke away from the restraint of authority in medicine, and began to beat or choose paths for themselves among the facts which experimental science furnished them.
With the approach of the seventeenth century there was evident improvement in both the social and mental status of medical men. While political humiliation and exhaustion were everywhere noted, in the field of literature it was evident that the line had advanced. What may have been the effect of thirty years of religious war, with other political struggles carried on under the hypocritical cloak of religion, may be imagined, if not fully described; the devastation of whole countries by disease, and notably by the plague,—the poverty and hunger consequent upon the ravages of perpetual war (it is stated that even so late as 1792 there were still in Saxony 535 wasted and extinct villages), to say nothing of the barbarity and immorality resulting therefrom,—all combined to make the early part of the seventeenth century a most mournful epoch. It is not strange that, with poverty, superstition and great rudeness of manners prevailed, or that trials for witchcraft and persecutions by the Jesuit Inquisition were common. That any advance should have been made under such circumstances speaks well for the progress of the human mind. That this advance was slight in Germany and central Europe is not strange, though other countries were able to quietly enlarge their scientific borders. Now it was that England, Italy, and the Netherlands, which took but little part in the warlike struggles of the century, acquired leadership in medicine, and were seconded by the French. In Great Britain, science had been fostered by various kings, and particularly by Charles II, who professed to be something of a chemist; in fact, an epidemic of scientific interest fell upon the English court.
The seventeenth century, in contrast to the idealistic sixteenth, witnessed the advent of modern realism in almost all departments of thought. Medicine furnished the first example in what we are accustomed to-day to speak of as the exact method; hence, the century is of great importance, in that physicists and chemists began to be original, instead of mere followers of the past. The most notable feature of medicine was the promulgation of three medical systems: the pietistically colored Paracelsism of Van Hel-mont; the chemical system of Sylvius; and the iatro-cliemical system of the physicist and mechanician, Borelli. This period is, moreover, illumined by the life of one great practitioner, whose name will be imperishable in the history of our art,—namely, Sydenham.
The principal tendency of the time was toward skepticism, which had begun in the preceding century with Montaigne, and was continued by Charron, under the patronage of Queen Marguerite of Navarre; it was the fundamental idea of Pierre Bayle, the author of the great dictionary. Opposed thereto was the supernatural philosophy, or the theosophic, cabalistic, or mystic. The leading exponent of the latter was Boehme, who was a business colleague of the celebrated "Meistersinger," Hans Sachs, in Germany, and of Blaise Pascal and his contemporary.
Malebranche, in France. The doctrine of Lord Bacon, Lord Verulam (1561-1626), a man who showed himself as exalted in mind as he was mean in personal traits, was of great importance Bacon is a landmark in history as the defender and eulogist of modern realism,—i.e., of inductive philosophy. While personally contributing but little to the advance of science, he taught a great method; as Gruen says, he was the philosopher of patents and profit; he recognized the compass, the art of printing, and gunpowder as great inventions, but placed little value on the discovery of Copernicus, having little comprehension of mathematics. Hobbes and Locke went farther into realistic philosophy, and the latter was an exponent later of pure empiricism.
In the seventeenth century, also, zoology and botany were largely extended. In it lived Swammerdam (1637-1680), famous as a naturalist, physiologist, linguist, poet, and savant; there were others, also, whose names are better known in the history of collateral science than in medicine, and who left conclusive demonstrations in accordance with their theories, and made daily use of the microscope, simple as it then was. The term "cell" had been introduced by Hooke in 1667, and Malpighi and Grew were the founders of the cell-doctrine. The astronomical laws discovered by Copernicus changed the course of the world's thought; and now appeared the brilliant Kepler (1571-1630), and Galileo (15641642), the defender of the Copernican system, and the persecuted discoverer of the law of falling bodies, of the thermometer, the telescope, and the movements of Jupiter; also, Sir Isaac Newton (1642-1727), whose discovery of the laws of gravitation in 1665 marked an era in the history of science. This century, too, gave birth to Romer, who in 1675 calculated the velocity of light; Huyghens (1627-1693), who discovered the polarization of light and the satellites of Saturn; James Gregory, who in 1663 made a reflecting telescope with a metallic concave mirror; Torricelli, who in 1643 measured the weight of the air; Gascoigne, who invented the micrometer in 1639; and Napier, who invented logarithms in 1700.
Now chemistry, having ceased to be alchemy, began to don the dignity of a science per se, and it may be claimed that medicine derived no slight benefit therefrom. Scientific societies and journals arose at this period, and were all of good service to medicine in their way. The church scented danger to the faith in everything which related to natural science, and founded certain secret associations, especially in Italy; the Accademia Degli Lyncei, so called from its seal, which bore the image of a fox or lynx, founded in Rome in 1603, was one of these. Counter-societies, or, rather, societies with opposite purposes, were also started, and the original and private so-called Invisible Society, which was originated mainly by Milton, in 1645, and remodeled by Charles II in 1662, is now the flourishing Royal Society. In France the Academy was founded in 1665 by Colbert, but developed its first real activity thirty-five years later.
Those who to-day are so familiar with the course of the circulation of the blood through the arteries and veins find it difficult to understand how the recognition of this phenomenon could have been so long delayed; it seems so simple, yet to the ancients it was perfectly incompre-hensible! Although every one had recognized that blood would flow from an incision, few stopped to reason thereupon. From time immemorial it had been supposed that the veins had their origin in the liver, and were the only vessels which contained blood, since the arteries were always found empty after death; the latter were held to contain only air or spirit. The circulation was supposed to leave and return to the liver through the venous canals by undulating movements similar to those of the waves of the ocean; and this was the doctrine of the AsclepiadÆ, and probably of Erasistratus. Galen modified this view by showing that the arteries contained blood; he knew it was poured into the right cavities of the heart by the great veins, but he believed that only a small quantity passed from the right ventricle into the lungs, and that the major portion reached the left ventricle by passing through pores in the inner ventricular septum. This opinion was uncontested until the middle of the sixteenth century.
Then the theologian, Michael Servetus, who, in 1553, perished as the victim of Calvin's jealousy, denied the passage of the blood through this septum, contending that it was returned from the lungs to the left side of the heart by the pulmonary veins. This was a happy thought, and a great step toward the truth. Soon after Columbus demonstrated anatomically that the conjecture of Servetus was plausible, by showing the function and real use of the valves of the heart. Cesalpinus came still nearer to the truth, and explained, as did Columbus, the course of the circulation through the lungs, but he opined that blood and vital spirits passed from the arteries into the veins during sleep, because at that time there was swelling of the latter and diminution of the pulse. Valves in the veins were known, and it had been shown that ligature of an artery in the living animal stopped the flow below it, while if a vein were tied there was shrinkage above the ligature, and swelling below it. Such was the state of science at the beginning of the seventeenth century; there remained, practically, but one step to take,—to find the true course of the blood.
0176m
Original
William Harvey was born in Folkestone, Kent, in 1578 and died in London in 1637. He first studied at Cambridge, entering at the age of fifteen; subsequently traveled in France, Germany, and Italy, remaining in Padua from 1599 to 1602, in order to hear the lectures of Fabricius ab Aquapendente. With the title of "Doctor" he returned and settled in London and soon became a member of the College of Medicine, of which he was made a regent in 1613; in time he became physician to James I, and, on the demise of this sovereign, to CharlÇs I; to the latter he dedicated his chief work. During the civil war he was driven from place to place, and, finally, to Oxford, where he surrendered himself to the Parliamentary troops, after which he again resided in London with his brothers, who had become rich. Modesty led him to decline the high distinction of President of the College of Physicians, and he lived a quiet and retired life, occupied with his studies and, in his later years, investigations in mathematics. Soon after 1613 he began, through his lectures, to make known the doctrine of the circulation of the blood; but he did not publish the results of his researches until 1628, after submitting them to fifteen years of proofs and counterproofs of every kind. So bitter was the opposition of his contemporaries to the new doctrine that he at one time lost a part of his practice, and was even held to be demented. It is characteristic of the fate of new truths, as well as of that age of dominant authority, that his first publication—Concerning the Motions of the Heart and the Blood—was unable to pass censorship in England, and therefore appeared in a foreign country (Frankfort, in 1628) when he was fifty years old; but his second treatise on the same subject, in reply to Riolan, a professor in the Faculty of Paris, was published in Cambridge in 1649.
"So much care and circumspection in search for truth, so much modesty and firmness in its demonstration, so much clearness and method in the development of his ideas," says Renouard, "should have prepossessed every one in favor of the theory of Harvey; but, on the contrary, it caused a general stupefaction in the medical world, and gave rise to great opposition."
This theory, which to-day appears so natural that we conceive with difficulty why it was not sooner discovered, was nothing less than a revolution in physiology; it excited a tremendous controversy that continued more than twenty-five years, and in which mingled every one possessed of any pretension to knowledge of anatomy or physiology; even naturalists and philosophers took part in the dispute. RenÉ Descartes was the first to declare in its favor and to support it by experiment; John WalÆus (Jan de Wale), the celebrated Professor of Anatomy in the University of Leyden, confirmed it by new observations; finally Plempius, of Louvain, for a time one of the most fiery of opponents, succumbed to the truth, and in 1652 passed publicly to the ranks of Harvey's followers—no small triumph!
During these long debates Harvey remained always dignified and firm, although the early attacks rendered him unduly sensitive regarding others which he anticipated.
About his only answer to the arguments adduced against him, was to add new proofs and new experiments to those already published. The only one of his adversaries who obtained a direct response was Riolan, who possessed immense influence among his contemporaries as a man of attainments; Riolan combated with equal violence and obstinacy the other great discovery of the age,—viz., the circulation of the lymph. Harvey ultimately, however, had the satisfaction of seeing his theory universally adopted. But his services were not limited to this one discovery. He made most interesting observations on generation, both in man and in animals; on midwifery; and on the structure and diseases of the uterus.
The intermediary system and bond of union between the arteries and veins, so very essential, yet up to this time unknown, was discovered by the great Malpighi, who was born in 1628 near Bologna, became professor in its university, and discovered in the lungs and mesentery of frogs, in 1661, the capillary circulation. He first described the corpuscles of the blood in 1665; he also discovered the lung-cells, as well as the cutaneous glands, certain portions of the kidney, and the pigmentary layer of the skin, named after him (rete Malpighi), which later furnished the first explanation of the difference of color in different races.
In 1690 Leuwenhoek (1632-1723), who had been making observations on the larvÆ of frogs and other small animals, was able to see with his improved microscope the movements of the blood in the small vessels, and gave the important testimony of his observations. In 1687 Cowper saw the passage of the arterial into the venous current in the mesentery of a cat. The capillary connection between the two vascular systems was first demonstrated by Marchetti, but was best shown by Ruysch (1638-1731), professor at Amsterdam, the famous inventor of minute injections, who greatly advanced anatomy by the formation of collections, one of which was brought into Russia by Peter the Great at an expense of about seventy-five thousand dollars. The Russian transporters of the collection, however, drank the alcohol in which many of the preparations were preserved, and a portion of the specimens was thus ruined.
Further illustration and amplification of Harvey's views came from various sources; the last, perhaps, from Nich-olaus Steno (1638-1686), who was first a professor in Copenhagen, then a bishop and peripatetic converter of heretics. Steno first proved the heart to be a muscle that contracts actively and expels the blood. The duct that bears his name was discovered during his residence in Leyden or at Amsterdam. His name is written also "Stenson."
While ancient anatomists were able to describe in a general way the form of the lungs, their location, consistency, the ring-like structure of the trachea, and the first division of the bronchi, they did not go farther, but blindly accepted the prevalent theory that the bronchial tubes anastomosed with the terminal pulmonary veins, and that in this way atmospheric fluid was conveyed from the respiratory organs into the heart. On such vague and erroneous data was constructed the theory that the air was drawn into the lungs by the heat of the heart, which was the reservoir of the vital spirits; that in penetrating through the smaller tubes it was rarefied, its thinnest part passing into the heart, where it served as material for the formation of the vital spirit, its grosser part being exhaled. In other words, respiration was supposed to have two purposes one to refresh the lungs, which, being porous and inflammable, would otherwise take fire from the heart, or focus of animal heat; the other to furnish the pneuma, or ether, which was employed by the heart in the formation of animal spirits. Harvey's discovery upset all this, in great measure.
Next it was shown that pulmonary veins carried nothing to the heart except blood. And now, during this Reform Period, the purpose of the movements of the chest was better studied, for Borelli, Helvetius, and Haller made many experiments, as the result of which it was determined that during inspiration the thorax is enlarged in all directions, and during expiration partly collapsed by relaxation of muscles, and that there never is any empty space between the lungs and the sides of the chest; further, that air is drawn into the chest by the tendency of all gases or fluids to maintain an equilibrium, or, in other words, because Nature abhors a vacuum. This being settled, various pneumatic theories were adopted and abandoned, all of which had subsequently to give way before a knowledge of what really occurs. The truth was conceived of by Mayow in 1668. It had been noticed that blood which appeared black in issuing from the veins, became red in contact with the air, and direct observation proved a similar change of color to take place during its passage from the pulmonary veins during life. Goodwin, opening the thorax of a frog, was the first to see this, and Hessenfratz filled a silk bladder with venous blood, and, plunging it into an atmosphere of oxygen, saw the blood change from black to red. In this way and by the later labors of Bichat and Lavoisier were clearly established the mechanism and the purpose of the function of respiration.
The discovery of the lymphatic vessels and their purpose was scarcely less remarkable than that of the circulation, though marked by less eclat because it was not the work of one man, but a matter of slow development. Herophilus and Erasistratus had seen white vessels connected with the lymph-nodes in the mesentery of animals, and supposed them to be arteries full of air. Galen disputed this, for he believed that the intestinal chyle was carried by the veins of the mesentery into the liver. In 1563 Eustachius described the thoracic duct in the horse. In 1622 Aselli, Professor of Anatomy at Milan, discovered the lacteal vessels in a dog which had been killed immediately after partaking of food; having pricked one of these by mistake, he saw a white fluid issue from it. Repeating the experiment, he became certain that the white threads were vessels which drew the chyle from the intestines. He observed the valves with which they are supplied, and supposed these vessels all met in the pancreas and continued on into the liver. In 1647 Pecquet, while still a student at Montpellier, discovered the lymph-reservoir, or receptaculum chyli, and the canal which leads from it (the thoracic duct), which he followed to its termination in the left subclavian vein. Having ligated the duct, he saw it swell below and become empty above the ligature. He studied the courses of the lacteals, and convinced himself that they all entered into the common reservoir. This discovery gave the last blow to the ancient theory which attributed to the liver the function of blood-making, and confirmed the doctrine of Harvey. Strangely enough, the latter united with Riolan in opposing the discovery of Pecquet and denying its significance. From this time the lymphatic vessels and glands became objects of common interest and were investigated by many anatomists,—by Bartholin, Ruysch, the Hunters, Hewson, and, above all, by Mascagni, who was the first to give a graphic description of the whole lymphatic apparatus.
The ancients confounded, under the name "neuron," nerves, tendons, ligaments, and membranes; even Aristotle regarded the brain as an inert mass devoid of sensation, and supposed the nerves to originate in the heart. Rufus, of Ephesus, remarked that Herophilus distinguished three sorts of nerves,—the first serving for sensation and motion and proceeding from the brain and spinal marrow, the second and third serving to unite bones and muscles.
Galen also shared in this error, but, nevertheless, described the brain-membranes and the difference between white and gray matter; he supposed the cerebrum to be the seat of the soul and origin of sensory nerves, and that the cerebellum gave rise to nerves of motion; the pulsation of the cerebrum exposed was held to be a sort of brain respiration. Galen came very near recognizing the distinction between nerves and tendons, but nevertheless confused them. The anatomists of the sixteenth century described certain portions of the nervous system with, more exactness than did Galen, but not with such positiveness as to prevent Cesalpinus from renewing the Aristotelian theory that the heart was the origin of sensation and the seat of the soul. Nearly two centuries later Baglivi advanced a theory which referred vital movement to the heart and the dura mater.
The progress which accrued to comparative anatomy and physiology, and the experiments which were made on animals, during this period, shed a great deal of light upon the nervous system. The researches of Vieussens, Haller, Meckel, Vicq d'Azyr, Scarpa, Soemmering, and others had already rendered it manifest that the brain was the organ of sensation and voluntary motion, and Bichat had proposed to divide the nervous system into cerebrospinal and sympathetic branches.
Now, too, Kepler discovered that the crystalline lens was not the seat of vision, as had been supposed, but that its function, like that of other lenses, is the refraction of light. He observed that the image of objects is depicted upon the retina, and (with Schemer) demonstrated that the expansion of the optic nerve in the retina is the essential part in the organ of sight. Obviously, also, interest in the anatomy of the eye, which these observations everywhere stimulated, was, in a great measure, aided by the researches of Newton on light and color.
About this time, too, Casserius and others studied the auditory apparatus and described the ossicles, the small muscles of the internal ear, and the semicircular canals; they even followed the acoustic nerve. By the researches of a number of French and Italian anatomists it was likewise established that the true seat of hearing lies within the internal ear, the external parts being merely of assistance in conducting sound.
Thomas Willis was one of the first to consider the brain as an assemblage of organs and to assign special functions to certain of its divisions; he thus became a pioneer in cerebral localization, although most of his conjectures were inaccurate or fanciful. The workings of the brain were also studied by Pinel and others, who observed that in certain conditions of mania or partial insanity some of the mental faculties—such as memory, judgment, imagination, or will—were abolished or suspended, while other faculties were preserved; hence it was inferred that each faculty must have its own seat. The views thus enunciated were carried to an absurd degree by Gall, and later by Spurzheim, who made an entirely new classification, believing the cranium to be molded in a reasonably exact manner upon the brain, and that, by inspection of the exterior, the character of a given individual could be read. They thus founded the pseudoscience denominated phrenology, which we now know has practically nothing to justify itself.
About the middle of the seventeenth century Glisson (a professor in the University of Oxford) recognized a property pertaining to all living tissue, which he termed irritability, and which he regarded as sufficient cause for all the phenomena of life; he enunciated certain views that, in times past, have had an important bearing upon the pathology of disease, but which were forgotten for sixty years or more until revamped by the Dutch anatomist, Goerter. It was the latter, with the great Haller, who, by a series of very ingenious experiments, elevated the suppositions of Glisson to the dignity of demonstrated facts. In 1747 the results of Haller's researches were published under the modest title of First Lines in Physiology; the author was, in fact, the great exponent of the doctrine of irritability in neurophysiology, and for this deserves to be remembered wherever the history of our art is spoken of. This theory of irritability was applied to pathology by Fabre, of Paris, who refuted the mechanical theory of Boerhaave on inflammation, proving that the latter proceeds not from obstruction of the capillaries, but from exaltation of their irritability. It was also applied in many ways by Bichat, who enjoyed a brief, though memorable, career. The theory of irritability, along with the truths established by John Hunter in his researches on the blood, made a very distinct advance in the physiological knowledge of the seventeenth century, and the researches of those who contributed so much to its advance are well worthy of study even at the present day. In this line of investigation should, perhaps, also be mentioned the names of Winslow, Albinus, the two Monroes, besides vicq d'Azyr, and others already named.
I have so far discussed the development of theories and researches of individuals. During the earlier portion of the seventeenth century there happened something which gave to materia medica a remedy so valuable, and which attracted such wide-spread attention, that it deserves special mention, I refer to the discovery of that great febrifuge, Peruvian bark. Malarial fevers had been known as early as the time of Hippocrates, and were universally treated largely with purgatives, sometimes with venesections. There had been no notable improvement in the management of pyrexias of this class down to 1638, when the Countess of Cinchon, wife of the Viceroy of Peru, became a prey to a fever which nothing could remove. It is said a Spaniard learned from the natives the secret of the bark, and advised its employment, whereby the countess recovered her health. This is the generally received account, although it has been widely discredited, and Humboldt expresses decided doubts as to the source whence the first knowledge of the bark was derived. Be this as it may, however, it is certain that, in 1639, the countess and her physician, de Vega, imported into Spain a quantity of ground Peruvian bark, and distributed it to various persons, though it was not made an article of general commerce until ten years later, when it was exploited by the Jesuits, who had received a large supply; in Spain it was known as the "countess's powder," and in Italy as "Jesuit" or "cardinal" powder. Being very high-priced, it was soon so sophisticated as to be quite unreliable. Condamine, the botanist, having been sent to America for other purposes, determined the botanical position of the tree and described several species of cinchona, one of which is known by his name. To him is due the generic title bestowed in acknowledgment of the services rendered by the countess, who introduced the bark into Europe. Many vain attempts were made to determine the chemical composition of the powder, and it remained for two French chemists to isolate and separate its most important alkaloid. The first who wrote upon the therapy of cinchona was Barba, a Spanish physician, whose work was printed in Seville in 1642. After its introduction into England Peruvian bark fell into disrepute, owing to improper administration, whereby death was caused in certain instances; and it was this latter fact that instigated Sydenham to investigate it still more accurately. There has never been introduced into medicine any one drug which has proved itself so generally valuable and so widely effective as cinchona and its products.
As little progress had been made in obstetrics as in other branches of applied medicine or surgery. The custom of employing midwives was general, and these, for the most part, were ignorant and filthy old women, slaves of routine procedures that had obtained from time immemorial. Educated accoucheurs were called only in extraordinary cases; but with progress the prejudice which excluded educated physicians from the practice of midwifery gradually gave way, and there was opened for obstetrics a new era. In the beginning of the seventeenth century the initiative was taken by Louise Bourgeois, the sage femme of Marie de Medicis, who in 1626 published a collection of observations concerning sterility, abortion, fecundity, accouchement, and diseases of women and children generally; it embodied several distinctly new ideas. A little later (in 1668), Mauriceau, of Paris, chief accoucheur to the HÔtel-Dieu, published his treatise on diseases of pregnancy and childbirth, which was translated into all the languages of Europe and became a powerful agent for good, not alone that it represented an advance in knowledge, but it stimulated such rivals and successors as Devanter, Peu, Paul Portal, and Delamotte to further research. About this time the Chamberlains, an English family devoted to the practice of midwifery, invented an instrument to facilitate the extraction of the foetal head when arrested, and one of them went to Paris, and, failing of success there, went on to Holland, where he sold his secret to two Dutch practitioners, who kept it only too faithfully. In 1721, Palfvn, a surgeon of Ghent, while seeking to fathom the device of the Chamberlains, conceived a tire tÊte (literally a head-drawer) composed of two steel spoons, and hastened to publish an account thereof,—a praiseworthy act, whereby he merits distinction as the inventor of the forceps. As modified by Smellie in England and Levret in France, the obstetrical forceps ranks among the most useful discoveries of modern surgery, and, although not in common use until about a century ago, it may be said that the invention has been the means of saving the lives of countless women and children.
Medical jurisprudence also seems to have had its beginning during this century. It had long been the practice to summon physicians to court in order to enlighten the judiciary in questions demanding particular knowledge in physics and medicine; indeed, the practice began under the first Christian emperors, and owes its origin to ecclesiastical authority. Charlemagne confirmed in this regard what Justinian was perhaps the first to ordain. The tribunal of ChÂtelet, according to Renouard, appears to have been the first which comprehended the great utility of consultation with expert physicians; an edict of Philip le Bel, in 1311, qualified Master John Potard with the title "Sworn Surgeon of ChÂtelet", and the constitution promulgated by Charles V, in 1552, gave great importance to medical jurisprudence, as it treated in detail of infanticide, wounds, poisons, abortion, and other such crimes. Early in the seventeenth century Fidelis collated all that had been written on this subject, and thus published the first special treatise on legal medicine.
Some writers claim to have discovered traces of clinical teaching in the history of Arabian universities, but, as Renouard says, the presence of a few pupils during visitations and consultations no more constituted real clinical teaching than the practice adopted by some practitioners of ancient Rome of being ever surrounded by a group of spectators whom they dignified with the title of disciples. The first attempt at real clinical teaching appears to have been in the hospital of St. Francis, in Padua, in 1558, by Botoni and Oddi. About the beginning of the seventeenth century Otto de Heurne, of the University of Leyden, introduced bedside instruction, which was continued by le Boe, sometimes called Sylvius, with the result of drawing-large crowds of students to Leyden from 1658 to 1672. Notwithstanding the success attained, the practice was neglected by the successors of Sylvius until renewed by Boerhaave, who, invested with several functions at the University of Leyden, also occupied the chair of medicine. So great was the renown of Boerhaave that, despite the poverty of the resources of the Leyden hospital, people came to consult him from the most distant countries, and he was a correspondent of several crowned heads, even of the Pope, although himself a Protestant. During his life and long afterward he exerted an immense influence in medicine, and while, perhaps, inferior in genius to some of his contemporaries, he had a wider reputation, and his doctrines prevailed longer. The great success of his clinics decided in favor of this method of teaching, and in 1715 the Pope established in Rome a similar institution, under the direction of the celebrated Lancisi. Soon Edinburgh, Vienna, Pavia, and other universities followed suit, the first clinical chair in Paris being held by Corvisart, and the first in Vienna by Van Swieten. After the demise of Boerhaave, the school of Leyden rapidly declined, while those of Edinburgh and Vienna became rivals for the first place. It is thus seen that after an interruption of more than two thousand years clinical teaching was revived and became more brilliant than ever before.
I now propose to recount the methods and deeds of some of those concerned in the development of systems, so called, and make mention of the most prominent medical men in national and historical order. This will not prevent going back to philosophical conclusions or reflections upon the philosophy of the history of medicine, when it may seem wise so to digress.
First, of the system of J. B. Van Helmont, which in its day was most highly regarded, and which seems to have been, in some measure, a rearrangement of the views of Paracelsus into a mystic and pietistic system based upon mechanical principles. Van Helmont was born in Brussels in 1578, and was so precocious that he entered the University of Louvain at an age which would have enabled him, had he so desired, to obtain the degree of Magister when only seventeen years old, he deemed the degree frivolous. He had studied mathematics, astronomy, philosophy, and astrology. Going now to the Jesuits, who at that time, even, taught music, he soon became dissatisfied, and turned to the study of stoical philosophy. Believing that the Capuchins (who were mere lascivious gluttons, and considered even washing unchristian) were the true stoics, he sought to join this order, but ere long abandoned them and resumed his studies in law, botany, and medicine. For the latter Van Helmont had at first little respect, since his studies in this line did not enable him to rid himself of the itch. He soon again lapsed to the monastics, and came to the conclusion that wisdom, like the grace of God, was obtainable only by fasting, supplication, and poverty; accordingly he practiced medicine among the poor as a labor of love (having received his degree of Doctor in 1599). During his travels he became familiar with the writings of Paracelsus, which he studied zealously. Finally he settled down in Vilvorde, where he practiced medicine and chemistry until his death (in 164-4).
Like most "systems," that of Van Helmont is valued only as an expression of the spirit of the age, since it embodied largely the pantheism of Paracelsus, merely cloaked with a more religious or monkish dress. He held that the general cause of disease was the fall of man; though there also figured a subsidiary cause, which he denominated Archeus,—a faculty of appetite seated in the spleen or in the stomach; thus dropsy was a hindrance of renal excretion by the enraged Archeus. Demons, witches, and ghosts were included in Van Helmont's system as causes of disease. Indeed, the man seems to have been a second Paracelsus, lacking only in the dishonesty and bombast of the latter. He had no followers of any prominence, and the "system" soon lapsed into obscurity.
The Chemical, or Iatrochemical, System was originated by le BÔe, commonly known as Sylvius (but who must not be confounded with the great anatomist of the same name). Le BÔe was born in Hanau in 161-4; studied in Paris, Leyden, and Basel; received his doctorate from the latter university at the age of twenty, and practiced in Switzerland with great success until 1660, when he accepted a professorship in Leyden; here he was distinguished for his eloquence, wealth, and sociability, as well as for the great number of pupils that were attracted by his clinical method of teaching. His system embraced a peculiar phantasy, being based upon the elements of chemistry, the new knowledge of the circulation, the latest physiological teachings, and the old doctrine of the spirituous or innate heat of the heart, which he claimed to have felt with his finger. He asserted his theories were founded upon experience, but the truth is, they were inaccurate deductions from experimental observations, many of which were wholly irrelevant. The majority of diseases, he taught, were produced by excess of acidity or alkalinity. For him, the three great fluids of the body were the saliva, the pancreatic fluid, and the bile, while health consisted in the undisturbed performance in the body of the process of fermentation; and the saliva was supposed to give rise to hectic fevers, because such manifest exacerbation after eating. Stereotyped theory and equally stereotyped therapeutics gained for him, for a short time, a large following, but later raised numerous opponents, who alleged that his system caused as many human lives as the whole thirty years' war. He died in 1672.
To the same iatrochemical school is generally assigned Thomas Willis, born in Oxford in 1622 (died in 1675), who rendered great service to anatomy, especially to anatomy of the nervous system, although his teaching was disfigured by certain unsupported theories. Like Van Helmont, he had been destined for theology, but turned his attention to medicine. Ultimately he became Professor of Philosophy in the University of Oxford. He first described the so-called circle of Willis, whence its name; also ascribed diseases, especially those of the blood, to fermentation, in which the vital spirits played the chief part. He accounted for hysteria, for instance, by the union of the spiritus with imperfectly purified blood.