LETTER XVII. MOON'S ORBIT. HER IRREGULARITIES.

Previous

We have thus far contemplated the revolution of the moon around the earth as though the earth were at rest. But in order to have just ideas respecting the moon's motions, we must recollect that the moon likewise revolves along with the earth around the sun. It is sometimes said that the earth carries the moon along with her, in her annual revolution. This language may convey an erroneous idea; for the moon, as well as the earth, revolves around the sun under the influence of two forces, which are independent of the earth, and would continue her motion around the sun, were the earth removed out of the way. Indeed, the moon is attracted towards the sun two and one fifth times more than towards the earth, and would abandon the earth, were not the latter also carried along with her by the same forces. So far as the sun acts equally on both bodies, the motion with respect to each other would not be disturbed. Because the gravity of the moon towards the sun is found to be greater, at the conjunction, than her gravity towards the earth, some have apprehended that, if the doctrine of universal gravitation is true, the moon ought necessarily to abandon the earth. In order to understand the reason why it does not do thus, we must reflect, that, when a body is revolving in its orbit under the influence of the projectile force and gravity, whatever diminishes the force of gravity, while that of projection remains the same, causes the body to approach nearer to the tangent of her orbit, and of course to recede from the centre; and whatever increases the amount of gravity, carries the body towards the centre. Thus, in Fig. 33, 152, if, with a certain force of projection acting in the direction A B, and of attraction, in the direction A C, the attraction which caused a body to move in the line A D were diminished, it would move nearer to the tangent, as in A E, or A F. Now, when the moon is in conjunction, her gravity towards the earth acts in opposition to that towards the sun, (see Fig. 38, page 175,) while her velocity remains too great to carry her with what force remains, in a circle about the sun, and she therefore recedes from the sun, and commences her revolution around the earth. On arriving at the opposition, the gravity of the earth conspires with that of the sun, and the moon's projectile force being less than that required to make her revolve in a circular orbit, when attracted towards the sun by the sum of these forces, she accordingly begins to approach the sun, and descends again to the conjunction.

The attraction of the sun, however, being every where greater than that of the earth, the actual path of the moon around the sun is every where concave towards the latter. Still, the elliptical path of the moon around the earth is to be conceived of, in the same way as though both bodies were at rest with respect to the sun. Thus, while a steam-boat is passing swiftly around an island, and a man is walking slowly around a post in the cabin, the line which he describes in space between the forward motion of the boat and his circular motion around the post, may be every where concave towards the island, while his path around the post will still be the same as though both were at rest. A nail in the rim of a coach-wheel will turn around the axis of the wheel, when the coach has a forward motion, in the same manner as when the coach is at rest, although the line actually described by the nail will be the resultant of both motions, and very different from either.

We have hitherto regarded the moon as describing a great circle on the face of the sky, such being the visible orbit, as seen by projection. But, on a more exact investigation, it is found that her orbit is not a circle, and that her motions are subject to very numerous irregularities. These will be best understood in connexion with the causes on which they depend. The law of universal gravitation has been applied with wonderful success to their developement, and its results have conspired with those of long-continued observation, to furnish the means of ascertaining with great exactness the place of the moon in the heavens, at any given instant of time, past or future, and thus to enable astronomers to determine longitudes, to calculate eclipses, and to solve other problems of the highest interest. The whole number of irregularities to which the moon is subject is not less than sixty, but the greater part are so small as to be hardly deserving of attention; but as many as thirty require to be estimated and allowed for, before we can ascertain the exact place of the moon at any given time. You will be able to understand something of the cause of these irregularities, if you first gain a distinct idea of the mutual actions of the sun, the moon, and the earth. The irregularities in the moon's motions are due chiefly to the disturbing influence of the sun, which operates in two ways; first, by acting unequally on the earth and moon; and secondly, by acting obliquely on the moon, on account of the inclination of her orbit to the ecliptic. If the sun acted equally on the earth and moon, and always in parallel lines, this action would serve only to restrain them in their annual motions around the sun, and would not affect their actions on each other, or their motions about their common centre of gravity. In that case, if they were allowed to fall towards the sun, they would fall equally, and their respective situations would not be affected by their descending equally towards it. But, because the moon is nearer the sun in one half of her orbit than the earth is, and in the other half of her orbit is at a greater distance than the earth from the sun, while the power of gravity is always greater at a less distance; it follows, that in one half of her orbit the moon is more attracted than the earth towards the sun, and, in the other half, less attracted than the earth.

To see the effects of this process, let us suppose that the projectile motions of the earth and moon were destroyed, and that they were allowed to fall freely towards the sun. (See Fig. 38, page 175.) If the moon was in conjunction with the sun, or in that part of her orbit which is nearest to him, the moon would be more attracted than the earth, and fall with greater velocity towards the sun; so that the distance of the moon from the earth would be increased by the fall. If the moon was in opposition, or in the part of her orbit which is furthest from the sun, she would be less attracted than the earth by the sun, and would fall with a less velocity, and be left behind; so that the distance of the moon from the earth would be increased in this case, also. If the moon was in one of the quarters, then the earth and the moon being both attracted towards the centre of the sun, they would both descend directly towards that centre, and, by approaching it, they would necessarily at the same time approach each other, and in this case their distance from each other would be diminished. Now, whenever the action of the sun would increase their distance, if they were allowed to fall towards the sun, then the sun's action, by endeavoring to separate them, diminishes their gravity to each other; whenever the sun's action would diminish the distance, then it increases their mutual gravitation. Hence, in the conjunction and opposition, their gravity towards each other is diminished by the action of the sun, while in the quadratures it is increased. But it must be remembered, that it is not the total action of the sun on them that disturbs their motions, but only that part of it which tends at one time to separate them, and at another time to bring them nearer together. The other and far greater part has no other effect than to retain them in their annual course around the sun.

The cause of the lunar irregularities was first investigated by Sir Isaac Newton, in conformity with his doctrine of universal gravitation, and the explanation was first published in the 'Principia;' but, as it was given in a mathematical dress, there were at that age very few persons capable of reading or understanding it. Several eminent individuals, therefore, undertook to give a popular explanation of these difficult points. Among Newton's contemporaries, the best commentator was M'Laurin, a Scottish astronomer, who published a large work entitled 'M'Laurin's Account of Sir Isaac Newton's Discoveries.' No writer of his own day, and, in my opinion, no later commentator, has equalled M'Laurin, in reducing to common apprehension the leading principles of the doctrine of gravitation, and the explanation it affords of the motions of the heavenly bodies. To this writer I am indebted for the preceding easy explanation of the irregularities of the moon's motions, as well as for several other illustrations of the same sublime doctrine.

The figure of the moon's orbit is an ellipse. We have before seen, that the earth's orbit around the sun is of the same figure; and we shall hereafter see this to be true of all the planetary orbits. The path of the earth, however, departs very little from a circle; that of the moon differs materially from a circle, being considerably longer one way than the other. Were the orbit a circle having the earth in the centre, then the radius vector, or line drawn from the centre of the moon to the centre of the earth, would always be of the same length; but it is found that the length of the radius vector is only fifty-six times the radius of the earth when the moon is nearest to us, while it is sixty-four times that radius when the moon is furthest from us. The point in the moon's orbit nearest the earth is called her perigee; the point furthest from the earth, her apogee. We always know when the moon is at one of these points, by her apparent diameter or apparent velocity; for, when at the perigee, her diameter is greater than at any time, and her motion most rapid; and, on the other hand, her diameter is least, and her motion slowest, when she is at her apogee.

The moon's nodes constantly shift their positions in the ecliptic, from east to west, at the rate of about nineteen and a half degrees every year, returning to the same points once in eighteen and a half years. In order to understand what is meant by this backward motion of the nodes, you must have very distinctly in mind the meaning of the terms themselves; and if, at any time, you should be at a loss about the signification of any word that is used in expressing an astronomical proposition, I would advise you to turn back to the previous definition of that term, and revive its meaning clearly in the mind, before you proceed any further. In the present case, you will recollect that the moon's nodes are the two points where her orbit cuts the plane of the ecliptic. Suppose the great circle of the ecliptic marked out on the face of the sky in a distinct line, and let us observe, at any given time, the exact moment when the moon crosses this line, which we will suppose to be close to a certain star; then, on its next return to that part of the heavens, we shall find that it crosses the ecliptic sensibly to the westward of that star, and so on, further and further to the westward, every time it crosses the ecliptic at either node. This fact is expressed by saying that the nodes retrograde on the ecliptic; since any motion from east to west, being contrary to the order of the signs, is called retrograde. The line which joins these two points, or the line of the nodes, is also said to have a retrograde motion, or to revolve from east to west once in eighteen and a half years.

The line of the apsides of the moon's orbit revolves from west to east, through her whole course, in about nine years. You will recollect that the apsides of an elliptical orbit are the two extremities of the longer axis of the ellipse; corresponding to the perihelion and aphelion of bodies revolving about the sun, or to the perigee and apogee of a body revolving about the earth. If, in any revolution of the moon, we should accurately mark the place in the heavens where the moon is nearest the earth, (which may be known by the moon's apparent diameter being then greatest,) we should find that, at the next revolution, it would come to its perigee a little further eastward than before, and so on, at every revolution, until, after nine years, it would come to its perigee nearly at the same point as at first. This fact is expressed by saying, that the perigee, and of course the apogee, revolves, and that the line which joins these two points, or the line of the apsides, also revolves.

These are only a few of the irregularities that attend the motions of the moon. These and a few others were first discovered by actual observation and have been long known; but a far greater number of lunar irregularities have been made known by following out all the consequences of the law of universal gravitation.

The moon may be regarded as a body endeavoring to make its way around the earth, but as subject to be continually impeded, or diverted from its main course, by the action of the sun and of the earth; sometimes acting in concert and sometimes in opposition to each other. Now, by exactly estimating the amount of these respective forces, and ascertaining their resultant or combined effect, in any given case, the direction and velocity of the moon's motion may be accurately determined. But to do this has required the highest powers of the human mind, aided by all the wonderful resources of mathematics. Yet, so consistent is truth with itself, that, where some minute inequality in the moon's motions is developed at the end of a long and intricate mathematical process, it invariably happens, that, on pointing the telescope to the moon, and watching its progress through the skies, we may actually see her commit the same irregularities, unless (as is the case with many of them) they are too minute to be matters of observation, being beyond the powers of our vision, even when aided by the best telescopes. But the truth of the law of gravitation, and of the results it gives, when followed out by a chain of mathematical reasoning, is fully confirmed, even in these minutest matters, by the fact that the moon's place in the heavens, when thus determined, always corresponds, with wonderful exactness, to the place which she is actually observed to occupy at that time.

The mind, that was first able to elicit from the operations of Nature the law of universal gravitation, and afterwards to apply it to the complete explanation of all the irregular wanderings of the moon, must have given evidence of intellectual powers far elevated above those of the majority of the human race. We need not wonder, therefore, that such homage is now paid to the genius of Newton,—an admiration which has been continually increasing, as new discoveries have been made by tracing out new consequences of the law of universal gravitation.

The chief object of astronomical tables is to give the amount of all the irregularities that attend the motions of the heavenly bodies, by estimating the separate value of each, under all the different circumstances in which a body can be placed. Thus, with respect to the moon, before we can determine accurately the distance of the moon from the vernal equinox, that is, her longitude at any given moment, we must be able to make exact allowances for all her irregularities which would affect her longitude. These are in all no less than sixty, though most of them are so exceedingly minute, that it is not common to take into the account more than twenty-eight or thirty. The values of these are all given in the lunar tables; and in finding the moon's place, at any given time, we proceed as follows: We first find what her place would be on the supposition that she moves uniformly in a circle. This gives her mean place. We next apply the various corrections for her irregular motions; that is, we apply the equations, subtracting some and adding others, and thus we find her true place.

The astronomical tables have been carried to such an astonishing degree of accuracy, that it is said, by the highest authority, that an astronomer could now predict, for a thousand years to come, the precise moment of the passage of any one of the stars over the meridian wire of the telescope of his transit-instrument, with such a degree of accuracy, that the error would not be so great as to remove the object through an angular space corresponding to the semidiameter of the finest wire that could be made; and a body which, by the tables, ought to appear in the transit-instrument in the middle of that wire, would in no case be removed to its outer edge. The astronomer, the mathematician, and the artist, have united their powers to produce this great result. The astronomer has collected the data, by long-continued and most accurate observations on the actual motions of the heavenly bodies, from night to night, and from year to year; the mathematician has taken these data, and applied to them the boundless resources of geometry and the calculus; and, finally, the instrument-maker has furnished the means, not only of verifying these conclusions, but of discovering new truths, as the foundation of future reasonings.

Since the points where the moon crosses the ecliptic, or the moon's nodes, constantly shift their positions about nineteen and a half degrees to the westward, every year, the sun, in his annual progress in the ecliptic, will go from the node round to the same node again in less time than a year, since the node goes to meet him nineteen and a half degrees to the west of the point where they met before. It would have taken the sun about nineteen days to have passed over this arc; and consequently, the interval between two successive conjunctions between the sun and the moon's node is about nineteen days shorter than the solar year of three hundred and sixty-five days; that is, it is about three hundred and forty-six days; or, more exactly, it is 346.619851 days. The time from one new moon to another is 29.5305887 days. Now, nineteen of the former periods are almost exactly equal to two hundred and twenty-three of the latter:

For 346.619851 × 19=6585.78 days=18 y. 10 d.

And 29.5305887 × 223=6585.32" = " " " "

Hence, if the sun and moon were to leave the moon's node together, after the sun had been round to the same node nineteen times, the moon would have made very nearly two hundred and twenty-three conjunctions with the sun. If, therefore, she was in conjunction with the sun at the beginning of this period, she would be in conjunction again at the end of it; and all things relating to the sun, the moon, and the node, would be restored to the same relative situation as before, and the sun and moon would start again, to repeat the same phenomena, arising out of these relations, as occurred in the preceding period, and in the same order. Now, when the sun and moon meet at the moon's node, an eclipse of the sun happens; and during the entire period of eighteen and a half years eclipses will happen, nearly in the same manner as they did at corresponding times in the preceding period. Thus, if there was a great eclipse of the sun on the fifth year of one of these periods, a similar eclipse (usually differing somewhat in magnitude) might be expected on the fifth year of the next period. Hence this period, consisting of about eighteen years and ten days, under the name of the Saros, was used by the Chaldeans, and other ancient nations, in predicting eclipses. It was probably by this means that Thales, a Grecian astronomer who flourished six hundred years before the Christian era, predicted an eclipse of the sun. Herodotus, the old historian of Greece, relates that the day was suddenly changed into night, and that Thales of Miletus had foretold that a great eclipse was to happen this year. It was therefore, at that age, considered as a distinguished feat to predict even the year in which an eclipse was to happen. This eclipse is memorable in ancient history, from its having terminated the war between the Lydians and the Medes, both parties being smitten with such indications of the wrath of the gods.

The Metonic Cycle has sometimes been confounded with the Saros, but it is not the same with it, nor was the period used, like the Saros, for foretelling eclipses, but for ascertaining the age of the moon at any given period. It consisted of nineteen tropical years, during which time there are exactly two hundred and thirty-five new moons; so that, at the end of this period, the new moons will recur at seasons of the year corresponding exactly to those of the preceding cycle. If, for example, a new moon fell at the time of the vernal equinox, in one cycle, nineteen years afterwards it would occur again at the same equinox; or, if it had happened ten days after the equinox, in one cycle, it would also happen ten days after the equinox, nineteen years afterwards. By registering, therefore, the exact days of any cycle at which the new or full moons occurred, such a calendar would show on what days these events would occur in any other cycle; and, since the regulation of games, feasts, and fasts, has been made very extensively, both in ancient and modern times, according to new or full moons, such a calendar becomes very convenient for finding the day on which the new or full moon required takes place. Suppose, for example, it were decreed that a festival should be held on the day of the first full moon after the Vernal equinox. Then, to find on what day that would happen, in any given year, we have only to see what year it is of the lunar cycle; for the day will be the same as it was in the corresponding year of the calendar which records all the full moons of the cycle for each year, and the respective days on which they happen.

The Athenians adopted the metonic cycle four hundred and thirty-three years before the Christian era, for the regulation of their calendars, and had it inscribed in letters of gold on the walls of the temple of Minerva. Hence the term golden number, still found in our almanacs, which denotes the year of the lunar cycle. Thus, fourteen was the golden number for 1837, being the fourteenth year of the lunar cycle.

The inequalities of the moon's motions are divided into periodical and secular. Periodical inequalities are those which are completed in comparatively short periods. Secular inequalities are those which are completed only in very long periods, such as centuries or ages. Hence the corresponding terms periodical equations and secular equations. As an example of a secular inequality, we may mention the acceleration of the moon's mean motion. It is discovered that the moon actually revolves around the earth in a less period now than she did in ancient times. The difference, however, is exceedingly small, being only about ten seconds in a century. In a lunar eclipse, the moon's longitude differs from that of the sun, at the middle of the eclipse, by exactly one hundred and eighty degrees; and since the sun's longitude at any given time of the year is known, if we can learn the day and hour when an eclipse occurred at any period of the world, we of course know the longitude of the sun and moon at that period. Now, in the year 721, before the Christian era, Ptolemy records a lunar eclipse to have happened, and to have been observed by the Chaldeans. The moon's longitude, therefore, for that time, is known; and as we know the mean motions of the moon, at present, starting from that epoch, and computing, as may easily be done, the place which the moon ought to occupy at present, at any given time, she is found to be actually nearly a degree and a half in advance of that place. Moreover, the same conclusion is derived from a comparison of the Chaldean observations with those made by an Arabian astronomer of the tenth century.

This phenomenon at first led astronomers to apprehend that the moon encountered a resisting medium, which, by destroying at every revolution a small portion of her projectile force, would have the effect to bring her nearer and nearer to the earth, and thus to augment her velocity. But, in 1786, La Place demonstrated that this acceleration is one of the legitimate effects of the sun's disturbing force, and is so connected with changes in the eccentricity of the earth's orbit, that the moon will continue to be accelerated while that eccentricity diminishes; but when the eccentricity has reached its minimum, or lowest point, (as it will do, after many ages,) and begins to increase, then the moon's motions will begin to be retarded, and thus her mean motions will oscillate for ever about a mean value.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page