Though our course through the different groups of insects may have seemed rambling and desultory enough, and pursued with slight reference to a natural classification of the insects of which we have spoken, yet beginning with the Hive bee, the highest intelligence in the vast world of insects, we have gradually, though with many a sudden step, descended to perhaps the most lowly organized forms among all the insects, the parasitic mites. While the Demodex is probably the humblest in its organization of any of the insects we have treated of, there is still another mite, which, some eminent naturalists continue to regard as a worm, which is yet lower in the scale. This is the Pentastoma (Fig. 177, P. tÆnioides), which lives in the manner of the tape worm a parasitic life in the higher animals, though instead of inhabiting the alimentary canal, the worm-like mite takes up its abode in the nostrils and frontal sinus of dogs and sheep, and sometimes of the horse. At first, however, it is found in the liver or lungs of various animals, sometimes in man. It is then in the earliest or larval state, and assumes its true mite form, being oval in shape, with minute horny jaws adapted for boring, and with two pairs of legs armed We should also not pass over in silence the Centipedes (Fig. 178, Scolopocryptops sexspinosa) and Galley worms, or Thousand legs and their allies (Myriopods), which by their long slender bodies, and great number of segments and feet, vaguely recall the worms. But they, with the mites, are true insects, as they are born with only three pairs of feet, as are the mites and ticks, and breathe by tracheÆ; and thus a common plan of structure underlies the entire class of insects. 179. Young Pauropus. 181. Young Julus. 180. Spring-tail. A very strange Myriopod has been discovered by Sir John Lubbock in Europe, and we have been fortunate enough to find a species in this country. It is the Pauropus. It consists, when fully grown, of nine segments, exclusive of the head, bearing nine pairs of feet. The young of Pauropus (Fig. 179) is born with three pairs of feet, and in its general appearance reminds us of a spring-tail (Fig. 180) as may be seen by a glance at the cut. This six-legged form of Pauropus may also be compared with the young galley worm (Fig. 181). 183. Tardigrade. 182. Leptus. Passing to the group of spiders and mites, we find that the young mites when first hatched have but three pairs of feet, while their parents have four, like the spiders. Figure 182 184. Male Stylops. Again, going back of the larval period, and studying the insect in the egg, we find that nearly all the insects yet observed agree most strikingly in their mode of growth, so that, for instance, the earlier stages of the germ of a bee, fly or beetle, bear a remarkable resemblance to each other, and suggest again, more forcibly than when we examine the larval condition, that a common design or pattern at first pervades all. In the light of the studies of Von Baer, of Lamarck and Darwin, should we be content to stop here, or does this ideal archetype become endowed with life and have a definite existence, becoming the ancestral form of all insects, the prototype which gave birth to the hundreds of thousands of insect forms which are now spread over our globe, just as we see daily happens where a single aphis may become the progenitor of a million offspring clustering on the same tree? Is there not something more than analogy in the two things, and is not the same life-giving force that evolves a million young Aphides from the germ stock of a single Aphis in a single season, the same in kind with the production of the living races of insects from a primeval ancestor? When we see the Aphis giving origin in one season to successive generations, the individuals of which may be counted by the million, it is no less mysterious than that other succession of forms of insect life which has peopled the globe during the successive chapters of its history. While we see in one case the origin of individual forms, and cannot explain what it is that starts the life in the germ and so unerringly guides the course of the growing embryo, it is illogical to deny that the same life-giving force is concerned in the production of specific and generic forms. 185. Female Stylops. Who can explain the origin of the sexes? What is the cause that determines that one individual in a brood of Stylops, for example (Fig. 184, male; Fig. 185, grub-like female in the body of its host), shall be but a grub, living as a parasite in the body of its host, while its fellow shall be winged and as free in its actions as the most highly organized insect? It is no less mysterious, because it daily occurs before our eyes. So perhaps none the less mysterious, and no more discordant with known natural laws may the law that governs the origin of species seem to those who come after us. Certainly the present attempts to discover that law, however fatuitous they may seem to many, are neither illogical, nor, judging by the impetus already given to biology, or the science of life, labor altogether spent in vain. The theory of evolution is a powerful tool, when judiciously used, that must eventually wrest many a secret from the grasp of nature. But whether true or unproved, the theory of evolution in some shape has actually been adopted by the large proportion of naturalists, who find it indispensable in their researches, and it will be used until found inadequate to explain facts. Notwithstanding the present distrust, and even fear, with which it is received by many, we doubt not but that in comparatively few years all will acknowledge that the theory of evolution will be to biology what the nebular hypothesis is to geology, or the atomic theory is to chemistry. While the evolution theory is as yet imperfect, and many objections, some seemingly insuperable, can be raised against it, it should be borne in mind that the nebular hypothesis is still comparatively crude and unsatisfactory, though indispensable as a working theory to the geologist; and in chemistry, though the atomic theory may not be satisfactorily demonstrated to some minds until an atom is actually brought to sight, it is yet invaluable in research. Many short sighted persons complain that such a theory sets Indeed, to the student of nature, the evolution theory in biology, with the nebular hypothesis, and the grand law in physics of the correlation of forces, all interdependent, and revealing to us the mode in which the Creator of the Universe works in the world of matter, together form an immeasurably grander conception of the order of creation and its Ordainer, than was possible for us to form before these laws were discovered and put to practical use. We may be allowed, then, in a reverent spirit of inquiry, to attempt to trace the ancestry of the insects, and without arriving, perhaps, at any certain result, for it is largely a matter of speculation, point out certain facts, the thoughtful consideration of which may throw light on this difficult and embarrassing question. 186. Embryo of Diplax. 187. Embryo of Louse. Without much doubt the Poduras are the lowest of the six-footed insects. They are more embryonic in their appearance than others, as seen in the large size of the head compared with the rest of the body, the large, clumsy legs, and the equality in the size of the several segments composing the body. In other characters, such as the want of compound eyes, the absence of wings, the absence of a complete ovipositor, and the occasional want of tracheÆ, they stand at the base of the insect series. That they are true insects, however, we endeavored to show in the previous chapter, and that they are neuropterous, we think is most probable, since not only in the structure of the insect after birth do they agree with the larvÆ of certain neuropters, but, as we have shown in another place 188. Embryo of Spider. Embryo of Podura. Now such forms as these Thysanura, together with the mites and the singular Pauropus, we cannot avoid suspecting to have been among the earliest to appear upon the earth, and putting together the facts, first, of their low organization; secondly, of their comprehensive structure, resembling the larvÆ of other insects; and thirdly, of their probable great antiquity, we naturally look to them as being related in form to what we may conceive to have been the ancestor of the class of insects. Not that the animals mentioned above were the actual ancestors, but that certain insects bearing a greater resemblance to them than any others with which we are acquainted, and belonging possibly to families and orders now Though the study of the embryology of insects is as yet in its infancy, still with the facts now in our possession we can state with tolerable certainty that at first the embryos of all insects are remarkably alike, and the process of development is much the same in all, as seen in the figure of Diplax (Fig. 186), the louse (Fig. 187), the spider (Fig. 188) and the Podura (Fig. 189), and we could give others bearing the same likeness. We notice that at a certain period in the life of the embryo all agree in having the head large, and bearing from two to four pairs of mouth organs, resembling the legs; the thorax is merged in with the abdomen, and the general form of the embryo is ovate. Now this general embryonic form characterizes the larva of the mites, of the myriopods and of the true insects. To such a generalized embryonic form to which the insects may be referred as the descendants, we would give the name of Leptus, as among Crustacea the ancestral form is referred to Nauplius, a larval form of the lower Crustacea, and through which the greater part of the Crabs, Shrimps, Barnacles, water fleas, etc., pass to attain their definite adult condition. A little water flea was described as a separate genus, Nauplius, before it was known to be the larva of a higher water flea, and so also Leptus was thought to be a mature mite. Accordingly, we follow the usage of certain naturalists in dealing with the Crustacea, and propose for this common primitive larval condition of insects the term Leptus. 190. ZoËa. The first to discuss this subject of the ancestry of insects was Fritz MÜller, who in his "FÜr Darwin," Afterwards HÆckel in his "Generelle Morphologie" (1866) and "History of Creation," published in 1868, reiterates the notion that the insects are derived from the larva (ZoËa, Fig. 190) of the crabs, though he is doubtful whether they did not originate directly from the worms. It may be said in opposition to the view that the insects came The view that the insects were derived from a ZoËa was also sustained by Friedrich Brauer, the distinguished entomologist of Vienna, in a paper At the same time Afterwards In the same year Sir John Lubbock The comparison of the Leptus with the Nauplius, or pre-ZoËal stage of Crustacea, is much more natural. But here we are met with apparently insuperable difficulties. While the Nauplius (Fig. 191) has but three pairs of appendages, which become the two pairs of antennÆ and succeeding pair of limbs of the adult, in the Leptus as the least number we have five pairs, two of which belong to the head (the maxillÆ and mandibles) and three to the thorax; besides these is a true heed, distinct from the hinder region of the body. It is evident that the Leptus fundamentally differs from the Nauplius and begins life on a higher plane. We reject, therefore, the Crustacean origin of the insects. Our only refuge is in the worms, and how to account 191. Nauplius. When we come to the singular creatures of which Pentastoma and Linguatula are the type, we have the most striking approximation to the worms in external form, but these are induced evidently by their parasitic mode of life. They lose the rudimentary jointed limbs which some (Linguatula especially) have well marked in the embryo, and from being oval, rudely mite-like in form, they elongate, and only the claws or simple curved hooks, like those of young tape worms, remain to indicate the original presence of true jointed legs. In seeking for the ancestry of our hypothetical Leptus among the worms, we are at best groping in the dark. We know of no ancestral form among the true Annelides, nor is it probable that it was derived from the intestinal worms. The only worm below the true Annelides that suggests any remote analogy to the insects is the singular and rare Peripatus, which lives on land in warm climates. Its body, not divided into rings, is provided with about thirty pairs of fleshy tubercles, each ending in two strong claws, and the head is adorned with a pair of fleshy tubercles. It is remotely possible that some Silurian land worm, if any such existed, allied to our living Peripatus, may have been the ancestor of a series of types now lost which resulted in an animal resembling the Leptus. 192. Platygaster error. We may, however, as bearing upon this difficult question, cite some remarkable discoveries of Professor Ganin, a Russian naturalist, on the early stages of certain ichneumon parasites, which show some worm features in their embryonic development. In a species of Platygaster (Fig. 192, P. error of Fitch), which is a parasite on a two-winged gall fly, the earliest stage observed after the egg is laid is that in which the egg contains a single cell with a nucleus and nucleolus. Out of this cell (Fig. 193 A, a) arise two other cells. The central cell (a) gives origin to the embryo. The two outer ones multiply by subdivision and form the embryonal membrane, or "amnion," which is a provisional envelope and does not assist in building up the body of the germ. The central single cell, however, multiplies by the subdivision of its nucleus, thus building up the body of the germ. Figure 193 B, g, shows the yolk or germ just forming out of the nuclei (a) and b, the peripheral cells of the blastoderm skin, or "amnion." Figure 193 C shows the yolk transformed into the embryo (g), with the outer layer of blastodermic cells (b). The body of the germ is infolded, so that the embryo appears bent on itself. Figure 193 D shows the embryo much farther advanced, with the two pairs of lobes (md, rudimentary mandibles; d, rudimentary pad-like organs, seen in a more 193. Development of Platygaster. 194. First Larva of Platygaster. 195. Second Larva of Platygaster. The second larval stage (Fig. 195; oe, oesophagus; ng, supra-oesophageal ganglion; n, nervous cord; ga, and g, genital organs; ms, band of muscles) is attained by means of a moult, as usual in the metamorphoses of insects. With the change of skin the larva entirely changes its form. So-called hypodermic cells are developed. The singular tail is dropped, the segments of the body disappear, and the body grows oval, while within begins a series of remarkable changes, like the ordinary development of the embryo of most other insects within the egg. The cells of the hypodermis multiply greatly, and lie one above the other in numerous layers. They give rise to a special primitive organ closely resembling the "primitive band" of all insect embryos. The alimentary canal is made anew, and the nervous and vascu 196. Third Larva of Polynema. The third larval form only a few live to reach. This is of the usual long, oval form of the larvÆ of the ichneumons, and the body has thirteen segments exclusive of the head. The muscular system has greatly developed and the larva is much more lively in its motions than before. The new organs that develop are the air tubes and fat bodies. The "imaginal disks" or rudimentary portions destined to develop and form the skin of the adult, or imago, arise in the pupa state, which resembles that of other ichneumons. These disks are only engaged, in Platygaster, in building up the rudimentary appendages, while in the flies (MuscidÆ and Corethra) they build up the whole body, according to the remarkable discovery of Weismann. Not less interesting is the history of the development of a species of Polynema, another egg-parasite, which lays its eggs (one, seldom two) in the eggs of a small dragon fly, Agrion virgo, which oviposits in the parenchyma of the leaves of waterlilies. The eggs develop as in Platygaster. The earliest stage of the embryo is very remarkable. It leaves the egg when very small and immovable, and with scarcely a trace of organization, being a mere flask-shaped sac of cells. In the second stage, or Histriobdella-like form, the larva is, in its general appearance, like the low worm to which Ganin compares it. It may be described as bearing a general resemblance to the third and fully developed larval form (Fig. 196, tg, The origin of the sting is clearly ascertained. Ganin shows that it consists of three pairs of tubercles, situated respectively on the seventh, eighth, and ninth segments of the abdomen (Fig. 196, tg). The labium is not developed from a pair of tubercles, as is usual, but at once appears as an unpaired, or single organ. The pupa state lasts for five or six days, and when the imago appears it eats its way through a small round opening in the end of the skin of its host, the Agrion larva. 197. Development of Egg-parasites. The development of Ophloneurus, another egg-parasite, agrees with that of Platygaster and Polynema. This egg-parasite passes its early life in the eggs of Pieris brassicÆ, and two or three live to reach the imago state, though about six eggs are deposited by the female. The eggs are oval, and not stalked. The larva is at first of the form indicated by figure 197 E, and when fully grown becomes of a broad oval form, the body not being divided into segments. It differs from the genera already mentioned, in remaining within its egg membrane, and not assuming The last egg-parasite noticed by Ganin, is Teleas, whose development resembles that of Platygaster. It is a parasite in the eggs of Gerris, the Water Boatman. Figure 197 A represents the egg; B, C, and D, the first stage of the larva, the abdomen (or posterior division of the body) being furnished with a series of bristles on each side. (B represents the ventral, C the dorsal, and D the profile view; at, antennÆ; md, hook-like mandibles; mo, mouth; b, bristles; m, intestine; sw, the tail; ul, under lip or labium.) In the second larval stage, which is oval in form, and not segmented, the primitive band is formed. In concluding the account of his remarkable discoveries, Ganin draws attention to the great differences in the formation of the eggs and the germs of these parasites from what occurs in other insects. The egg has no nutritive cells; the formation of the primitive band, usually the first indication of the germ, is retarded till the second larval stage is attained; and the embryonal membrane is not homologous with the so-called "amnion" of other insects, but may possibly be compared with the skin developed on the upper side of the low, worm-like acarian, Pentastomum, and the "larval skin" of the embryos of many low Crustacea. He says, also, that we cannot, perhaps, find the homologues of the provisional organs of the larvÆ, such as the singularly shaped antennÆ, the claw-like mandibles, the tongue-or ear-like appendages, in other Arthropoda (insects and Crustacea); but that they may be found in the parasitic LernÆan crustaceans, and in the leeches, such as Histriobella. He is also struck by the similarity in the development of these egg-parasites to that of a kind of leech (Nephelis), the embryo of which is provided with ciliÆ, recalling the larva of Teleas (Fig. 197 B, C), while in the true leeches (Hirudo) the primitive band is not developed until after they have passed through a provisional larval stage. This complicated metamorphosis of the egg-parasites, Ganin also compares to the so-called "hyper-metamorphosis" of certain insects (MeloË, Sitaris, and the StylopidÆ) made known by Siebold, Newport and Fabre, and he considers it to be of the same nature. He also, in closing, compares such early larval forms as those The writer is perhaps less cautious, but he cannot refrain from making some reflections suggested by the remarkable discoveries of Ganin. In the first place, these facts bear strongly on the theory of evolution by "acceleration and retardation." In the history of these early larval stages we see a remarkable acceleration in the growth of the embryo. A simple sac of unorganized cells, with a half-made intestine, so to speak, is hatched, and made to perform the duty of an ordinary, quite highly organized larva. Even the formation of the "primitive band," usually the first indication of the organization of the germ, is postponed to a comparatively late period in larval life. The different anatomical systems, i.e., the heart with its vessels, the nervous system and the respiratory system (tracheÆ), appear at longer or shorter intervals, while in one genus the tracheÆ are not developed at all. Thus some portions of the animal are accelerated in their development more than others, while others are retarded, and in some species certain organs are not developed at all. Meanwhile all live in a fluid medium, with much the same habits, and surrounded with quite similar physical conditions. The highest degree of acceleration is seen in the reproductive Another interesting point is, that while the larvÆ vary so remarkably in form, the adult ichneumon flies are remarkably similar to one another. Do the differences in their larval history seem to point back to certain still more divergent ancestral forms? These remarkable hyper-metamorphoses remind us of the metamorphosis of the embryo of Echinoderms into the Pluteus-and Bipinnaria-forms of the starfish, sea urchins and Holothurians; While Fritz MÜller and Dohrn have considered the insects as having descended from the Crustacea (some primitive zoËa-form), and Dohrn has adduced the supposed zoËa-form larva of these egg-parasites as a proof, we cannot but think, in a subject so purely speculative as the ancestry of animals, that the facts brought out by Ganin tend to confirm our theory, that the ancestry of all the insects (including the Arachnids and Myriopods) should be traced directly to the worms. The development of the degraded, aberrant Arachnidan Pentastomum accords, in some important respects, with that of the intestinal worms. The Leptus-form larva of Julus, with its strange embryological development, in some respects so like that of some worms, points in that direction, as certainly as does the embryological development of the egg-parasite Ophioneurus. The Nauplius form of the embryo or larva of nearly all Crustacea, also points back to the worms as their ancestors, the divergence having perhaps originated, as we have suggested, in the Rotatoria. 198. A Rotifer. While the Crustacea may have resulted from a series of prototypes leading up from the Rotifers (Fig. 198), it is barely But when once inside the circle of the class of insects the ground is firmer, as our knowledge is surer. Granting now that the Leptus-like ancestor of the six-footed insects has become established, it is not so difficult to see how the PodurÆ and finally a form like Campodea appeared. Aquatic forms resembling the larva of the EphemerÆ, PerlÆ and, more remotely, the ForficulÆ and white ants of to-day were probably evolved with comparative suddenness. Given the evolution of forms like the earwigs (Forficula), cockroaches and white ants (Termes), the latter of which abounded in the coal period, and it was not a great step forward to the evolution of the Dragon 199. Chrysopa. 200. Panorpa. We have thus advanced from wingless to winged forms, i. e., from insects without a metamorphosis to those with a partial metamorphosis like the Perlas; to the May flies and Dragon flies, in which the adult is still more unlike the larva; to the Chrysopa (Fig. 199) and Forceps Tails (Panorpa, Fig. 200) and Caddis flies, in which, especially the latter, the metamorphosis is complete, the pupa being inactive and enclosed in a cocoon. 201. Embryo of Diplax. Having assumed the creation of our Leptus by evolutional laws, we must now account for the appearance of tracheÆ and those organs so dependent on them, the wings, which, by their presence and consequent changes in the structure of the crust of the body, afford such distinctive characters to the flying insects, and raise them so far above the creeping spiders and centipedes. Our Leptus at first undoubtedly breathed through the skin, as do most of the Poduras, since we have been unable to find tracheÆ in them, nor even in the prolarva of a genus of minute ichneumon egg parasites, nor in the LinguatulÆ and Tardigrades, and some mites, such as the Itch insect and the Demodex, and other Acari. In the Myriopod, Pauropus, Lubbock was unable to find any traces of tracheÆ. If we examine the embryo of an insect shortly before birth, as in the young Dragon fly (figure 201, the dotted line t crosses the rudimentary tracheÆ), we find it to consist of The next inquiry is as to the origin of the wings. Here the question arises if wingless forms are exceptional among the winged insects, and the loss of wings is obviously dependent on the habits (as in the lice), and environment of the species (as in beetles living on islands, which are apt to lose the hinder pair of wings), why may not their acquisition in the first place have been due to external agencies; and, as they are suddenly discarded, why may they not have suddenly appeared in the first place? In aquatic larvÆ there are often external gill-like organs, being simple sacs permeated by tracheÆ (as in Agrion, Fig. 129, or the May flies). These organs are virtually aquatic wings, aiding the insect in progression as well as in aËrating the blood, as in the true wings. They are very variable in position, some being developed at the extremity of the abdomen, as in Agrion, or along the sides, as in the May flies, or filiform and arranged in tufts on the under side of the body, as in Perla; and the naturalist is not surprised to find them absent or present in accordance with the varying habits of the animal. For example, in the larvÆ of the larger Dragon flies (Libellula, etc.) they are wanting, while in Agrion and its allies they are present. Now we conceive that wings formed in much the same way, and with no more disturbance, so to speak, to the insect's organization, appeared during a certain critical period in the metamorphosis of some early insect. As soon as this novel mode of locomotion became established we can easily see how surrounding circumstances would favor their farther development until the presence of wings became universal. If space permitted us to pursue this interesting subject farther, we could show how invariably correlated in form and structure are the wings of insects to the varied conditions by which they are surrounded, and which we are forced to believe stand in the relation of cause to effect. Again, why should the wings always appear on the thorax and on the upper instead of the under side? As this is the seat of the centre of gravity, it is evident that cosmical laws as well as the more immediate laws of biology determine the position and nature of the wings of an insect. Correlated with the presence of wings is the wonderful differentiation of the crust, especially of the thorax, where each segment consists of a number of distinct pieces; while in the spiders and Myriopods the segments are as simple as in the abdominal segments of the winged insect. It is not difficult here to trace a series leading up from the Poduras, in which the segments are like those of spiders, to the wonderful complexity of the parts in the thoracic segments of the Lepidoptera and Hymenoptera. In his remarks "On the Origin of Insects," We have arrived, then, at our Leptus, with a head bearing two pairs of jaws. The spiders and mites do not advance beyond this stage. But in the true insects and Myriopods, we have the addition of special sense organs, the antennÆ, and another pair of appendages, the labial palpi. It is evident that in the ancestor of these two groups the first pair of appendages became early adapted for purely sensory purposes, and were naturally projected far in advance of the mouth, forming the antennÆ. Before considering the changes from the mandibulate form Pl 2. EXAMPLES OF LEPTIFORM LARVÆ. Explanation of Plate 2. Figure 1, different forms of Leptus; 2, Diplax; 3, Coccinella larva; 4, Cicada larva; 5, Cicindela larva; 6, Ant Lion; 7, Calligrapha larva; 8, Aphis larva; 9, Hemerobius larva; 10, Glyrinua larva; 11, Carabid larva; 12, MeloË larva.Pl 3. EXAMPLES OF ERUCIFORM LARVÆ. Explanation of Plate 3. Figure 1. Panorpa larva; 2, Phryganea larva; 3, Weevil larva; 4, third larva of MeloË; 5, Chionea larva; 6, Carpet Worm; 7, Phora larva; 8, Wheat Caterpillar; 9, Sphinx Caterpillar; 10, Acronycta? larva; 11, Saw Fly larva; 12, Abia Saw Fly larva; 13, Halictus larva; 14, Andrena larva.204. Tipula Larva. For reasons which we will not pause here to discuss, we have always regarded the eruciform type of larva as the highest. That it is the result of degradation from the Leptus or Campodea form, we should be unwilling to admit, though the maggots of flies have perhaps retrograded from such forms as the larvÆ of the mosquitoes and crane flies (Tipulids, Fig. 204). That the cylindrical form of the bee grub and caterpillar is the result of modification through descent is evident in the caterpillar-like form of the immature Caddis fly (Pl. 3, fig. 2). Here the fundamental characters of the larva are those of the Corydalus and Sialis and Panorpa, types of closely allied groups. The features that remind us of caterpillars are superadded, evidently the result of the peculiar tube-inhabiting habits of Having endeavored to show that the caterpillar is a later production than the young, wingless cockroach, with which geological facts harmonize, we have next to account for the origin of a metamorphosis in insects. Here it is necessary to disabuse the reader's mind of the prevalent belief that the terms larva, pupa and imago are fixed and absolute. If we examine at a certain season the nest of a humble bee, we shall find the occupants in every stage of growth from the egg to the pupa, and even to the perfectly formed bee ready to break out of its larval cell. So slight are the differences between the different stages that it is difficult to say where the larval stage ends and the pupa begins, so also where the pupal state ends and the imago begins. The following figures (205-208) will show four of the most characteristic stages of growth, but it should be remembered that there are intermediate stages between. Now we have noticed similar stages in the growth of a moth, though a portion of them are concealed beneath the hard, dense chrysalis skin. The external differences between the larval and pupal states are fixed for a large part of the year in most butterflies and moths, though even in this respect there is every possible variation, some moths or butterflies passing through their transformations in a few weeks, others requiring several months, while still others take a year, the majority of the moths living under ground in the pupa state for eight or nine months. The stages of metamorphosis in the Diptera are no more suddenly acquired than in the bee or butterfly. In all these insects the rudiments of the wings, legs, and even of the ovipositor of the adult exist in the young larva. We have found somewhat similar intermediate stages in the metamorphoses of the beetles. The insects we have mentioned are those with a "complete 205. Larva. 206. Semi-pupa. EARLY STAGES OF THE HUMBLE BEE.Still how did the perfect metamorphosis arise? We can only answer this indirectly by pointing to the Panorpa and Caddis flies, with their nearly perfect metamorphosis, though more nearly allied otherwise to those Neuroptera with an incomplete metamorphosis, as the lace-winged fly, than the insects of any other suborder. If, among a group of insects such as the Neuroptera, we find different families with all grades of perfection in metamorphosis, it is possible that larger and higher groups may exist in which these modes of metamorphosis may be fixed and characteristic of each. Had we more space for the exposition of many known facts, the sceptic might perceive that by observing how arbitrary and dependent on the habits of the insects are the metamorphoses of some groups, the fixed modes of other and more general groups may be seen to be probably due to biological causes, or in other words have been acquired through changes of habits or of the temperature of the seasons and of climates. Many facts crowd upon us, which might serve as illustrations and proofs of the position we have taken. For instance, though we have in tropics rainy and dry seasons when, in the latter, insects remain quiescent in the chrysalis state as in the temperate and frigid zones, yet did not the change from the earlier ages of the globe, when the temperature of the earth was nearly the same the world over, to the times of the present distribution of heat and cold in zones, possibly have its influence on the metamorphoses of insects and other animals? It is a fact that the remains of those insects with a complete metamorphosis (the bees, butterflies and moths, flies and beetles) abound most in the later deposits, while those with an incomplete metamorphosis are fewer in number and the earliest to appear. Again, certain groups of insects are not found in the polar regions. Their absence is evidently due to the adverse climatic conditions of those regions. The development of the same groups is striking in the tropics, where the sum of environing conditions all tend to favor the multiplication of insect forms. 209. Jaws of Ant Lion. It should be observed that some insects, as the grasshopper, for example, as MÜller says, "quit the egg in a form which is dis 210. Mouth-parts of the House fly. 211. Mouth-parts of Horse fly. Another puzzle for the evolutionist to solve is how to account for the change from the caterpillar with its powerful jaws, to the butterfly with its sucking or haustellate mouth-parts. We shall best approach the solution of this difficult problem by a study of a wide range of facts, but a few of which can be here noticed. The older entomologists divided insects into haustellate or suctorial, and mandibulate or biting insects, the butterfly being an example of one, and the beetle serving to illustrate the other category. But we shall find in studying the different groups that these are relative and not absolute terms. We find mandibulate insects with enormous jaws, like the Dytiscus, or Chrysopa larva or ant lion, perforated, as in the former, or enclosing, as in the latter two insects, the maxillÆ (b), which slide backward and forward within the hollowed mandibles (a, Fig. 209, jaws of the ant lion), along which the blood of their victims flows. They suck the blood, and do not tear the flesh of their prey. The enormous mandibles of the adult Corydalus are too large for use and, as Walsh observed, 212. Head of Humble bee. In the Cecropia moth it is difficult to trace the rudiments of the maxillÆ at all, and thus we have in the whole range of the moths, every gradation from the wholly aborted maxillÆ of the Platysamia Cecropia, to those of Macrosila cluentius of Madagascar, which form a tongue, according to Mr. Wallace, nine and a quarter inches in length, probably to enable 213. Mouth-parts of Moths. 214. Ichneumon Fly. Another set of organs, placed on quite another region of the body, unite to form the sting of the bee, or its equivalent the ovipositor of other hymenopterous insects, such as the Ichneumon fly (Fig. 214), the "saw" of the saw fly, and the augur of the Cicada. These are all formed on the same plan, arising early in the larval stage as three pairs of little tubercles, which ultimately form long blades, the innermost constituting the true ovipositor. We have found that one pair of these organs forms the "spring" of the Podura, and that in these insects it is three jointed, and thus is morphologically a pair of legs soldered together at their base. We would venture to regard the ovipositor of insects as probably representing three pairs of abdominal legs, comparable with those of the Myriopods, and even, as we have suggested in another place, the three pairs of jointed spinnerets of spiders. Thus the ovipositor of the bee has a history, and is not apparently a special creation, but a structure gradually developed to subserve the use of a defensive organ. So the organs of special sense in insects are in most cases simply altered hairs. The hairs themselves are modified epithelial cells. The eyes of insects, simple and compound, are at first simply epithelial cells, modified for a special purpose, and even the egg is but a modified epithelial cell attached to the walls of the ovary, which in turn is morphologically but a gland. Thus Nature deals in simples, and with her units of structure elaborates as her crowning work a temple in which the mind of man, formed in the image of God, may dwell. Her results are not the less marvellous because we are beginning to dimly trace the process by which they arise. It should not lessen our awe Some writers of the evolution school are strenuous in the belief that the evolution hypothesis overthrows the idea of archetypes, and plans of structure. But a true genealogy of animals and plants represents a natural system, and the types of animals, be they four, as Cuvier taught, or five, or more, are recognized by naturalists through the study of dry, hard, anatomical facts. Accepting, then, the type of articulates as founded in nature from the similar modes of development and points of structure perceived between the worms and the crustacea on the one hand, and the worms and insects on the other, have we not a strong genetic bond uniting these three great groups into one grand subkingdom, and can we not in imagination perceive the successive steps by which the Creator, acting through the laws of evolution, has built up the great articulate division of the animal kingdom? |