We have thus far contemplated the revolution of the moon around the earth as though the earth were at The attraction of the sun, however, being every where greater than that of the earth, the actual path of the moon around the sun is every where concave towards the latter. Still, the elliptical path of the moon around the earth is to be conceived of, in the same way as though both bodies were at rest with respect to the sun. Thus, while a steam-boat is passing swiftly around an island, and a man is walking slowly around a post in the cabin, the line which he describes in space between the forward motion of the boat and his circular motion around the post, may be every where concave towards the island, while his path around the post will still be the same as though both were at rest. A nail in the rim of a coach-wheel will turn around the axis of the wheel, when the coach has a forward motion, in the same manner as when the coach is at rest, although the line actually described by the nail will be the resultant of both motions, and very different from either. We have hitherto regarded the moon as describing a great circle on the face of the sky, such being the visible orbit, as seen by projection. But, on a more exact investigation, it is found that her orbit is not a circle, and that her motions are subject to very numerous irregularities. These will be best understood in connexion with the causes on which they depend. The law of universal gravitation has been applied with wonderful success to their developement, and its results have conspired with those of long-continued observation, to furnish the means of ascertaining with great exactness the place of the moon in the heavens, at any given instant of time, past or future, and thus to enable astronomers to determine longitudes, to calculate eclipses, To see the effects of this process, let us suppose that the projectile motions of the earth and moon were destroyed, and that they were allowed to fall freely towards the sun. (See Fig. 38, page 175.) If the moon was in conjunction with the sun, or in that part of her orbit which is nearest to him, the moon would be more attracted than the earth, and fall with greater velocity towards the sun; so that the distance of the moon from the earth would be increased by the fall. If the moon was The cause of the lunar irregularities was first investigated by Sir Isaac Newton, in conformity with his doctrine of universal gravitation, and the explanation was first published in the 'Principia;' but, as it was given in a mathematical dress, there were at that age very few persons capable of reading or understanding it. Several eminent individuals, therefore, undertook to give a popular explanation of these difficult points. Among Newton's contemporaries, the best commentator was M'Laurin, a Scottish astronomer, who published a large work entitled 'M'Laurin's Account of Sir Isaac Newton's Discoveries.' No writer of his own day, and, in my opinion, no later commentator, has equalled M'Laurin, The figure of the moon's orbit is an ellipse. We have before seen, that the earth's orbit around the sun is of the same figure; and we shall hereafter see this to be true of all the planetary orbits. The path of the earth, however, departs very little from a circle; that of the moon differs materially from a circle, being considerably longer one way than the other. Were the orbit a circle having the earth in the centre, then the radius vector, or line drawn from the centre of the moon to the centre of the earth, would always be of the same length; but it is found that the length of the radius vector is only fifty-six times the radius of the earth when the moon is nearest to us, while it is sixty-four times that radius when the moon is furthest from us. The point in the moon's orbit nearest the earth is called her perigee; the point furthest from the earth, her apogee. We always know when the moon is at one of these points, by her apparent diameter or apparent velocity; for, when at the perigee, her diameter is greater than at any time, and her motion most rapid; and, on the other hand, her diameter is least, and her motion slowest, when she is at her apogee. The moon's nodes constantly shift their positions in the ecliptic, from east to west, at the rate of about nineteen and a half degrees every year, returning to the same points once in eighteen and a half years. In order to understand what is meant by this backward motion of the nodes, you must have very distinctly in mind the meaning of the terms themselves; and if, at any time, you should be at a loss about the signification of any word that is used in expressing an astronomical proposition, I would advise you to turn back to the pre The line of the apsides of the moon's orbit revolves from west to east, through her whole course, in about nine years. You will recollect that the apsides of an elliptical orbit are the two extremities of the longer axis of the ellipse; corresponding to the perihelion and aphelion of bodies revolving about the sun, or to the perigee and apogee of a body revolving about the earth. If, in any revolution of the moon, we should accurately mark the place in the heavens where the moon is nearest the earth, (which may be known by the moon's apparent diameter being then greatest,) we should find that, at the next revolution, it would come to its perigee a little further eastward than before, and so on, at every revolution, until, after nine years, it would come to its perigee nearly at the same point as at first. This fact is expressed by saying, that the perigee, and of course the apogee, revolves, and that the line which joins these two points, or the line of the apsides, also revolves. These are only a few of the irregularities that attend the motions of the moon. These and a few others were first discovered by actual observation and have been long known; but a far greater number of lunar irregularities have been made known by following out all the consequences of the law of universal gravitation. The moon may be regarded as a body endeavoring to make its way around the earth, but as subject to be continually impeded, or diverted from its main course, by the action of the sun and of the earth; sometimes acting in concert and sometimes in opposition to each other. Now, by exactly estimating the amount of these respective forces, and ascertaining their resultant or combined effect, in any given case, the direction and velocity of the moon's motion may be accurately determined. But to do this has required the highest powers of the human mind, aided by all the wonderful resources of mathematics. Yet, so consistent is truth with itself, that, where some minute inequality in the moon's motions is developed at the end of a long and intricate mathematical process, it invariably happens, that, on pointing the telescope to the moon, and watching its progress through the skies, we may actually see her commit the same irregularities, unless (as is the case with many of them) they are too minute to be matters of observation, being beyond the powers of our vision, even when aided by the best telescopes. But the truth of the law of gravitation, and of the results it gives, when followed out by a chain of mathematical reasoning, is fully confirmed, even in these minutest matters, by the fact that the moon's place in the heavens, when thus determined, always corresponds, with wonderful exactness, to the place which she is actually observed to occupy at that time. The mind, that was first able to elicit from the operations of Nature the law of universal gravitation, and afterwards to apply it to the complete explanation of all the irregular wanderings of the moon, must have given evidence of intellectual powers far elevated above The chief object of astronomical tables is to give the amount of all the irregularities that attend the motions of the heavenly bodies, by estimating the separate value of each, under all the different circumstances in which a body can be placed. Thus, with respect to the moon, before we can determine accurately the distance of the moon from the vernal equinox, that is, her longitude at any given moment, we must be able to make exact allowances for all her irregularities which would affect her longitude. These are in all no less than sixty, though most of them are so exceedingly minute, that it is not common to take into the account more than twenty-eight or thirty. The values of these are all given in the lunar tables; and in finding the moon's place, at any given time, we proceed as follows: We first find what her place would be on the supposition that she moves uniformly in a circle. This gives her mean place. We next apply the various corrections for her irregular motions; that is, we apply the equations, subtracting some and adding others, and thus we find her true place. The astronomical tables have been carried to such an astonishing degree of accuracy, that it is said, by the highest authority, that an astronomer could now predict, for a thousand years to come, the precise moment of the passage of any one of the stars over the meridian wire of the telescope of his transit-instrument, with such a degree of accuracy, that the error would not be so great as to remove the object through an angular space corresponding to the semidiameter of the finest wire that could be made; and a body which, by the tables, ought to appear in the transit-instrument in the middle of that wire, would in no case be removed to Since the points where the moon crosses the ecliptic, or the moon's nodes, constantly shift their positions about nineteen and a half degrees to the westward, every year, the sun, in his annual progress in the ecliptic, will go from the node round to the same node again in less time than a year, since the node goes to meet him nineteen and a half degrees to the west of the point where they met before. It would have taken the sun about nineteen days to have passed over this arc; and consequently, the interval between two successive conjunctions between the sun and the moon's node is about nineteen days shorter than the solar year of three hundred and sixty-five days; that is, it is about three hundred and forty-six days; or, more exactly, it is 346.619851 days. The time from one new moon to another is 29.5305887 days. Now, nineteen of the former periods are almost exactly equal to two hundred and twenty-three of the latter: For 346.619851 × 19=6585.78 days=18 y. 10 d. And 29.5305887 × 223=6585.32" = " " " " Hence, if the sun and moon were to leave the moon's node together, after the sun had been round to the same node nineteen times, the moon would have made very nearly two hundred and twenty-three conjunctions with the sun. If, therefore, she was in conjunction with the sun at the beginning of this period, she would be in conjunction again at the end of it; and all things relating to the sun, the moon, and the The Metonic Cycle has sometimes been confounded with the Saros, but it is not the same with it, nor was the period used, like the Saros, for foretelling eclipses, but for ascertaining the age of the moon at any given period. It consisted of nineteen tropical years, during which time there are exactly two hundred and thirty-five new moons; so that, at the end of this period, the new moons will recur at seasons of the year corresponding exactly to those of the preceding cycle. If, for example, a new moon fell at the time of the vernal equinox, in one cycle, nineteen years afterwards it would The Athenians adopted the metonic cycle four hundred and thirty-three years before the Christian era, for the regulation of their calendars, and had it inscribed in letters of gold on the walls of the temple of Minerva. Hence the term golden number, still found in our almanacs, which denotes the year of the lunar cycle. Thus, fourteen was the golden number for 1837, being the fourteenth year of the lunar cycle. The inequalities of the moon's motions are divided into periodical and secular. Periodical inequalities are those which are completed in comparatively short periods. Secular inequalities are those which are completed only in very long periods, such as centuries or ages. Hence the corresponding terms periodical equations and secular equations. As an example of a secular inequality, we may mention the acceleration of the moon's mean motion. It is discovered that the moon actually revolves around the earth in a less period now than she did in ancient times. The difference, howev This phenomenon at first led astronomers to apprehend that the moon encountered a resisting medium, which, by destroying at every revolution a small portion of her projectile force, would have the effect to bring her nearer and nearer to the earth, and thus to augment her velocity. But, in 1786, La Place demonstrated that this acceleration is one of the legitimate effects of the sun's disturbing force, and is so connected with changes in the eccentricity of the earth's orbit, that the moon will continue to be accelerated while that eccentricity diminishes; but when the eccentricity has reached its minimum, or lowest point, (as it will do, after many ages,) and begins to increase, then the moon's motions will begin to be retarded, and thus her mean motions will oscillate for ever about a mean value. |