LETTER XXVI. COMETS, CONTINUED. "Incensed with indignation,

Previous
LETTER XXVI. COMETS, CONTINUED. "Incensed with indignation, Satan stood Unterrified, and like a comet burned, That fires the length of Ophiucus huge In the Arctic sky, and from his horrid train Shakes pestilence and war."-- Milton.

Among other great results which have marked the history of Halley's comet, it has itself been a criterion of the existing state of the mathematical and astronomical sciences. We have just seen how far the knowledge of the great laws of physical astronomy, and of the higher mathematics, enabled the astronomers of 1682 and 1759, respectively, to deal with this wonderful body; and let us now see what higher advantages were possessed by the astronomers of 1835. During this last interval of seventy-six years, the science of mathematics, in its most profound and refined branches, has made prodigious advances, more especially in its application to the laws of the celestial motions, as exemplified in the 'Mecanique Celeste' of La Place. The methods of investigation have acquired greater simplicity, and have likewise become more general and comprehensive; and mechanical science, in the largest sense of that term, now embraces in its formularies the most complicated motions, and the most minute effects of the mutual influences of the various members of our system. You will probably find it difficult to comprehend, how such hidden facts can be disclosed by formularies, consisting of a's and b's, and x's and y's, and other algebraic symbols; nor will it be easy to give you a clear idea of this subject, without a more extensive acquaintance than you have formed with algebraic investigations; but you can easily understand that even an equation expressed in numbers may be so changed in its form, by adding, subtracting, multiplying and dividing, as to express some new truth at every transformation. Some idea of this may be formed by the simplest example. Take the following: 3+4=7. This equation expresses the fact, that three added to four is equal to seven. By multiplying all the terms by 2, we obtain a new equation, in which 6+8=14. This expresses a new truth; and by varying the form, by similar operations, an indefinite number of separate truths may be elicited from the simple fundamental expression. I will add another illustration, which involves a little more algebra, but not, I think, more than you can understand; or, if it does, you will please pass over it to the next paragraph. According to a rule of arithmetical progression, the sum of all the terms is equal to half the sum of the extremes multiplied into the number of terms. Calling the sum of the terms s, the first term a, the last h, and the number of terms n, and we have (½)n(a+h)=s; or n(a+h)=2s; or a+h=2s/n; or a=(2s/n)-h; or h=(2s/n)-a. These are only a few of the changes which may be made in the original expression, still preserving the equality between the quantities on the left hand and those on the right; yet each of these transformations expresses a new truth, indicating distinct and (as might be the case) before unknown relations between the several quantities of which the whole expression is composed. The last, for example, shows us that the last term in an arithmetical series is always equal to twice the sum of the whole series divided by the number of terms and diminished by the first term. In analytical formularies, as expressions of this kind are called, the value of a single unknown quantity is sometimes given in a very complicated expression, consisting of known quantities; but before we can ascertain their united value, we must reduce them, by actually performing all the additions, subtractions, multiplications, divisions, raising to powers, and extracting roots, which are denoted by the symbols. This makes the actual calculations derived from such formularies immensely laborious. We have already had an instance of this in the calculations made by Lalande and Madame Lepaute, from formularies furnished by Clairaut.

The analytical formularies, contained in such works as La Place's 'Mecanique Celeste,' exhibit to the eye of the mathematician a record of all the evolutions of the bodies of the solar system in ages past, and of all the changes they must undergo in ages to come. Such has been the result of the combination of transcendent mathematical genius and unexampled labor and perseverance, for the last century. The learned societies established in various centres of civilization have more especially directed their attention to the advancement of physical astronomy, and have stimulated the spirit of inquiry by a succession of prizes, offered for the solutions of problems arising out of the difficulties which were progressively developed by the advancement of astronomical knowledge. Among these questions, the determination of the return of comets, and the disturbances which they experience in their course, by the action of the planets near which they happen to pass, hold a prominent place. In 1826, the French Institute offered a prize for the determination of the exact time of the return of Halley's comet to its perihelion in 1835. M. Pontecoulant aspired to the honor. "After calculations," says he, "of which those alone who have engaged in such researches can estimate the extent and appreciate the fastidious monotony, I arrived at a result which satisfied all the conditions proposed by the Institute. I determined the perturbations of Halley's comet, by taking into account the simultaneous actions of Jupiter, Saturn, Uranus, and the Earth, and I then fixed its return to its perihelion for the seventh of November." Subsequently to this, however, M. Pontecoulant made some further researches, which led him to correct the former result; and he afterwards altered the time to November fourteenth. It actually came to its perihelion on the sixteenth, within two days of the time assigned.

Nothing can convince us more fully of the complete mastery which astronomers have at last acquired over these erratic bodies, than to read in the Edinburgh Review for April, 1835, the paragraph containing the final results of all the labors and anticipations of astronomers, matured as they were, in readiness for the approaching visitant, and then to compare the prediction with the event, as we saw it fulfilled a few months afterwards. The paragraph was as follows: "On the whole, it may be considered as tolerably certain, that the comet will become visible in every part of Europe about the latter end of August, or beginning of September, next. It will most probably be distinguishable by the naked eye, like a star of the first magnitude, but with a duller light than that of a planet, and surrounded with a pale nebulosity, which will slightly impair its splendor. On the night of the seventh of October, the comet will approach the well-known constellation of the Great Bear; and between that and the eleventh, it will pass directly through the seven conspicuous stars of that constellation, (the Dipper.) Towards the end of November, the comet will plunge among the rays of the sun, and disappear, and will not issue from them, on the other side, until the end of December."

Let us now see how far the actual appearances corresponded to these predictions. The comet was first discovered from the observatory at Rome, on the morning of the fifth of August; by Professor Struve, at Dorpat, on the twentieth; in England and France, on the twenty-third; and at Yale College, by Professor Loomis and myself, on the thirty-first. On the morning of that day, between two and three o'clock, in obedience to the directions which the great minds that had marked out its path among the stars had prescribed, we directed Clarke's telescope (a noble instrument, belonging to Yale College) towards the northeastern quarter of the heavens, and lo! there was the wanderer so long foretold,—a dim speck of fog on the confines of creation. It came on slowly, from night to night, increasing constantly in magnitude and brightness, but did not become distinctly visible to the naked eye until the twenty-second of September. For a month, therefore, astronomers enjoyed this interesting spectacle before it exhibited itself to the world at large. From this time it moved rapidly along the northern sky, until, about the tenth of October, it traversed the constellation of the Great Bear, passing a little above, instead of "through" the seven conspicuous stars constituting the Dipper. At this time it had a lengthened train, and became, as you doubtless remember, an object of universal interest. Early in November, the comet ran down to the sun, and was lost in his beams; but on the morning of December thirty-first, I again obtained, through Clarke's telescope, a distinct view of it on the other side of the sun, a moment before the morning dawn.

This return of Halley's comet was an astronomical event of transcendent importance. It was the chronicler of ages, and carried us, by a few steps, up to the origin of time. If a gallant ship, which has sailed round the globe, and commanded successively the admiration of many great cities, diverse in language and customs, is invested with a peculiar interest, what interest must attach to one that has made the circuit of the solar system, and fixed the gaze of successive worlds! So intimate, moreover, is the bond which binds together all truths in one indissoluble chain, that the establishment of one great truth often confirms a multitude of others, equally important. Thus the return of Halley's comet, in exact conformity with the predictions of astronomers, established the truth of all those principles by which those predictions were made. It afforded most triumphant proof of the doctrine of universal gravitation, and of course of the received laws of physical astronomy; it inspired new confidence in the power and accuracy of that instrument (the calculus) by means of which its elements had been investigated; and it proved that the different planets, which exerted upon it severally a disturbing force proportioned to their quantity of matter, had been correctly weighed, as in a balance.

I must now leave this wonderful body to pursue its sublime march far beyond the confines of Uranus, (a distance it has long since reached,) and take a hasty notice of two other comets, whose periodic returns have also been ascertained; namely, those of Biela and Encke.

Biela's comet has a period of six years and three quarters. It has its perihelion near the orbit of the earth, and its aphelion a little beyond that of Jupiter. Its orbit, therefore, is far less eccentric than that of Halley's comet; (see Frontispiece;) it neither approaches so near the sun, nor departs so far from it, as most other known comets: some, indeed, never come nearer to the sun than the orbit of Jupiter, while they recede to an incomprehensible distance beyond the remotest planet. We might even imagine that they would get beyond the limits of the sun's attraction; nor is this impossible, although, according to La Place, the solar attraction is sensible throughout a sphere whose radius is a hundred millions of times greater than the distance of the earth from the sun, or nearly ten thousand billions of miles.

Some months before the expected return of Biela's comet, in 1832, it was announced by astronomers, who had calculated its path, that it would cross the plane of the earth's orbit very near to the earth's path, so that, should the earth happen at the time to be at that point of her revolution, a collision might take place. This announcement excited so much alarm among the ignorant classes in France, that it was deemed expedient by the French academy, that one of their number should prepare and publish an article on the subject, with the express view of allaying popular apprehension. This task was executed by M. Arago. He admitted that the earth would in fact pass so near the point where the comet crossed the plane of its orbit, that, should they chance to meet there, the earth would be enveloped in the nebulous atmosphere of the comet. He, however, showed that the earth would not be near that point at the same time with the comet, but fifty millions of miles from it.

The comet came at the appointed time, but was so exceedingly faint and small, that it was visible only to the largest telescopes. In one respect, its diminutive size and feeble light enhanced the interest with which it was contemplated; for it was a sublime spectacle to see a body, which, as projected on the celestial vault, even when magnified a thousand times, seemed but a dim speck of fog, still pursuing its way, in obedience to the laws of universal gravitation, with the same regularity as Jupiter and Saturn. We are apt to imagine that a body, consisting of such light materials that it can be compared only to the thinnest fog, would be dissipated and lost in the boundless regions of space; but so far is this from the truth, that, when subjected to the action of the same forces of projection and solar attraction, it will move through the void regions of space, and will describe its own orbit about the sun with the same unerring certainty, as the densest bodies of the system.

Encke's comet, by its frequent returns, (once in three and a third years,) affords peculiar facilities for ascertaining the laws of its revolution; and it has kept the appointments made for it with great exactness. On its return in 1839, it exhibited to the telescope a globular mass of nebulous matter, resembling fog, and moved towards its perihelion with great rapidity. It makes its entire excursions within the orbit of Jupiter.

But what has made Encke's comet particularly famous, is its having first revealed to us the existence of a resisting medium in the planetary spaces. It has long been a question, whether the earth and planets revolve in a perfect void, or whether a fluid of extreme rarity may not be diffused through space. A perfect vacuum was deemed most probable, because no such effects on the motions of the planets could be detected as indicated that they encountered a resisting medium. But a feather, or a lock of cotton, propelled with great velocity, might render obvious the resistance of a medium which would not be perceptible in the motions of a cannon ball. Accordingly, Encke's comet is thought to have plainly suffered a retardation from encountering a resisting medium in the planetary regions. The effect of this resistance, from the first discovery of the comet to the present time, has been to diminish the time of its revolution about two days. Such a resistance, by destroying a part of the projectile force, would cause the comet to approach nearer to the sun, and thus to have its periodic time shortened. The ultimate effect of this cause will be to bring the comet nearer to the sun, at every revolution, until it finally falls into that luminary, although many thousand years will be required to produce this catastrophe. It is conceivable, indeed, that the effects of such a resistance may be counteracted by the attraction of one or more of the planets, near which it may pass in its successive returns to the sun. Still, it is not probable that this cause will exactly counterbalance the other; so that, if there is such an elastic medium diffused through the planetary regions, it must follow that, in the lapse of ages, every comet will fall into the sun. Newton conjectured that this would be the case, although he did not found his opinion upon the existence of such a resisting medium as is now detected. To such an opinion he adhered to the end of life. At the age of eighty-three, in a conversation with his nephew, he expressed himself thus: "I cannot say when the comet of 1680 will fall into the sun; possibly after five or six revolutions; but whenever that time shall arrive, the heat of the sun will be raised by it to such a point, that our globe will be burned, and all the animals upon it will perish."

Of the physical nature of comets little is understood. The greater part of them are evidently mere masses of vapor, since they permit very small stars to be seen through them. In September, 1832, Sir John Herschel, when observing Biela's comet, saw that body pass directly between his eye and a small cluster of minute telescopic stars of the sixteenth or seventeenth magnitude. This little constellation occupied a space in the heavens, the breadth of which was not the twentieth part of that of the moon; yet the whole of the cluster was distinctly visible through the comet. "A more striking proof," says Sir John Herschel, "could not have been afforded, of the extreme transparency of the matter of which this comet consists. The most trifling fog would have entirely effaced this group of stars, yet they continued visible through a thickness of the comet which, calculating on its distance and apparent diameter, must have exceeded fifty thousand miles, at least towards its central parts." From this and similar observations, it is inferred, that the nebulous matter of comets is vastly more rare than that of the air we breathe, and hence, that, were more or less of it to be mingled with the earth's atmosphere, it would not be perceived, although it might possibly render the air unwholesome for respiration. M. Arago, however, is of the opinion, that some comets, at least, have a solid nucleus. It is difficult, on any other supposition, to account for the strong light which some of them have exhibited,—a light sufficiently intense to render them visible in the day-time, during the presence of the sun. The intense heat to which comets are subject, in approaching so near the sun as some of them do, is alleged as a sufficient reason for the great expansion of the thin vapory atmospheres which form their tails; and the inconceivable cold to which they are subject, in receding to such a distance from the sun, is supposed to account for the condensation of the same matter until it returns to its original dimensions. Thus the great comet of 1680, at its perihelion, approached within one hundred and forty-six thousand miles of the surface of the sun, a distance of only one sixth part of the sun's diameter. The heat which it must have received was estimated to be equal to twenty-eight thousand times that which the earth receives in the same time, and two thousand times hotter than red-hot iron. This temperature would be sufficient to volatilize the most obdurate substances, and to expand the vapor to vast dimensions; and the opposite effects of the extreme cold to which it would be subject in the regions remote from the sun would be adequate to condense it into its former volume. This explanation, however, does not account for the direction of the tail, extending, as it usually does, only in a line opposite to the sun. Some writers, therefore, suppose that the nebulous matter of the comet, after being expanded to such a volume that the particles are no longer attracted to the nucleus, unless by the slightest conceivable force, are carried off in a direction from the sun, by the impulse of the solar rays themselves. But to assign such a power to the sun's rays, while they have never been proved to have any momentum, is unphilosophical; and we are compelled to place the phenomena of comets' tails among the points of astronomy yet to be explained.

Since comets which approach very near the sun, like the comet of 1680, cross the orbits of all the planets, the possibility that one of them may strike the earth has frequently been suggested. Still it may quiet our apprehensions on this subject, to reflect on the vast amplitude of the planetary spaces, in which these bodies are not crowded together, as we see them erroneously represented in orreries and diagrams, but are sparsely scattered at immense distances from each other. They are like insects flying, singly, in the expanse of heaven. If a comet's tail lay with its axis in the plane of the ecliptic when it was near the sun, we can imagine that the tail might sweep over the earth; but the tail may be situated at any angle with the ecliptic, as well as in the same plane with it, and the chances that it will not be in the same plane are almost infinite. It is also extremely improbable that a comet will cross the plane of the ecliptic precisely at the earth's path in that plane, since it may as probably cross it at any other point nearer or more remote from the sun. A French writer of some eminence (Du Sejour) has discussed this subject with ability, and arrived at the following conclusions: That of all the comets whose paths had been ascertained, none could pass nearer to the earth than about twice the moon's distance; and that none ever did pass nearer to the earth than nine times the moon's distance. The comet of 1770, already mentioned, which became entangled among the satellites of Jupiter, came within this limit. Some have taken alarm at the idea that a comet, by approaching very near to the earth, might raise so high a tide, as to endanger the safety of maritime countries especially: but this writer shows, that the comet could not possibly remain more than two hours so near the earth as a fourth part of the moon's distance; and it could not remain even so long, unless it passed the earth under very peculiar circumstances. For example, if its orbit were nearly perpendicular to that of the earth, it could not remain more than half an hour in such a position. Under such circumstances, the production of a tide would be impossible. Eleven hours, at least, would be necessary to enable a comet to produce an effect on the waters of the earth, from which the injurious effects so much dreaded would follow. The final conclusion at which he arrives is, that although, in strict geometrical rigor, it is not physically impossible that a comet should encounter the earth, yet the probability of such an event is absolutely nothing.

M. Arago, also, has investigated the probability of such a collision on the mathematical doctrine of chances, and remarks as follows: "Suppose, now, a comet, of which we know nothing but that, at its perihelion, it will be nearer the sun than we are, and that its diameter is equal to one fourth that of the earth; the doctrine of chances shows that, out of two hundred and eighty-one millions of cases, there is but one against us; but one, in which the two bodies could meet."

La Place has assigned the consequences that would result from a direct collision between the earth and a comet. "It is easy," says he, "to represent the effects of the shock produced by the earth's encountering a comet. The axis and the motion of rotation changed; the waters abandoning their former position to precipitate themselves towards the new equator; a great part of men and animals whelmed in a universal deluge, or destroyed by the violent shock imparted to the terrestrial globe; entire species annihilated; all the monuments of human industry overthrown;—such are the disasters which the shock of a comet would necessarily produce." La Place, nevertheless, expresses a decided opinion that the orbits of the planets have never yet been disturbed by the influence of comets. Comets, moreover, have been, and are still to some degree, supposed to exercise much influence in the affairs of this world, affecting the weather, the crops, the public health, and a great variety of atmospheric commotions. Even Halley, finding that his comet must have been near the earth at the time of the Deluge, suggested the possibility that the comet caused that event,—an idea which was taken up by Whiston, and formed into a regular theory. In Gregory's Astronomy, an able work, published at Oxford in 1702, the author remarks, that among all nations and in all ages, it has been observed, that the appearance of a comet has always been followed by great calamities; and he adds, "it does not become philosophers lightly to set down these things as fables." Among the various things ascribed to comets by a late English writer, are hot and cold seasons, tempests, hurricanes, violent hail-storms, great falls of snow, heavy rains, inundations, droughts, famines, thick fogs, flies, grasshoppers, plague, dysentery, contagious diseases among animals, sickness among cats, volcanic eruptions, and meteors, or shooting stars. These notions are too ridiculous to require a distinct refutation; and I will only add, that we have no evidence that comets have hitherto ever exercised the least influence upon the affairs of this world; and we still remain in darkness, with respect to their physical nature, and the purposes for which they were created.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page