CHAPTER V

Previous

There is no appliance that has more material value upon the efficiency of the internal combustion motor than the carburetor or vaporizer which supplies the explosive gas to the cylinders. It is only in recent years that engineers have realized the importance of using carburetors that are efficient and that are so strongly and simply made that there will be little liability of derangement. As the power obtained from the gas-engine depends upon the combustion of fuel in the cylinders, it is evident that if the gas supplied does not have the proper proportions of elements to insure rapid combustion the efficiency of the engine will be low. When a gas engine is used as a stationary installation it is possible to use ordinary illuminating or natural gas for fuel, but when this prime mover is applied to automobiles or airplanes it is evident that considerable difficulty would be experienced in carrying enough compressed coal gas to supply the engine for even a very short trip. Fortunately, the development of the internal-combustion motor was not delayed by the lack of suitable fuel.

Engineers were familiar with the properties of certain liquids which gave off vapors that could be mixed with air to form an explosive gas which burned very well in the engine cylinders. A very small quantity of such liquids would suffice for a very satisfactory period of operation. The problem to be solved before these liquids could be applied in a practical manner was to evolve suitable apparatus for vaporizing them without waste. Among the liquids that can be combined with air and burned, gasoline is the most volatile and is the fuel utilized by internal-combustion engines.

The widely increasing scope of usefulness of the internal-combustion motor has made it imperative that other fuels be applied in some instances because the supply of gasoline may in time become inadequate to supply the demand. In fact, abroad this fuel sells for fifty to two hundred per cent. more than it does in America because most of the gasoline used must be imported from this country or Russia. Because of this foreign engineers have experimented widely with other substances, such as alcohol, benzol, and kerosene, but more to determine if they can be used to advantage in motor cars than in airplane engines.

DISTILLATES OF CRUDE PETROLEUM

Crude petroleum is found in small quantities in almost all parts of the world, but a large portion of that produced commercially is derived from American wells. The petroleum obtained in this country yields more of the volatile products than those of foreign production, and for that reason the demand for it is greater. The oil fields of this country are found in Pennsylvania, Indiana, and Ohio, and the crude petroleum is usually in association with natural gas. This mineral oil is an agent from which many compounds and products are derived, and the products will vary from heavy sludges, such as asphalt, to the lighter and more volatile components, some of which will evaporate very easily at ordinary temperatures.

The compounds derived from crude petroleum are composed principally of hydrogen and carbon and are termed “Hydrocarbons.” In the crude product one finds many impurities, such as free carbon, sulphur, and various earthy elements. Before the oil can be utilized it must be subjected to a process of purifying which is known as refining, and it is during this process, which is one of destructive distillation, that the various liquids are separated. The oil was formerly broken up into three main groups of products as follows: Highly volatile, naphtha, benzine, gasoline, eight to ten per cent. Light oils, such as kerosene and light lubricating oils seventy to eighty per cent. Heavy oils or residuum five to nine per cent. From the foregoing it will be seen that the available supply of gasoline is determined largely by the demand existing for the light oils forming the larger part of the products derived from crude petroleum. New processes have been recently discovered by which the lighter oils, such as kerosene, are reduced in proportion and that of gasoline increased, though the resulting liquid is neither the high grade, volatile gasoline known in the early days of motoring nor the low grade kerosene.

PRINCIPLES OF CARBURETION OUTLINED

The process of carburetion is combining the volatile vapors which evaporate from the hydrocarbon liquids with certain proportions of air to form an inflammable gas. The quantities of air needed vary with different liquids and some mixtures burn quicker than do other combinations of air and vapor. Combustion is simply burning and it may be rapid, moderate or slow. Mixtures of gasoline and air burn quickly, in fact the combustion is so rapid that it is almost instantaneous and we obtain what is commonly termed an “explosion.” Therefore the explosion of gas in the automobile engine cylinder which produces the power is really a combination of chemical elements which produce heat and an increase in the volume of the gas because of the increase in temperature.

If the gasoline mixture is not properly proportioned the rate of burning will vary, and if the mixture is either too rich or too weak the power of the explosion is reduced and the amount of power applied to the piston is decreased proportionately. In determining the proper proportions of gasoline and air, one must take the chemical composition of gasoline into account. The ordinary liquid used for fuel is said to contain about eight-four per cent. carbon and sixteen per cent. hydrogen. Air is composed of oxygen and nitrogen and the former has a great affinity, or combining power, with the two constituents of hydro-carbon liquids. Therefore, what we call an explosion is merely an indication that oxygen in the air has combined with the carbon and hydrogen of the gasoline.

AIR NEEDED TO BURN GASOLINE

In figuring the proper volume of air to mix with a given quantity of fuel, one takes into account the fact that one pound of hydrogen requires eight pounds of oxygen to burn it, and one pound of carbon needs two and one-third pounds of oxygen to insure its combustion. Air is composed of one part of oxygen to three and one-half portions of nitrogen by weight. Therefore for each pound of oxygen one needs to burn hydrogen or carbon four and one-half pounds of air must be allowed. To insure combustion of one pound of gasoline which is composed of hydrogen and carbon we must furnish about ten pounds of air to burn the carbon and about six pounds of air to insure combustion of hydrogen, the other component of gasoline. This means that to burn one pound of gasoline one must provide about sixteen pounds of air.

While one does not usually consider air as having much weight, at a temperature of sixty-two degrees Fahrenheit about fourteen cubic feet of air will weigh a pound, and to burn a pound of gasoline one would require about two hundred cubic feet of air. This amount will provide for combustion theoretically, but it is common practice to allow twice this amount because the element nitrogen, which is the main constituent of air, is an inert gas and instead of aiding combustion it acts as a deterrent of burning. In order to be explosive, gasoline vapor must be combined with definite quantities of air. Mixtures that are rich in gasoline ignite quicker than those which have more air, but these are only suitable when starting or when running slowly, as a rich mixture ignites much quicker than a weak mixture. The richer mixture of gasoline and air not only burns quicker but produces the most heat and the most effective pressure in pounds per square inch of piston top area.

The amount of compression of the charge before ignition also has material bearing on the force of the explosion. The higher the degree of compression the greater the force exerted by the rapid combustion of the gas. It may be stated that as a general thing the maximum explosive pressure is somewhat more than four times the compression pressure prior to ignition. A charge compressed to sixty pounds will have a maximum of approximately two hundred and forty pounds; compacted to eighty pounds it will produce a pressure of about three hundred pounds on each square inch of piston area at the beginning of the power stroke. Mixtures varying from one part of gasoline vapor to four of air to others having one part of gasoline vapor to thirteen of air can be ignited, but the best results are obtained when the proportions are one to five or one to seven, as this mixture is said to be the one that will produce the highest temperature, the quickest explosion, and the most pressure.

WHAT A CARBURETOR SHOULD DO

While it is apparent that the chief function of a carbureting device is to mix hydrocarbon vapors with air to secure mixtures that will burn, there are a number of factors which must be considered before describing the principles of vaporizing devices. Almost any device which permits a current of air to pass over or through a volatile liquid will produce a gas which will explode when compressed and ignited in the motor cylinder. Modern carburetors are not only called upon to supply certain quantities of gas, but these must deliver a mixture to the cylinders that is accurately proportioned and which will be of proper composition at all engine speeds.

Flexible control of the engine is sought by varying the engine speed by regulating the supply of gas to the cylinders. The power plant should run from its lowest to its highest speed without any irregularity in torque, i.e., the acceleration should be gradual rather than spasmodic. As the degree of compression will vary in value with the amount of throttle opening, the conditions necessary to obtain maximum power differ with varying engine speeds. When the throttle is barely opened the engine speed is low and the gas must be richer in fuel than when the throttle is wide open and the engine speed high.

When an engine is turning over slowly the compression has low value and the conditions are not so favorable to rapid combustion as when the compression is high. At high engine speeds the gas velocity through the intake piping is higher than at low speeds, and regular engine action is not so apt to be disturbed by condensation of liquid fuel in the manifold due to excessively rich mixture or a superabundance of liquid in the stream of carbureted air.

LIQUID FUEL STORAGE AND SUPPLY

The problem of gasoline storage and method of supplying the carburetor is one that is determined solely by design of the airplane. While the object of designers should be to supply the fuel to the carburetor by as simple means as possible the fuel supply system of some airplanes is quite complex. The first point to consider is the location of the gasoline tank. This depends upon the amount of fuel needed and the space available in the fuselage.

Fig. 41

Fig. 41.—How Gravity Feed Fuel Tank May Be Mounted Back of Engine and Secure Short Fuel Line.

A very simple and compact fuel supply system is shown at Fig. 41. In this instance the fuel container is placed immediately back of the engine cylinder. The carburetor which is carried as indicated is joined to the tank by a short piece of copper or flexible rubber tubing. This is the simplest possible form of fuel supply system and one used on a number of excellent airplanes.

As the sizes of engines increase and the power plant fuel consumption augments it is necessary to use more fuel, and to obtain a satisfactory flying radius without frequent landings for filling the fuel tank it is necessary to supply large containers.

When a very powerful power plant is fitted, as on battle planes of high capacity, it is necessary to carry large quantities of gasoline. In order to use a tank of sufficiently large capacity it may be necessary to carry it lower than the carburetor. When installed in this manner it is necessary to force fuel out of the tank by air pressure or to pump it with a vacuum tank because the gasoline tank is lower than the carburetor it supplies and the gasoline cannot flow by gravity as in the simpler systems. While the pressure and gravity feed systems are generally used in airplanes, it may be well to describe the vacuum lift system which has been widely applied to motor cars and which may have some use in connection with airplanes as these machines are developed.

STEWART VACUUM FUEL FEED

One of the marked tendencies has been the adoption of a vacuum fuel feed system to draw the gasoline from tanks placed lower than the carburetor instead of using either exhaust gas or air pressure to achieve this end. The device generally fitted is the Stewart vacuum feed tank which is clearly shown in section at Fig. 42. In this system the suction of a motor is employed to draw gasoline from the main fuel tank to the auxiliary tank incorporated in the device and from this tank the liquid flows to the carburetor. It is claimed that all the advantages of the pressure system are obtained with very little more complication than is found on the ordinary gravity feed. The mechanism is all contained in the cylindrical tank shown, which may be mounted either on the front of the dash or on the side of the engine as shown.

Fig. 42

Fig. 42.—The Stewart Vacuum Fuel Feed Tank.

The tank is divided into two chambers, the upper one being the filling chamber and the lower one the emptying chamber. The former, which is at the top of the device, contains the float valve, as well as the pipes running to the main fuel container and to the intake manifold. The lower chamber is used to supply the carburetor with gasoline and is under atmospheric pressure at all times, so the flow of fuel from it is by means of gravity only. Since this chamber is located somewhat above the carburetor, there must always be free flow of fuel. Atmospheric pressure is maintained by the pipes A and B, the latter opening into the air. In order that the fuel will be sucked from a main tank to the upper chamber, the suction valve must be opened and the atmospheric valve closed. Under these conditions the float is at the bottom and the suction at the intake manifold produces a vacuum in the tank which draws the gasoline from the main tank to the upper chamber. When the upper chamber is filled at the proper height the float rises to the top, this closing the suction valve and opening the atmospheric valve. As the suction is now cut off, the lower chamber is filled by gravity owing to there being atmospheric pressure in both upper and lower chambers. A flap valve is provided between the two chambers to prevent the gasoline in the lower one from being sucked back into the upper one. The atmospheric and suction valves are controlled by the levers C and D, both of which are pivoted at E, their outer ends being connected by two coil springs. It is seen that the arrangement of these two springs is such that the float must be held at the extremity of its movement, and that it cannot assume an intermediate position.

This intermittent action is required to insure that the upper part of the tank may be under atmospheric pressure part of the time for the gasoline to flow to the lower chamber. When the level of gasoline drops to a certain point, the float falls, thus opening the suction valve and closing the atmospheric valve. The suction of the motor then causes a flow of fuel from the main container. As soon as the level rises to the proper height the float returns to its upper position. It takes about two seconds for the chamber to become full enough to raise the float, as but .05 gallon is transferred at a time. The pipe running from the bottom of the lower chamber to the carburetor extends up a ways, so that there is but little chance of dirt or water being carried to the float chamber.

If the engine is allowed to stand long enough so that the tank becomes empty, it will be replenished after the motor has been cranked over four or five times with the throttle closed. The installation of the Stewart Vacuum-Gravity System is very simple. The suction pipe is tapped into the manifold at a point as near the cylinders as possible, while the fuel pipe is inserted into the gasoline tank and runs to the bottom of that member. There is a screen at the end of the fuel pipe to prevent any trouble due to deposits of sediment in the main container. As the fuel is sucked from the gasoline tank a small vent must be made in the tank filler cap so that the pressure in the main tank will always be that of the atmosphere.

EARLY VAPORIZER FORMS

The early types of carbureting devices were very crude and cumbersome, and the mixture of gasoline vapor and air was accomplished in three ways. The air stream was passed over the surface of the liquid itself, through loosely placed absorbent material saturated with liquid, or directly through the fuel. The first type is known as the surface carburetor and is now practically obsolete. The second form is called the “wick” carburetor because the air stream was passed over or through saturated wicking. The third form was known as a “bubbling” carburetor. While these primitive forms gave fairly good results with the early slow-speed engines and the high grade, or very volatile, gasoline which was first used for fuel, they would be entirely unsuitable for present forms of engines because they would not carburate the lower grades of gasoline which are used to-day, and would not supply the modern high-speed engines with gas of the proper consistency fast enough even if they did not have to use very volatile gasoline. The form of carburetor used at the present time operates on a different principle. These devices are known as “spraying carburetors.” The fuel is reduced to a spray by the suction effect of the entering air stream drawing it through a fine opening.

The advantage of this construction is that a more thorough amalgamation of the gasoline and air particles is obtained. With the earlier types previously considered the air would combine with only the more volatile elements, leaving the heavier constituents in the tank. As the fuel became stale it was difficult to vaporize it, and it had to be drained off and fresh fuel provided before the proper mixture would be produced. It will be evident that when the fuel is sprayed into the air stream, all the fuel will be used up and the heavier portions of the gasoline will be taken into the cylinder and vaporized just as well as the more volatile vapors.

Fig. 43

Fig. 43.—Marine-Type Mixing Valve, by which Gasoline is Sprayed into Air Stream Through Small Opening in Air-Valve Seat.

The simplest form of spray carburetor is that shown at Fig. 43. In this the gasoline opening through which the fuel is sprayed into the entering air stream is closed by the spring-controlled mushroom valve which regulates the main air opening as well. When the engine draws in a charge of air it unseats the valve and at the same time the air flowing around it is saturated with gasoline particles through the gasoline opening. The mixture thus formed goes to the engine through the mixture passage. Two methods of varying the fuel proportions are provided. One of these consists of a needle valve to regulate the amount of gasoline, the other is a knurled screw which controls the amount of air by limiting the lift of the jump valve.

DEVELOPMENT OF FLOAT-FEED CARBURETOR

The modern form of spraying carburetor is provided with two chambers, one a mixing chamber through which the air stream passes and mixes with a gasoline spray, the other a float chamber in which a constant level of fuel is maintained by simple mechanism. A jet or standpipe is used in the mixing chamber to spray the fuel through and the object of the float is to maintain the fuel level to such a point that it will not overflow the jet when the motor is not drawing in a charge of gas. With the simple forms of generator valve in which the gasoline opening is controlled by the air valve, a leak anywhere in either valve or valve seat will allow the gasoline to flow continuously whether the engine is drawing in a charge or not. The liquid fuel collects around the air opening, and when the engine inspires a charge it is saturated with gasoline globules and is excessively rich. With a float-feed construction, which maintains a constant level of gasoline at the right height in the standpipe, liquid fuel will only be supplied when drawn out of the jet by the suction effect of the entering air stream.

MAYBACH’S EARLY DESIGN

The first form of spraying carburetor ever applied successfully was evolved by Maybach for use on one of the earliest Daimler engines. The general principles of operation of this pioneer float-feed carburetor are shown at Fig. 44, A. The mixing chamber and valve chamber were one and the standpipe or jet protruded into the mixing chamber. It was connected to the float compartment by a pipe. The fuel from the tank entered the top of the float compartment and the opening was closed by a needle valve carried on top of a hollow metal float. When the level of gasoline in the float chamber was lowered the float would fall and the needle valve uncover the opening. This would permit the gasoline from the tank to flow into the float chamber, and as the chamber filled the float would rise until the proper level had been reached, under which conditions the float would shut off the gasoline opening. On every suction stroke of the engine the inlet valve, which was an automatic type, would leave its seat and a stream of air would be drawn through the air opening and around the standpipe or jet. This would cause the gasoline to spray out of the tube and mix with the entering air stream.

Fig. 44

Fig. 44.—Tracing Evolution of Modern Spray Carburetor. A—Early Form Evolved by Maybach. B.—Phoenix-Daimler Modification of Maybach’s Principle. C—Modern Concentric Float Automatic Compensating Carburetor.

The form shown at B was a modification of Maybach’s simple device and was first used on the Phoenix-Daimler engines. Several improvements are noted in this device. First, the carburetor was made one unit by casting the float and mixing chambers together instead of making them separate and joining them by a pipe, as shown at A. The float construction was improved and the gasoline shut-off valve was operated through leverage instead of being directly fastened to the float. The spray nozzle was surrounded by a choke tube which concentrated the air stream around it and made for more rapid air flow at low engine speeds. A conical piece was placed over the jet to break up the entering spray into a mist and insure more intimate admixture of air and gasoline. The air opening was provided with an air cone which had a shutter controlling the opening so that the amount of air entering could be regulated and thus vary the mixture proportions within certain limits.

CONCENTRIC FLOAT AND JET TYPE

The form shown at B has been further improved, and the type shown at C is representative of modern single jet practice. In this the float chamber and mixing chamber are concentric. A balanced float mechanism which insures steadiness of feed is used, the gasoline jet or standpipe is provided with a needle valve to vary the amount of gasoline supplied the mixture and two air openings are provided. The main air port is at the bottom of the vaporizer, while an auxiliary air inlet is provided at the side of the mixing chamber. There are two methods of controlling the mixture proportions in this form of carburetor. One may regulate the gasoline needle or adjust the auxiliary air valve.

SCHEBLER CARBURETOR

A Schebler carburetor, which has been used on some airplane engines, is shown in Fig. 45. It will be noticed that a metering pin or needle valve opens the jet when the air valve opens. The long arm of a leverage is connected to the air valve, while the short arm is connected to the needle, the reduction in leverage being such that the needle valve is made to travel much less than the air valve. For setting the amount of fuel passed or the size of the jet orifice when running with the air valve closed, there is a screw which raises or lowers the fulcrum of the lever and there is also a dash control having the same effect by pushing down the fulcrum against a small spring. A long extension is given to the venturi tube which is very narrow around the jet orifices, which are horizontal and shown at A in the drawing. Fuel enters the float chamber through the union M, and the spring P holds the metering pin upward against the restraining action of the lever. The air valve may be set by an easily adjustable knurled screw shown in the drawing, and fluttering of the valve is prevented by the piston dash pot carried in a chamber above the valve into which the valve stem projects. The primary air enters beneath the jet passage and there is a small throttle in the intake to increase the speed of air flow for starting purposes. The carburetor is adapted for the use of a hot-air connection to the stove around the exhaust pipe and it is recommended that such a fitting be supplied. The lever which controls the supply of air through the primary air intake is so arranged that if desired it can be connected with a linkage on the dash or control column by means of a flexible wire.

Fig. 45

Fig. 45.—New Model of Schebler Carburetor With Metering Valve and Extended Venturi. Note Mechanical Connection Between Air Valve and Fuel Regulating Needle.

THE CLAUDEL (FRENCH) CARBURETOR

This carburetor is of extremely simple construction, because it has no supplementary or auxiliary air valve and no moving parts except the throttle controlling the gas flow. The construction is already shown in Fig. 46. The spray jet is eccentric with a surrounding sleeve or tube in which there are two series of small orifices, one at the top and the other near the bottom. The former are about level with the spray jet opening. The sleeve surrounding the nozzle is closed at the top. The air, passing the upper holes in the sleeve, produces a vacuum in the sleeve, thereby drawing air in through the bottom holes. It is this moving interior column of air that controls the flow of gasoline from the nozzle. Owing to the friction of the small passages, the speed of air flow through the sleeve does not increase as fast as the speed of air flow outside the sleeve, hence there is a tendency for the mixture to remain constant. The throttle of this carburetor is of the barrel type, and the top of the spray nozzle and its surrounding sleeve are located inside the throttle.

Fig. 46

Fig. 46.—The Claudel Carburetor.

STEWART METERING PIN CARBURETOR

The carburetor shown at Fig. 47 is a metering type in which the vacuum at the jet is controlled by the weight of the metering valve surrounding the upright metering pin. The only moving part is the metering valve, which rises and falls with the changes in vacuum. The air chamber surrounds the metering valve, and there is a mixing chamber above. As the valve is drawn up the gasoline passage is enlarged on account of the predetermined taper on the metering pin, and the air passage also is increased proportionately, giving the correct mixture. A dashpot at the bottom of the valve checks flutter. In idling the valve rests on its seat, practically closing the air and giving the necessary idling mixture. A passage through the valve acts as an aspirating tube. When the valve is closed altogether the primary air passes through ducts in the valve itself, giving the proper amount for idling. The one adjustment consists in raising or lowering the tapered metering pin, increasing or decreasing the supply of gasoline. Dash control is supplied. This pulls down the metering pin, increasing the gasoline flow. The duplex type for eight- and twelve-cylinder motors is the same in principle as model 25, but it is a double carburetor synchronized as to throttle movements, adjustments, etc. The duplex for aeronautical motors is made of cast aluminum alloy.

Fig. 47

Fig. 47.—The Stewart Metering Pin Carburetor.

MULTIPLE NOZZLE VAPORIZERS

To secure properly proportioned mixtures some carburetor designers have evolved forms in which two or more nozzles are used in a common mixing chamber. The usual construction is to use two, one having a small opening and placed in a small air tube and used only for low speeds, the other being placed in a larger air tube and having a slightly augmented bore so that it is employed on intermediate speeds. At high speeds both jets would be used in series. Some multiple jet carburetors could be considered as a series of these instruments, each one being designed for certain conditions of engine action. They would vary from small size just sufficient to run the engine at low speed to others having sufficient capacity to furnish gas for the highest possible engine speed when used in conjunction with the smaller members which have been brought into service progressively as the engine speed has been augmented. The multiple nozzle carburetor differs from that in which a single spray tube is used only in the construction of the mixing chamber, as a common float bowl can be used to supply all spray pipes. It is common practice to bring the jets into action progressively by some form of mechanical connection with the throttle or by automatic valves.

The object of any multiple nozzle carburetor is to secure greater flexibility and endeavor to supply mixtures of proper proportions at all speeds of the engine. It should be stated, however, that while devices of this nature lend themselves readily to practical application it is more difficult to adjust them than the simpler forms having but one nozzle. When a number of jets are used the liability of clogging up the carburetor is increased, and if one or more of the nozzles is choked by a particle of dirt or water the resulting mixture trouble is difficult to detect. One of the nozzles may supply enough gasoline to permit the engine to run well at certain speeds and yet not be adequate to supply the proper amount of gas under other conditions. In adjusting a multiple jet carburetor in which the jets are provided with gasoline regulating needles, it is customary to consider each nozzle as a distinct carburetor and to regulate it to secure the best motor action at that throttle position which corresponds to the conditions under which the jet is brought into service. For instance, that supplied the primary mixing chamber should be regulated with the throttle partly closed, while the auxiliary jet should be adjusted with the throttle fully opened.

BALL AND BALL TWO-STAGE CARBURETOR

This is a two-stage vaporizing device, hot air being used in the primary or initial stage of vaporization and cold air in the supplementary stage. Referring to the sectional illustration at Fig. 48, it will be seen that there is a hot-air passage with a choke-valve; the primary venturi appears at B; J is its gasoline jet, and V is a spring-loaded idling valve in a fixed air opening. These parts constitute the primary system. In the secondary system A is a cold-air passage, T a butterfly valve and J a gasoline jet discharging into the cold-air passage. This system is brought into operation by opening the butterfly T. A connection between the butterfly T and the throttle, not shown, throws the butterfly wide open when the throttle is not quite wide open; at all other times the butterfly is held closed by a spring. The cylindrical chamber at the right of the mixing chamber has an extension E of reduced diameter connecting it with the intake manifold through a passage D. A restricted opening connects the float chamber with the cylindrical chamber so that the gasoline level is the same in both. A loosely fitting plunger P in the cylindrical chamber has an upward extension into the small part of the chamber. O is a small air opening and M is a passage from the cylindrical chamber to the mixing chamber. Air constantly passes through this when the carburetor is in operation. The carburetor is really two in one. The primary carburetor is made up of a central jet in a venturi passage. The float chamber is eccentric. In the air passage there is a fixed opening, and additional air is taken in by the opening through suction of a spring-opposed air valve. The second stage, which comes into play as soon as the carburetor is called upon for additional mixture above low medium speeds, is made up of an independent air passage containing another air valve. As the valve is opened this jet is uncovered, and air is led past it. For easy starting an extra passage leads from the float bowl passage to a point above the throttle. All the suction falls upon this passage when the throttle is closed. The passage contains a plunger and acts as a pick-up device. When the vacuum increases the plunger rises and shuts off the flow of gasoline from the intake passage. As the throttle is opened the vacuum in the intake passage is broken, and the plunger falls, causing gasoline to gather above it. This is immediately drawn through the pick-up passage and gives the desired mixture for acceleration.

Fig. 48.—The Ball and Ball Two-Stage Carburetor.

MASTER MULTIPLE-JET CARBURETOR

This carburetor, shown in detail in Figs. 49 and 50, has been very popular in racing cars and aviation engines because of exceptionally good pick-up qualities and its thorough atomization of fuel. Its principle of operation is the breaking up of the fuel by a series of jets, which vary in number from fourteen to twenty-one, according to the size of the carburetor. These are uncovered by opening the throttle, which is curved—a patented feature—to secure the correct progression of jets. The carburetor has an eccentric float chamber, from which the gasoline is led to the jet piece from which the jets stand up in a row. The tops of these jets are closed until the throttle is opened far enough to pass them, which it does progressively. The air opening is at the bottom, and the throttle opening is such that a modified venturi is formed. The throttle is carried in a cylindrical barrel with the jets placed below it, and the passage from the barrel to the intake is arranged so that there is no interruption in the flow. For easy starting a dash-controlled shutter closes off the air, throwing the suction on the jets, thus giving a rich mixture.

Fig. 49

Fig. 49.—The Master Carburetor.

Fig. 50

Fig. 50.—Sectional View of Master Carburetor Showing Parts.

The only adjustment is for idling, and once that is fixed it need never be touched. This is in the form of a screw and regulates the position of the throttle when at idling position. The dash control has high-speed, normal and rich-starting positions. In installing the Master carburetor the float chamber may be turned either toward the radiator or driver’s seat. If the float is turned toward the radiator, however, a forward lug plate should be ordered; otherwise it will be difficult to install the control. The throttle lever must go all the way to the stop lug or maximum power will not be secured. In adjusting the idle screw it is turned in for rich and out for lean.

COMPOUND NOZZLE ZENITH CARBURETOR

The Zenith carburetor, shown at Fig. 51, has become very popular for airplane engine use because of its simplicity, as mixture compensation is secured by a compensating compound nozzle principle that works very well in practice. To illustrate this principle briefly, let us consider the elementary type of carburetor or mixing valve, as shown in Fig. 52, A. It consists of a single jet or spraying nozzle placed in the path of the incoming air and fed from the usual float chamber. It is a natural inference to suppose that as the speed of the motor increases, both the flow of air and of gasoline will increase in the same proportion. Unhappily, such is not the case. There is a law of liquid bodies which states that the flow of gasoline from the jet increases under suction faster than the flow of air, giving a mixture which grows richer and richer—a mixture containing a much higher percentage of gasoline at high suction than at low. The tendency is shown by the accompanying curve (Fig. 52, B), which gives the ratio of gasoline to air at varying speeds from this type of jet. The mixture is practically constant only between narrow limits and at very high speed. The most common method of correcting this defect is by putting various auxiliary air valves which, adding air, tends to dilute this mixture as it gets too rich. It is difficult with makeshift devices to gauge this dilution accurately for every motor speed.

Fig. 51

Fig. 51.—Sectional View of Zenith Compound Nozzle Compensating Carburetor.

Fig. 52

Fig. 52.—Diagrams Explaining Action of Baverey Compound Nozzle Used in Zenith Carburetor.

Now, if we have a jet which grows richer as the suction increases, the opposite type of jet is one which would grow leaner under similar conditions. Baverey, the inventor of the Zenith, discovered the principle of the constant flow device which is shown in Fig. 52, C. Here a certain fixed amount of gasoline determined by the opening I is permitted to flow by gravity into the well J open to the air. The suction at jet H has no effect upon the gravity compensator I because the suction is destroyed by the open well J. The compensator, then, delivers a steady rate of flow per unit of time, and as the motor suction increases more air is drawn up, while the amount of gasoline remains the same and the mixture grows poorer and poorer. Fig. 52, D, shows this curve.

By combining these two types of rich and poor mixture carburetors the Zenith compound nozzle was evolved. In Fig. 52, E, we have both the direct suction or richer type leading through pipe E and nozzle G and the “constant flow” device of Baverey shown at J, I, K and nozzle H. One counteracts the defects of the other, so that from the cranking of the motor to its highest speed there is a constant ratio of air and gasoline to supply efficient combustion.

In addition to the compound nozzle the Zenith is equipped with a starting and idling well, shown in the cut of Model L carburetor at P and J. This terminates in a priming hole at the edge of the butterfly valve, where the suction is greatest when this valve is slightly open. The gasoline is drawn up by the suction at the priming hole and, mixed with the air rushing by the butterfly, gives an ideal slow speed mixture. At higher speeds with the butterfly valve opened further the priming well ceases to operate and the compound nozzle drains the well and compensates correctly for any motor speed.

Fig. 53

Fig. 53.—The Zenith Duplex Carburetor for Airplane Motors of the V Type.

With the coming of the double motor containing eight or twelve cylinders arranged in two V blocks, the question of good carburetion has been a problem requiring much study. The single carburetor has given only indifferent results due to the strong cross suction in the inlet manifold from one set of cylinders to the other. This naturally led to the adoption of two carburetors in which each set of cylinders was independently fed by a separate carburetor. Results from this system were very good when the two carburetors were working exactly in unison, but as it was extremely difficult to accomplish this co-operation, especially where the adjustable type was employed, this system never gained in favor. The next logical step was the Zenith Duplex, shown at Fig. 53. This consists of two separate and distinct carburetors joined together so that a common gasoline float chamber and air inlet could be used by both. It does away with cross suction in the manifold because each set of cylinders has a separate intake of its own. It does away with two carburetors and makes for simplicity. The practical application of the Zenith carburetor to the Curtiss 90 horse-power OX-2 motor used on the JN-4 standard training machine is shown at Fig. 54, which outlines a rear view of the engine in question. The carburetor is carried low to permit of fuel supply from a gravity tank carried back of the motor.

Fig. 54

Fig. 54.—Rear View of Curtiss OX-2 90 Horse-Power Airplane Motor Showing Carburetor Location and Hot Air Leads.

UTILITY OF GASOLINE STRAINERS

Many carburetors include a filtering screen at the point where the liquid enters the float chamber in order to keep dirt or any other foreign matter which may be present in the fuel from entering the float chamber. This is not general practice, however, and the majority of vaporizers do not include a filter in their construction. It is very desirable that the dirt should be kept out of the carburetor because it may get under the float control fuel valve and cause flooding by keeping it raised from its seat. If it finds its way into the spray nozzle it may block the opening so that no gasoline will issue or may so constrict the passage that only very small quantities of fuel will be supplied the mixture. Where the carburetor itself is not provided with a filtering screen a simple filter is usually installed in the pipe line between the gasoline tank and the float chamber.

Fig. 55

Fig. 55.—Types of Strainers Interposed Between Vaporizer and Gasoline Tank to Prevent Water or Dirt Passing Into Carbureting Device.

Some simple forms of filters and separators are shown at Fig. 55. That at A consists of a simple brass casting having a readily detachable gauze screen and a settling chamber of sufficient capacity to allow the foreign matter to settle to the bottom, from which it is drained out by a pet cock. Any water or dirt in the gasoline will settle to the bottom of the chamber, and as all fuel delivered to the carburetor must pass through the wire gauze screen it is not likely to contain impurities when it reaches the float chamber. The heavier particles, such as scale from the tank or dirt and even water, all of which have greater weight than the gasoline, will sink to the bottom of the chamber, whereas light particles, such as lint, will be prevented from flowing into the carburetor by the filtering screen.

The filtering device shown at B is a larger appliance than that shown at A, and should be more efficient as a separator because the gasoline is forced to pass through three filtering screens before it reaches the carburetor. The gasoline enters the device shown at C through a bent pipe which leads directly to the settling chamber and from thence through a wire gauze screen to the upper compartment which leads to the carburetor. The device shown at D is a combination strainer, drain, and sediment cup. The filtering screen is held in place by a spring and both are removed by taking out a plug at the bottom of the device. The shut-off valve at the top of the device is interposed between the sediment cup and the carburetor. This separating device is incorporated with the gasoline tank and forms an integral part of the gasoline supply system. The other types shown are designed to be interposed between the gasoline tank and the carburetor at any point in the pipe line where they may be conveniently placed.

INTAKE MANIFOLD DESIGN AND CONSTRUCTION

On four- and six-cylinder engines and in fact on all multiple-cylinder forms, it is important that the piping leading from the carburetor to the cylinders be made in such a way that the various cylinders will receive their full quota of gas and that each cylinder will receive its charge at about the same point in the cycle of operations. In order to make the passages direct the bends should be as few as possible, and when curves are necessary they should be of large radius because an abrupt corner will not only impede gas flow but will tend to promote condensation of the fuel. Every precaution should be taken with four- and six-cylinder engines to insure equitable gas distribution to the valve chambers if regular action of the power plant is desired. If the gas pipe has many turns and angles it will be difficult to charge all cylinders properly. On some six-cylinder aviation engines, two carburetors are used because of trouble experienced with manifolds designed for one carburetor. Duplex carburetors are necessary to secure the best results from eight- and twelve-cylinder V engines.

The problem of intake piping is simplified to some extent on block motors where the intake passage is cored in the cylinder casting and where but one short pipe is needed to join this passage to the carburetor. If the cylinders are cast in pairs a simple pipe of T or Y form can be used with success. When the engine is of a type using individual cylinder castings, especially in the six-cylinder power plants, the proper application and installation of suitable piping is a difficult problem. The reader is referred to the various engine designs outlined to ascertain how the inlet piping has been arranged on representative aviation engines. Intake piping is constructed in two ways, the most common method being to cast the manifold of brass or aluminum. The other method, which is more costly, is to use a built-up construction of copper or brass tubing with cast metal elbows and Y pieces. One of the disadvantages advanced against the cast manifold is that blowholes may exist which produce imperfect castings and which will cause mixture troubles because the entering gas from the carburetor, which may be of proper proportions, is diluted by the excess air which leaks in through the porous casting. Another factor of some moment is that the roughness of the walls has a certain amount of friction which tends to reduce the velocity of the gases, and when projecting pieces are present, such as core wire or other points of metal, these tend to collect the drops of liquid fuel and thus promote condensation. The advantage of the built-up construction is that the walls of the tubing are very smooth, and as the castings are small it is not difficult to clean them out thoroughly before they are incorporated in the manifold. The tubing and castings are joined together by hard soldering, brazing or autogenous welding.

COMPENSATING FOR VARYING ATMOSPHERIC CONDITIONS

The low-grade gasoline used at the present time makes it necessary to use vaporizers that are more susceptible to atmospheric variations than when higher grade and more volatile liquids are vaporized. Sudden temperature changes, sometimes being as much as forty degrees rise or fall in twelve hours, affect the mixture proportions to some extent, and not only changes in temperature but variations in altitude also have a bearing on mixture proportions by affecting both gasoline and air. As the temperature falls the specific gravity of the gasoline increases and it becomes heavier, this producing difficulty in vaporizing. The tendency of very cold air is to condense gasoline instead of vaporizing it and therefore it is necessary to supply heated air to some carburetors to obtain proper mixtures during cold weather. In order that the gas mixtures will ignite properly the fuel must be vaporized and thoroughly mixed with the entering air either by heat or high velocity of the gases. The application of air stoves to the Curtiss OX-2 motor is clearly shown at Fig. 54. It will be seen that flexible metal pipes are used to convey the heated air to the air intakes of the duplex mixing chamber.

Fig. 56

Fig. 56.—Chart Showing Diminution of Air Pressure as Altitude Increases.

HOW HIGH ALTITUDE AFFECTS POWER

Any internal combustion engine will show less power at high altitudes than it will deliver at sea level, and this has caused a great deal of questioning. “There is a good reason for this,” says a writer in “Motor Age,” “and it is a physical impossibility for the engine to do otherwise. The difference is due to the lower atmospheric pressure the higher up we get. That is, at sea level the atmosphere has a pressure of 14.7 pounds per square inch; at 5,000 feet above sea level the pressure is approximately 12.13 pounds per square inch, and at 10,000 feet it is 10 pounds per square inch. From this it will be seen that the final pressure attained after the piston has driven the gas into compressed condition ready for firing is lower as the atmospheric pressure drops. This means that there is not so much power in the compressed charge of gas the higher up you get above sea level.

“For example, suppose the compression ratio to be 41/2 to 1; in other words, suppose the air space above the piston to have 41/2 times the volume when the piston is at the bottom of its stroke that it has when the piston is at the top of the stroke. That is a common compression ratio for an average motor, and is chosen because it is considered to be the best for maximum horse-power and in order that the compression pressure will not be so high as to cause pre-ignition. Knowing the compression ratio, we can determine the final pressure immediately before ignition by substituting in the standard formula:

P1= ( V ) 1.3
V1

in which P is the atmospheric pressure; P1 is the final pressure, and V/V1 is the compression ratio, therefore P1 = 14.7(4.5)1.3 = 104 pounds per square inch, absolute.

“That is, 104 pounds per square inch is the most efficient final compression pressure to have for this engine at sea level, since it comes directly from the compression ratio.

“Now supposing we consider that the altitude is 7,000 feet above sea level. At this height the atmospheric pressure is 11.25 pounds per square inch, approximately. In this case we can again substitute in the formula, using the new atmospheric pressure figure. The equation becomes:

P1 = 11.25(4.5)1.3—79.4 pounds per square inch, absolute.

“Therefore we now have a final compression pressure of only 79.4 pounds per square inch, which is considerably below the pressure we have just found to be the most efficient for the motor. The resulting power drop is evident.

“It should be borne in mind that these final compression pressures are absolute pressures—that is, they include the atmospheric pressure. In the first case, to get the pressure above atmospheric you would subtract 14.7 and in the latter 11.25 would have to be deducted. In other words, where the sea level compression is 89.3 pounds per square inch above the atmosphere, the same motor will have only a compression pressure of 68.15 pounds per square inch above the atmosphere at 7,000 feet elevation.

“From the above it is evident that in order to bring the final compression pressure up to the efficient figure we have determined, a different compression ratio would have to be used. That is, the final volume would have to be less, and as it is impossible to vary this to meet the conditions of altitude, the loss of power cannot be helped except by the replacing of the standard pistons with some that are longer above the wrist-pin so as to reduce the space above the pistons when on top center. Then if the ratio is thereby raised to some such figures as 5 to 1, the engine will again have its proper final pressure, but it will still not have as much power as it would have at sea level, since the horse-power varies directly with the atmospheric pressure, final compression being kept constant. That is, at 7,000 feet the horse-power of an engine that had 40 horse-power at sea level would be equal to

11.25 = 30.6 horse-power.
14.7

“If the original compression ratio of 4.5 were retained, the drop in horse-power would be even greater than this. These computations and remarks will make it clear that the designer who contemplates building an airplane for high altitude use should see to it that it is of sufficient power to compensate for the drop that is inevitable when it is up in the air. This is often illustrated in stationary gas-engine installations. An engine that had a sea-level rating amply sufficient for the work required, might not be powerful enough when brought up several thousand feet.” When one considers that airplanes attain heights of over 18,000 feet, it will be evident that an ample margin of engine power is necessary.

THE DIESEL SYSTEM

A system of fuel supply developed by the late Dr. Diesel, a German chemist and engineer, is attracting considerable attention at the present time on account of the ability of the Diesel engine to burn low-grade fuels, such as crude petroleum. In this system the engines are built so that very high compressions are used, and only pure air is taken into the cylinder on the induction stroke. This is compressed to a pressure of about 500 pounds per square inch, and sufficient heat is produced by this compression to explode a hydrocarbon mixture. As the air which is compressed to this high point cannot burn, the fuel is introduced into the cylinder combustion chamber under still higher compression than that of the compressed air, and as it is injected in a fine stream it is immediately vaporized because of the heat. Just as soon as the compressed air becomes thoroughly saturated with the liquid fuel, it will explode on account of the degree of heat present in the combustion chamber. Such motors have been used in marine and stationary applications, but are not practical for airplanes or motor cars because of lack of flexibility and great weight in proportion to power developed. The Diesel engine is the standard power plant used in submarine boats and motor ships, as its efficiency renders it particularly well adapted for large units.

NOTES ON CARBURETOR INSTALLATION IN AIRPLANES

A writer in “The Aeroplane,” an English publication, discourses on some features of carburetor installation that may be of interest to the aviation student, so portions of the dissertation are reproduced herewith.

“Users of airplanes fitted with ordinary type carburetors will do well to note carefully the way in which these are fitted, for several costly machines have been burnt lately through the sheer carelessness of their users. These particular machines were fitted with a high powered V-type engine, made by a firm which is famous as manufacturers of automobiles de luxe. In these engines there are four carburetors, mounted in the V between the cylinders. When the engine is fitted as a tractor, the float chambers are in front of the jet chambers. Consequently, when the tail of the machine is resting on the ground, the jets are lower than the level of the gasoline in the float chamber.

“Quite naturally, the gasoline runs out of the jet, if it is left turned on when the machine is standing in its normal position, and trickles into the V at the top of the crank-case. Thence it runs down to the tail of the engine, where the magnetos are fitted, and saturates them. If left long enough, the gasoline manages to soak well into the fuselage before evaporating. And what does evaporate makes an inflammable gas in the forward cockpit. Then some one comes along and starts up the engine. The spark-gap of the magneto gives one flash, and the whole front of the machine proceeds to give a Fourth of July performance forthwith. Naturally, one safeguard is to turn the petrol off directly the machine lands. Another is never to turn it on till the engine is actually being started up.

“One would be asking too much of the human boy—who is officially regarded as the only person fit to fly an aeroplane—if one depended upon his memory of such a detail to save his machine, though one might perhaps reasonably expect the older pilots to remember not to forget. Even so, other means of prevention are preferable, for fire is quite as likely to occur from just the same cause if the engine happens to be a trifle obstinate in starting, and so gives the carburetors several minutes in which to drip—in which operation they would probably be assisted by air-mechanics ‘tickling’ them.

“One way out of the trouble is to fit drip tins under the jet chamber to catch the gasoline as it falls. This is all very well just to prevent fire while the machine is being started up, but it will not save it if it is left standing with the tail on the ground and the petrol turned on, for the drip tins will then fill up and run over. And if it catches then, the contents of the drip tins merely add fuel to the fire.

Reversing Carburetors

“Yet another way is to turn the carburetors round, so that the float chambers are behind the jets, and so come below them when the tail is on the ground, thus cutting off the gasoline low down in the jets. There seems to be no particular mechanical difficulty about this, though I must confess that I did not note very carefully whether the reversal of the float chambers would make them foul any other fittings on the engine. It has been argued, however, that doing this would starve the engine of gasoline when climbing at a steep angle, as the gasoline would then be lowered in the jets and need more suction to get into the cylinders. This is rather a pretty point of amateur motor mechanics to discuss, for, obviously, when the same engine is used as a ‘pusher’ instead of a tractor, the jets are in front of the floats, and there seems to be no falling off in power.

Starvation of Mixture

“Moreover, the higher a machine goes the lower is the atmospheric pressure, and, consequently, the less is the amount of air sucked in at each induction stroke. This means, of course, that with the gasoline supply the mixture at high altitudes is too rich, so that, in order to get precisely the right mixture when very high up, it is necessary to reduce the gasoline supply by screwing down the needle valve between the tank and the carburetor—at least, that has been the experience of various high-flying pilots. No doubt something might be done in the way of forced air feed to compensate for reduced atmospheric pressure, but it remains to be proved whether the extra weight of mechanism involved would pay for the extra power obtained. Variable compression might do something, also, to even things up, but here, also, weight of mechanism has to be considered.

“In any case, at present, the higher one goes the more the power of the engine is reduced, for less air means a less volume of mixture per cylinder, and as the petrol feed has to be starved to suit the smaller amount of air available, this means further loss of power. I do not know whether anyone has evolved a carburetor which automatically starves the gasoline feed when high up, but it seems possible that when an airplane is sagging about ‘up against the ceiling’—as a French pilot described the absolute limit of climb for his particular machine—it might be a good thing to have the jets in front of the float chamber, for then a certain amount of automatic starvation would take place.

“When a machine is right up at its limiting height, and the pilot is doing his best to make it go higher still, it is probably flying with its tail as low as the pilot dares to let it go, and the lateral and longitudinal controls are on the verge of vanishing, so that if the carburetor jets are behind the float chambers there is bound to be an over-rich mixture in any case. There is even a possibility of a careless or ignorant pilot carrying on in this tail-down position till one set of cylinders cuts out altogether, in which case the carburetor feeding that set may flood over, just as if the machine were on the ground, and the whole thing may catch fire. Whereas, with the jets in front of the floats, though the mixture may starve a trifle, there is, at any rate, no danger of fire through climbing with the tail down.

A Diving Danger

“On the other hand, in a ‘pusher’ with this type of engine, if the jets are in their normal position—which is in front of the floats—there is danger of fire in a dive. That is to say, if the pilot throttles right down, or switches off and relies on air pressure on his propeller to start the engine again, so that the gasoline is flooding over out of the jets instead of being sucked into the engine, there may be flooding over the magnetos if the dive is very steep and prolonged. In any case, a long dive will mean a certain amount of flooding, and, probably, a good deal of choking and spitting by the engine before it gets rid of the over-rich mixture and picks up steady firing again. Which may indicate to young pilots that it is not good to come down too low under such circumstances, trusting entirely to their engines to pick up at once and get going before they hit the ground.

“On the whole, it seems that it might be better practice to set the carburetors thwartwise of engines, for then jets and floats would always be at approximately the same level, no matter what the longitudinal position of the machine, and it is never long enough in one position at a big lateral angle to raise any serious carburetor troubles. Car manufacturers who dive cheerfully into the troubled waters of aero-engine designs are a trifle apt to forget that their engines are put into positions on airplanes which would be positively indecent in a motor car. An angle of 1 in 10 is the exception on a car, but it is common on an airplane, and no one ever heard of a car going down a hill of 10 to 1—which is not quite a vertical dive. Therefore, there is every excuse for a well-designed and properly brought-up carburetor misbehaving itself in an aeroplane.

“It seems, then, that it is up to the manufacturers to produce better carburetors—say, with the jet central with the float. But it also behooves the user to show ordinary common sense in handling the material at present available, and not to make a practice of burning up $25,000 worth or so of airplane just because he is too lazy to turn off his gasoline, or to have the tail of his machine lifted up while he is tinkering with his engines.”

NOTES ON CARBURETOR ADJUSTMENT

The modern float feed carburetor is a delicate and nicely balanced appliance that requires a certain amount of attention and care in order to obtain the best results. The adjustments can only be made by one possessing an intelligent knowledge of carburetor construction and must never be made unless the reason for changing the old adjustment is understood. Before altering the adjustment of the leading forms of carburetors, a few hints regarding the quality to be obtained in the mixture should be given some consideration, as if these are properly understood this knowledge will prove of great assistance in adjusting the vaporizer to give a good working proportion of fuel and air. There is some question regarding the best mixture proportions and it is estimated that gas will be explosive in which the proportions of fuel vapor and air will vary from one part of the former to a wide range included between four and eighteen parts of the latter. A one to four mixture is much too rich, while the one in eighteen is much too lean to provide positive ignition.

A rich mixture should be avoided because the excessive fuel used will deposit carbon and will soot the cylinder walls, combustion chamber interior, piston top and valves and also tend to overheat the motor. A rich mixture will also seriously interfere with flexible control of the engine, as it will choke up on low throttle and run well on open throttle when the full amount of gas is needed. A rich mixture may be quickly discovered by black smoke issuing from the muffler, the exhaust gas having a very pungent odor. If the mixture contains a surplus of air there will be popping sounds in the carburetor, which is commonly termed “blowing back.” To adjust a carburetor is not a difficult matter when the purpose of the various control members is understood. The first thing to do in adjusting a carburetor is to start the motor and to retard the sparking lever so the motor will run slowly leaving the throttle about half open. In order to ascertain if the mixture is too rich cut down the gasoline flow gradually by screwing down the needle valve until the motor commences to run irregularly or misfire. Close the needle valves as far as possible without having the engine come to a stop, and after having found the minimum amount of fuel gradually unscrew the adjusting valve until you arrive at the point where the engine develops its highest speed. When this adjustment is secured the lock nut is screwed in place so the needle valve will keep the adjustment. The next point to look out for is regulation of the auxiliary air supply on those types of carburetors where an adjustable air valve is provided. This is done by advancing the spark lever and opening the throttle. The air valve is first opened or the spring tension reduced to a point where the engine misfires or pops back in the carburetor. When the point of maximum air supply the engine will run on is thus determined, the air valve spring may be tightened by screwing in on the regulating screw until the point is reached where an appreciable speeding up of the engine is noticed. If both fuel and air valves are set right, it will be possible to accelerate the engine speed uniformly without interfering with regularity of engine operation by moving the throttle lever or accelerator pedal from its closed to its wide open position, this being done with the spark lever advanced. All types of carburetors do not have the same means of adjustment; in fact, some adjust only with the gasoline regulating needle; others must have a complete change of spray nozzles; while in others the mixture proportions may be varied only by adjustment of the quantity of entering air. Changing the float level is effective in some carburetors, but this should never be done unless it is certain that the level is not correct. Full instructions for locating carburetion troubles will be given in proper sequence.

It is a fact well known to experienced repairmen and motorists that atmospheric conditions have much to do with carburetor action. It is often observed that a motor seems to develop more power at night than during the day, a circumstance which is attributed to the presence of more moisture in the cooler night air. Likewise, taking a motor from sea level to an altitude of 10,000 feet involves using rarefied air in the engine cylinders and atmospheric pressures ranging from 14.7 pounds at sea level to 10.1 pounds per square inch at the high altitude. All carburetors will require some adjustment in the course of any material change from one level to another. Great changes of altitude also have a marked effect on the cooling system of an airplane. Water boils at 212 degrees F. only at sea level. At an altitude of 10,000 feet it will boil at a temperature nineteen degrees lower, or 193 degrees F.

In high altitudes the reduced atmospheric pressure, for 5,000 feet or higher than sea level, results in not enough air reaching the mixture, so that either the auxiliary air opening has to be increased, or the gasoline in the mixture cut down. If the user is to be continually at high altitudes he should immediately purchase either a larger dome or a smaller strangling tube, mentioning the size carburetor that is at present in use and the type of motor that it is on, including details as to the bore and stroke. The smaller strangling tube makes an increased suction at the spray nozzle; the air will have to be readjusted to meet it and you can use more auxiliary air, which is necessary. The effect on the motor without a smaller strangling tube is a perceptible sluggishness and failure to speed up to its normal crank-shaft revolutions, as well as failure to give power. It means that about one-third of the regular speed is cut out. The reduced atmospheric pressure reduces the power of the explosion, in that there is not the same quantity of oxygen in the combustion chamber as at sea level; to increase the amount taken in, you must also increase the gasoline speed, which is done by an increased suction through the smaller strangling aperture. Some forms of carburetors are affected more than others by changes of altitude, which explains why the Zenith is so widely employed for airplane engine use. The compensating nozzle construction is not influenced as much by changes of altitude as the simpler nozzle types are.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page