Triple, Quadruple, and Multiple Stars.—These, when observed with the naked eye, appear as single stars, but, when examined with a high magnifying power, each lucid point can be resolved into several component stars. They vary in number from three to half a dozen or more, and form systems of a more complex character than what are observed in the case of binary stars. In the usual construction of a triple system, the secondary star of a binary is resolvable into two, each star being in mutual revolution, whilst they both gravitate round their primary. By another arrangement, a close pair control the movements of a distant attendant. One of the most interesting of triple stars is the tricoloured ? AndromedÆ. The brilliant components of this system have their counterparts in the topaz, the emerald, and the sapphire—the larger star is of the third magnitude and of a golden yellow colour; the secondary of the fifth magnitude and of an emerald green. These stars are ten seconds apart, and, though they have been under observation since 1777, no orbital movement has as yet been detected, but their common proper motion indicates A system suggestive of the endless variety of stellar arrangement that exists throughout the sidereal regions is apparent in the case of the triple star ? Cancri. Two of the stars, of magnitudes six and seven, form a binary in rapid revolution, the components of which complete a circuit of their orbits in fifty-eight years, whilst the more distant third star, of almost similar magnitude, accomplishes a wide orbital ellipse round the other two in 500 or 600 years. These stars have been closely observed by astronomers during the past forty years, with the result that their motions have appeared most perplexing, and complicated beyond precedent. ‘If this be really a ternary system,’ wrote Sir John Herschel, ‘connected by the mutual attraction of its parts, its perturbations will present one of the most intricate problems in physical astronomy.’ The second star revolves round its primary, whilst the third pursues a retrograde course, but its path, instead of being even, presents the appearance of a series of circular loopings, in traversing which the Astronomers have arrived at the conclusion that these perturbations are produced by the presence of a fourth member, which, though invisible, is probably the most massive of the system—perhaps a magnificent world teeming with animated beings, and attended by three suns which gravitate round it, dispensing light and heat to meet the requirements of the various forms of life which exist on its surface. In this system we have an arrangement the reverse of what exists in the solar system, where all the planets revolve round a predominant sun; but here there is a strange verification of the old Ptolemaic belief with regard to the path of a sun, though in this instance there are three suns circling round a dark globe which they illumine and vivify. Triple stars occur with comparative frequency throughout the heavens. In Monoceros there is a fine triple star, discovered by Herschel, which he describes as ‘one of the most beautiful sights in the heavens.’ The stars ? and Scorpii form triple systems in which the components are differently arranged. In ? the primary and secondary consist of two revolving stars which control the movements of a distant attendant; in the primary and secondary stars are in mutual revolution, whilst round the former there circles a very close minute companion. There are doubtless many binary stars which, if examined with adequate telescopic power, would resolve themselves into triple and multiple Quadruple stars are usually arranged in pairs, i.e. the primary and secondary of a binary system are each resolvable into two, forming two pairs, each pair being in mutual revolution, while they both gravitate round their common centre of gravity. e LyrÆ, which has been described as a double double, is an example of a quadruple system, and ? Scorpii is of a similar construction, but more beautiful because its components are in closer proximity to each other. Close upon twenty of those double double systems have been discovered in different parts of the heavens. One of the most interesting of quadruple systems is ? Orionis, which is situated in the Great Nebula, by which it is surrounded. This star, when observed with a telescope of low power, can be at once resolved into four separate lucent points, so arranged as to form a quadrilateral figure or trapezium. They are of the fifth, sixth, seventh, and eighth magnitudes, and described as pale white, garnet, faint lilac, and red. Though they have been under careful observation for upwards of two centuries, no perceptible motion has been perceived as occurring among them, nor has there been any change in their relative positions—they appear to be perfectly motionless; but we must not infer from this that no physical bond of union exists between them, for they are situated at an amazing distance from the Earth. Ascending higher in the If we assume that around each of the components of a multiple star there circles a retinue of planetary worlds, we are confronted with a most perplexing problem as to how the dynamical stability of a system so different from, and so vastly more complicated than, that of our solar system is maintained—where, as it were, suns and planets intermingle—how numerous circling orbs can accomplish their revolutions without being swayed and deflected from their paths by the gravitational attraction of adjacent members of the same system. Perplexing though the arrangement of such a scheme may be to our conception, yet, each orb has been weighed, poised, and adjusted by Infinite Wisdom, to perform its intricate motions in synchronous harmony with other members of the system—all moving in unison like the parts of a complicated piece of mechanism, and maintained in stable equilibrium by their mutual attraction— Mystical dance, which yonder starry sphere Of planets and of fixed in all her wheels Resembles nearest; mazes intricate, Eccentric, intervolved, yet regular Then most, when most irregular they seem; And in their motions harmony divine So smooths her charming tones that God’s own ear Listens delighted.—v. 620-27. Should those suns be differently coloured, each emitting its own peculiar shade of light as it appears above the horizon, the varied aspects of the perpetual day enjoyed by the inhabitants of those circling worlds present to the imagination harmonies of light and shade over which it is pleasant to linger. Temporary, Periodical, and Variable Stars.—It may seem remarkable that among so many thousands of stars which spangle the firmament, there should occur no very perceptible change or A record has been kept of about twenty temporary stars that have been observed at various periods since the time that reliable data of those objects have been published. Pliny mentions the appearance of a new star in the time of Hipparchus (134 B.C.); it was seen in the constellation of the Scorpion, and it is said that it was the apparition of this star which induced the celebrated astronomer to construct what is known as the earliest star catalogue. A new star is said to have become visible when the Emperor Honorius ruled, and another during the reign of the Emperor Otho, about 945 A.D. In May 1012 a new star appeared in Aries, and in July 1203 another was observed in Scorpio, which resembled Saturn. The most remarkable star of this kind was one observed by Tycho BrahÉ, which appeared in the constellation Various theories have been advanced in order to account for the sudden outbursts of those stars, Some stars accomplish their cycle of change in a few days, many in a few weeks or months, and there are others which do not complete their periods until the expiration of a number of years. One of the most remarkable of variable stars is called Mira ‘the wonderful,’ in the constellation Cetus. When at its maximum brilliancy it shines for two or three weeks as a star of the second magnitude. It then begins to gradually decline, and at the end of three months becomes invisible. It remains invisible for five months, and then reappears, and during the ensuing three months it regains by Another remarkable star is ? Argus, which is surrounded by the great nebula in the constellation Argo Navis. It is invisible to the naked eye, but in the telescope it has a reddish appearance, and is slightly brighter than the stars in its vicinity. It was first observed by Halley in 1677, and it was then of the fourth magnitude. In 1751 it had risen to the second magnitude, and maintained its position as a star of this class until 1837, when, on December 16 of that year, its brilliancy suddenly increased, and it equalled in a short time a Centauri. It reached its maximum in 1843, and then it was surpassed only by Sirius. It maintained its brilliancy for about ten years. In 1858, it declined to the second magnitude, in 1859 to the third, and, gradually diminishing, it became invisible to the naked eye in 1868. It is now of the seventh magnitude, and is again increasing, and may soon resume its position among the other stars. It is believed to have a period of seventy years, and in that time its light ebbs and flows between the seventh and first magnitudes. The most interesting variable star in the heavens is Algol (the demon), in the constellation Perseus. Its light fluctuations can be observed without the aid of a telescope, and it completes a cycle of its changes in two or three days. For about two days Variable stars are found in greater numbers in some parts of the heavens than in others. Those of a white colour, and with shorter and more regular periods, are most numerous in the region of the Milky Way; those that are small, with long periods and of a reddish hue, are more widely removed from that zone. Stars of this class are all very remote, and no attempt has as yet been made to ascertain the parallax of Algol. Several theories have been suggested in order to account for the periodical brilliancy of those stars. It has been suggested that the stars have opaque non-luminous patches on their surfaces, and that during axial rotation their light ebbs and flows according as the dark or bright portions are turned It is now known that in the case of variables of the Algol type, the periodical fluctuations of their light arises from this cause, and that round Algol there is a dark world or satellite travelling, which completes a revolution of its orbit in about sixty-nine hours, and that, during each circuit, it intercepts one half of the light of its primary by partially eclipsing the orb, and thereby creating a diminution in its apparent magnitude which becomes perceptible at recurring intervals. Star Groups.—These are plentifully scattered over the heavens and, by their conspicuous brilliancy, add to the grandeur and magnificence of the midnight sky. The Hyades in Taurus, of which Aldebaran is the chief, forming the eye of the Bull, attract attention. The stars in Coma Bernices form a rich group; the sickle in Leo, the seven stars in Ursa Major, and those in Cassiopeia and Aquila are familiarly known to all observers. Besides these, there are many other groups and aggregations of stars which adorn the celestial vault and enhance the beauty of the heavens. Star clusters have been arranged into two classes, ‘irregular’ and ‘globular;’ but no sharp line of demarcation exists between them, though each have their distinctive peculiarities. Irregular clusters consist of aggregations of stars brought promiscuously together, and presenting an appearance devoid of any structural arrangement. They are of different shapes and sizes, possess no distinct outline, and are not condensed towards their centre, like those that are globular. On examination, they present an intricate reticulated appearance; streams and branches of stars extend outwards from the parent cluster, sometimes in rows and sinuous lines, and, in other instances, diverging from a common centre, forming sprays. Sometimes the stars are seen to follow each other on the same curve which terminates in loops and arches of symmetrical proportions. The cluster which from time immemorial has had bestowed upon it the chief attention of mankind are the beautiful Pleiades or Seven Sisters, and intertwined among its stars are the legendary and mythological beliefs of ancient nations and untutored tribes inhabiting the different regions of the globe. When viewed with a telescope of moderate size the cluster appears as a scattered group, and numerous stars become visible that are imperceptible to ordinary vision. In the sword-handle of Perseus there is a cluster which, to the naked eye, appears as a small patch of luminous cloud. This inconspicuous object when observed with an instrument of moderate power is resolved into a magnificent assemblage of stars, and presents a spectacle which creates in the mind of the beholder mingled feelings of admiration and amazement. No telescope has yet penetrated its utmost depths, or revealed all the glories of this shining region, crowded with glittering points of light comparable in number to the pebbles strewn on the shore of a troubled sea. The cluster Praesepe in Cancer is visible on a clear night to the unaided eye as a small nebula. This object attracted the attention of Galileo, to which he applied his newly invented telescope, and In Sobieski’s Shield there is a magnificent fan-shaped cluster of minute stars with a prominent one in its centre; and in the constellation of the Southern Cross there is a cluster which, on account of the varied colours of its component stars, has been compared by Sir John Herschel to ‘a piece of rich fancy jewellery;’ eight of the principal stars being coloured red, green, and blue. Globular Clusters.—These have been described by Herschel as ‘the most magnificent objects that can be seen in the heavens.’ They are all very remote, of a rounded form, and when viewed with a telescope present the appearance of ‘a ball of stars.’ In some clusters the constituent stars are distinguishable as minute points of light; in others, more remote, they are of a coarse granular texture, and in those still more distant they resemble a ‘heap of golden sand.’ Some clusters are situated at such a profound distance in space that it is impossible with the most powerful of telescopes to define their stellar structure; all that can be It is not known how the dynamical equilibrium of a star cluster is maintained; and on account of its extreme distance no motion is perceptible among its component stars. The laws by which those stellar aggregations are produced and governed are wrapped in obscurity, and the nature of the motions of their stars, whether towards concentration or diffusion, cannot at present be ascertained. If those globular clusters could be observed sufficiently near, they would most probably expand into vast systems of suns occupying immense regions of space. The largest and most magnificent globular cluster in the heavens is ? Centauri, in the Southern Hemisphere. To the naked eye it resembles a round, indistinct, cometary object, about equal to a star of the fourth magnitude; but when observed with a powerful telescope it appears as a globe of considerable dimensions composed of innumerable stars of the thirteenth and fifteenth magnitudes, all exceedingly minute and gathered into small knots and groups. A remarkable cluster in Toucani is described by Sir John Herschel as ‘most magnificent; very large; very bright, and very much compressed in the middle.’ The interior mass consists of closely aggregated pale rose-coloured stars, surrounded by others of a pure white which embrace the remainder of the cluster. There is a fine globular cluster in Sagittarius between the Archer’s head and the bow. It was observed by Hevelius in 1665. The central portion is very much compressed, and consists of excessively The finest and most remarkable object of this class visible in the northern heavens is the Great Cluster which lies between ? and ? Herculis. It was discovered by Halley in 1714, who writes: ‘This is but a little patch, but it shows itself to the naked eye when the sky is serene and the moon absent.’ When observed with a powerful telescope its magnificence at once becomes apparent to the beholder. ‘Perhaps,’ says Dr. Nichol, ‘no one ever saw it for the first time through a telescope without uttering a shout of wonder.’ At its circumference the stars are rather scattered, but towards the centre they appear so closely aggregated that their combined effulgence forms a perfect blaze of light. Sir William Herschel estimated that there are 14,000 stars in the cluster, each a magnificent world but unaccompanied by any planetary attendants. As a result of more recent investigations this number has been considerably reduced, and it is now generally believed that about 4,000 stars enter into the formation of the cluster. As its distance from the Earth is unknown, it follows that Galaxies.—These consist of vast aggregations of stars which form separate ‘island universes’ floating in the depths of space; they are believed to equal in magnitude and magnificence the Milky Way—the galaxy to which our system belongs. NebulÆ.—We now reach the last, and what are believed to be the most distant of the known contents of the heavens. They are all exceedingly remote, devoid of any perceptible motion, faintly luminous, and, with the exception of two of their number, invisible to the naked eye. Halley was the first astronomer who paid any attention to those objects. In 1716 he enumerated six of them, but of this number only two can, in a strict sense, be regarded as nebulÆ, the others since then have been resolved into magnificent star clusters. In 1784, Messier catalogued 103 nebulÆ, and the Herschels—father and son—in their survey of the stellar regions, discovered 4,000 of those objects. There are now 8,000 known nebulÆ in the heavens, but the majority of them are not of much interest to astronomers. Prior to the invention of the spectroscope it was believed that all nebulÆ were irresolvable star clusters, but the analysis of their light by this instrument indicated that their composition was not Much that is mysterious and uncertain is associated with those objects which appear to lie far beyond the limits of our sidereal system. It is now generally believed that they exhibit the earliest stage in the formation of stars and planets—inchoate worlds in process of slow evolution, which will eventually condense into systems of suns, and planetary worlds. NebulÆ present every variety of form. Some are annular, elliptic, circular, and spiral; others are fan-shaped, cylindrical, and irregular, with tufted appendages, rays, and filaments. A fancied resemblance to different animated creatures has been observed in some. In Taurus there is a nebula called the ‘Crab’ on account of its likeness to the crustacean; another is called the ‘Owl Nebula’ from its resemblance to the face of that bird. The Orion Nebula suggests the opened jaws of a fish or sea monster, hence called the Fish-Mouth Nebula. There is a Horse-Shoe Nebula, a Dumb-Bell Nebula, and many others of various shapes and forms. They are classified as follows: (1) Annular NebulÆ, (2) Elliptic NebulÆ, (3) Spiral NebulÆ, (4) Planetary NebulÆ, (5) Nebulous Stars, (6) Large Irregular NebulÆ. Annular NebulÆ.—These resemble in appearance an oval-shaped luminous ring; they are comparatively few in number, and not more than a dozen Elliptical NebulÆ.—The most interesting object of this class is the Great Nebula in Andromeda, called ‘the transcendentally beautiful queen of the nebulÆ’—an appellation which it scarcely merits. This object, which is plainly visible to the Astronomers have been baffled in their attempts to discover the nature of the Andromeda Nebula. Though great telescopes have been able to render visible thousands of stars over and around it, yet the nebula itself is irresolvable and bears no trace Other elliptical nebulÆ are found in different regions of the heavens. In Ursa Major there is an oval nebula resembling that of Andromeda, but on a much smaller scale. It possesses a nucleus, and on the photographic plate there can be detected the presence of spiral structure, indicating the existence of streams of nebulous matter. Adjacent to this nebula is another of the same class with a double nucleus, and associated with it is a nebulous star. Spiral NebulÆ.—The great reflector of Earl Rosse at Parsonstown was the successful means by which nebulÆ of this form were discovered. This powerful telescope was capable of defining with greater accuracy the structural formation of those objects than any other instrument in use. It was ascertained that spiral coils and convoluted whorls enter into the structure of most nebulÆ, indicating a similarity in the process of change which may be going on in these vast accumulations of cosmical matter. The most interesting specimen of a spiral nebula is situated in Canes Venatici. It consists of spiral coils emanating from a centre with a nucleus and surrounded by a narrow luminous ring. In appearance it resembles the coiled mainspring of a watch. Planetary NebulÆ.—These have been so named The most prominent nebula of this class is situated in the constellation Ursa Major, and is called the Owl Nebula, from its fancied resemblance to the face of that bird. Sir John Herschel describes it as ‘a most extraordinary object, a large, uniform nebulous disc, quite round, very bright, not sharply defined, but yet very suddenly fading away to darkness.’ When examined in 1848 with Earl Rosse’s reflector, two bright stars were discovered in its interior; each was in the centre of a circular dark space surrounded by whorls of nebulous Nebulous Stars.—These stars are each surrounded by a luminous haze several minutes of arc Large Irregular NebulÆ.—These are found in both hemispheres, and are remarkable on account of the varied appearances which they present, and the large extent of space which many of them occupy. In some, the nebulous matter of which they are composed can be seen like masses of tufted flocculi, sometimes piled up, and at other times promiscuously scattered, resembling in appearance the foam on the crested billows of a surging ocean rendered suddenly motionless, or cirro-cumuli floating in a tranquil sky. Islands of light with intervening dark channels, promontories projecting into gulfs of deep shade, sprays of luminous matter, convoluted filaments, whorls, The Great Nebula in Argo, in the Southern Hemisphere, is one of the most remarkable objects of this class. It consists of bright irregular masses of luminous matter, streaks and branches, and occupies an area about equal to one square degree. At its eastern border is situated the variable star ? Argus, which fluctuates between the first and seventh magnitudes in a period of about seventy years. A rich portion of the Galaxy lies in front of the nebula, which creates an effect as if it were studded over with stars. Sir John Herschel, in describing this nebula, writes as follows:—‘The whole is situated in a very rich and brilliant part of the Milky Way, so thickly strewed with stars that, in the area occupied by the nebula, not less than 1,200 have been actually counted. Yet it is obvious that these have no connection whatever with the nebula, being, in fact, only a simple continuation over it of the general ground of the Galaxy. The conclusion can hardly be avoided that, in looking at it, we see through and beyond the Milky Way, far out into space, through a starless region, disconnecting it altogether from our system. It is not easy for language to convey a full impression of the beauty and sublimity of the spectacle which this nebula offers as it enters the field of view of a telescope, fixed in right ascension, by the diurnal motion, ushered in as it is by so glorious and innumerable a procession of stars, to which it forms a sort of climax, and in a part of The ‘Crab’ Nebula in Taurus, the ‘Horse-Shoe’ Nebula in Sobieski’s Shield, and the ‘Dumb-Bell’ Nebula in Vulpecula are remarkable objects, but the assistance of a powerful telescope is required to bring out their distinctive features. The ‘Crab’ Nebula is partially resolvable into stars; the other two are believed to be gaseous. The largest and most remarkable of all the nebulÆ is that known as the Great Nebula in Orion, which was discovered and delineated by Huygens in the middle of the seventeenth century. It is perceptible to the naked eye, and when viewed with a glass of low power can be seen as a circular luminous haze surrounding the multiple star ? Orionis—one of the stars in the Giant’s Sword, and which is of itself a remarkable object. The most conspicuous part of the nebula bears a slight resemblance to the wing of a bird; it consists of flocculent masses of nebulous matter possessing a faint greenish tinge. Sir John Herschel compared it to a surface studded over with flocks of wool, or to the breaking up of a mackerel sky when the clouds of which it consists begin to assume a cirrous appearance. Its brightest portion is occupied by four conspicuous stars, which In the Southern Hemisphere, near to the pole of the equator, are two nebulous clouds of unequal size; the larger having an area about four times that of the smaller. They are known as the Magellanic Clouds, having been called after the navigator Magellan. Both are visible on a moonless night, but in bright moonlight the smaller disappears. Sir John Herschel, when at the Cape of Good Hope, examined those objects with his powerful telescope. He described them ‘as consisting of swarms of stars, globular clusters, and nebulÆ of various kinds, some The description of the various kinds of nebulÆ leads us to consider what is called the Nebular Hypothesis. That the stars and solar system had at some time in the past a beginning, is as much a matter of certainty as that they will at some future time cease to be. Stars, like organic beings, have their birth, grow and arrive at maturity, then decline into a state of decrepitude, and finally die out. The duration of the life of a star, which may be reckoned by millions of years, depends upon the length of time during which it can maintain a temperature that renders it capable of emitting light. By the constant radiation of its heat into space, a condition of its constituent particles consequent upon the gradual contraction of its mass will ultimately occur, which will result in the exhaustion of its stores of thermal energy, the extinction of its light, and the reduction of what was once a brilliant orb to the condition of a mass of cold, opaque, inert matter. Inquiries as to the origin of the stars have led scientific men to conclude that they have been evolved from gaseous nebulÆ, and these have therefore been regarded as The nebular theory is incapable of proof or demonstration; but modern discoveries tend to support the accuracy of its conclusions, and its principles have now been adopted by the majority of philosophic thinkers. The physical changes which are going on in the nebulÆ towards stellar evolution, or in fully formed stars towards dissolution, are so slow that the life of an individual, or even the historical records of the past, are incapable of furnishing any evidence of alteration in their condition. A period of time infinitely greater than what has elapsed since the birth of science must pass before anything can be known of the life history of the stars; indeed, the allotted span of man’s The nebular hypothesis was first propounded by Kant, who suggested that the sun and planets originated from a vast and diffused mass of cosmical matter. This theory was afterwards supported by Herschel and by the great French astronomer Laplace. As a result of close and continued observation of the different classes of nebulÆ, Herschel arrived at the conclusion that there exists in space a widely diffused ‘shining fluid,’ of a nature totally unknown to us, and that the nebulosity which he perceived to surround some stars was not of a starry nature. He further adds that this self-luminous matter ‘seemed more fit to produce a star by its condensation than to depend on the star for its existence.’ His sagacious conclusion with regard to the non-stellar nature of this nebulous matter was afterwards confirmed by the spectroscope; for at that time it was believed that even the faintest nebulÆ were irresolvable star clusters. In 1811 Herschel read a paper before the Royal Society in which he propounded his famous nebular hypothesis, and stated his reasons for believing that nebulÆ, by their gradual condensation, were transformed into stars. Having assumed that there exists a highly attenuated self-luminous substance diffused over vast regions of space, he endeavoured to show that by the law of attraction its particles would have a tendency to coalesce and form aggregations 1. All the planets revolve round the Sun in the same direction, and they all occupy nearly the same plane. 2. Their satellites, with the exception of those of Uranus and Neptune, perform their revolutions in obedience to the same law. 3. The rotation on their axes of the Sun, planets, and satellites is in the same direction as their orbital motion. Between the orbits of Mars and Jupiter there revolves a remarkable group of small planets or planetoids. On account of the absence of a planet in this region, where, according to the laws of planetary distances, one ought to be found, the existence of those small bodies was suspected for some years prior to their discovery. The first was detected by Piazzi at Palermo in 1801; two others were discovered by Olbers in 1802 and 1807, and one by Harding in 1804. For some time it was believed that no more planetoids existed, but in 1845 a fifth was detected by Hencke, and from that year until now upwards of 300 of those small bodies have been Though, by means of the nebular hypothesis, it is impossible to explain all the phenomena associated with the motions of the orbs which enter into the structure of the solar system, yet this does not detract much from the merits of the theory, the fundamental principles of which are based upon the evolution of the solar system from a rotating nebula. No attempt has been made to supplant the nebular hypothesis by any other theory of cosmical evolution. Modern investigations and discoveries have strengthened its position, and at present it is the only means by which we can account for the existence of the visible material universe by which we are surrounded. In the days when Milton lived—three hundred years ago—the nocturnal heavens presented the same appearance to an observer as they do at the present time. The stars pursued their identical paths, and looked down upon the Earth with the same aspect of serene tranquillity, regardless of the vicissitudes which affect the inhabitants of this terrestrial sphere. The constellations that adorn the celestial vault duly appeared in their seasons, and in the ascending scale Of Heaven the stars that usher evening rose.—iv. 354-55. The winter glories of Orion, the scintillating brilliancy of Sirius, and the spangled firmament, bearing no impress of change or variation which would lead one to conclude that the heavens were other than eternal, attracted then, as now, the admiration of beholders. About him all the Sanctities of Heaven Stood thick as stars.—iii. 60-61. And sowed with stars the Heavens thick as a field.—vii. 358. Amongst innumerable stars, that shone Stars distant, but nigh hand seemed other worlds.—iii. 564-65. her reign With thousand lesser lights dividual holds, With thousand thousand stars, that then appeared Spangling the hemisphere.—vii. 381-84. Milton describes the number of the fallen angels as an host Innumerable as the stars of night.—v. 744-45, and the attention of Satan is directed by the archangel Uriel to the multitude of stars formed from the chaotic elements of matter: Numberless as thou seest, and how they move; Each had his place appointed, each his course; The rest in circuit walls this universe.—iii. 719-21. brighter once amidst the host Of angels than that star the stars among.—vii. 132-33. There is but one star to which Milton makes individual allusion, and, though not of any conspicuous brilliancy, yet it is one of much importance to astronomers— the fleecy star that bears Andromeda far off Atlantic seas Beyond the horizon.—iii. 558-60. This is a Arietis, the first point in the constellation of that name, which signifies the Ram, and from which the right ascensions of the stars are measured on the celestial sphere. In the time of Hipparchus the ecliptic intersected the celestial equator in Aries, which indicated the commencement of the astronomical year and the occurrence of the vernal equinox; but, owing to precession, this First Aries, glorious in his golden wool, Looks back and wonders at the mighty Bull. Aries is associated with the legend of the Golden Fleece, in quest of which Jason and his valiant crew sailed in the ship ‘Argo.’ In the autumn, Andromeda is situated above Aries, and would seem to be borne by the latter, which accounts for Milton’s description of the relative positions of those two constellations. Milton alludes to the starry sphere in several passages in his poem, and also mentions the starry pole above which he soared in imagination up to the Empyrean or Heaven of Heavens. His contemplation of the Galaxy must have impressed his mind with the magnitude and extent of the sidereal universe, for he was aware that this luminous zone which encircles the heavens consists of myriads of stars, so remote as to be incapable of definition by unaided vision. Milton’s description of this vast assemblage of stars is worthy of its magnificence, and the purpose with which he poetically associates this glorified highway testifies to the sublimity of his thoughts and to the originality of his genius. In those parts of his poem in which he describes the glories of the celestial regions, and instances the beautiful phenomena associated with the individual orbs of the The invention of the telescope, and the important discoveries made by Kepler, Galileo, and Newton in the seventeenth century, were the means of effecting a rapid advance in the science of astronomy; but that branch of it known as sidereal astronomy was not then in existence. The star depths, owing to inadequate telescopic power, remained unexplored, and the secrets associated with those distant regions were inviolable, and lay beyond the reach of human knowledge. The physical constitution of the stars was unknown, nor was it ascertained with any degree of certainty that they were suns. The knowledge possessed by astronomers in those days was but meagre compared with what is now known of the sidereal heavens. Milton’s astronomical knowledge, we find, was commensurate with what was known of the stellar universe, and this he has conspicuously displayed in his poem. |