THE LUNAR CYCLE. The Lunar cycle, or the cycle of the moon, is a period of nineteen years, after which the new and full moons fall on the same days of the year as they did nineteen years before. This cycle was invented by Meton, a celebrated astronomer of Athens, and may be regarded as the masterpiece of ancient astronomy. In nineteen solar years there are 235 lunations, a number which, on being divided by nineteen, gives twelve lunations, with seven of a remainder, to be distributed among the years of the period. The period of Meton, therefore, consisted of twelve years containing twelve months each, and seven years containing thirteen mouths each, and these last formed the third, fifth, eighth, eleventh, thirteenth, sixteenth, and nineteenth years of the cycle. As it had now been discovered that the exact length of the lunation is a little more than twenty-nine and a half days, it became necessary to abandon the alternate succession of full and deficient months; and, in order to preserve a more accurate correspondence between the civil month and the lunation, Meton divided the cycle into 125 full months of 30 days, and 110 deficient months of 29 days each. The number of days in the period was, therefore, 6940; for (125 × 30) + (110 × 29) = 6940. In order to distribute the deficient months through the period in the most equable manner, the whole period may be regarded as consisting of 235 full months The number of days in the period being known, it is easy to ascertain its accuracy both in respect of the solar and lunar motions. The exact length of nineteen solar years is (365d, 5h, 48m, 49.62s.) × 19 = 6939d, 14h, 27m, 42.78s.; hence, the period, which is exactly 6940 days, exceeds nineteen annual revolutions of the earth by a little more than nine and a half hours. On the other hand, the exact time of the synodic revolution of the moon is 29d, 12h, 44m, 2.87s.; 235 lunations, therefore, contain 235 × (29d, 12h, 44m, 2.87s.) = (6939d, 16h, 31m, 14.45s.), so that the period exceeds 235 lunations by nearly seven and a half hours. At the end of four cycles, or seventy-six years, the accumulation of the seven and a half hours of difference between the cycle and 235 lunations amounts to thirty hours, or one whole day and six hours. Calippus, therefore, in order to make a correction of the Metonic cycle, proposed to quadruple the period of Meton, and deduct one day at the end of that time by changing one of the full months into a deficient month. The period of Calippus, therefore, consisted of three Metonic cycles of 6940 days each, and a period of 6939 days; and its error in respect to the moon, consequently, |