LETTER XVI. THE MOON.--PHASES.--HARVEST MOON.--LIBRATIONS. "First to the neighboring Moon this mighty key Of nature he applied. Behold! it turned The secret wards, it opened wide the course And various aspects of the queen of night: Whether she wanes into a scanty orb, Or, waxing broad, with her pale shadowy light, In a soft deluge overflows the sky."-- Thomson's Elegy. Let us now inquire into the revolutions of the moon around the earth, and the various changes she undergoes every month, called her phases, which depend on the different positions she assumes, with respect to the earth and the sun, in the course of her revolution. The moon revolves about the earth from west to east. Her apparent orbit, as traced out on the face of the sky, is a great circle; but this fact would not certainly prove that the orbit is really a circle, since, if it were an ellipse, or even a more irregular curve, the projec The moon does not pursue precisely the same track around the earth as the sun does, in his apparent annual motion, though she never deviates far from that track. The inclination of her orbit to the ecliptic is only about five degrees, and of course the moon is never seen further from the ecliptic than about that distance, and she is commonly much nearer to the ecliptic than five degrees. We may therefore see nearly what is the situation of the ecliptic in our evening sky at any particular time of year, just by watching the path which the moon pursues, from night to night, from new to full moon. The two points where the moon's orbit crosses the ecliptic are called her nodes. They are the intersections of the lunar and solar orbits, as the equinoxes are the The changes of the moon, commonly called her phases, arise from different portions of her illuminated side being turned towards the earth at different times. When the moon is first seen after the setting sun, her form is that of a bright crescent, on the side of the disk next to the sun, while the other portions of the disk shine with a feeble light, reflected to the moon from the earth. Every night, we observe the moon to be further and further eastward of the sun, until, when she has reached an elongation from the sun of ninety degrees, half her visible disk is enlightened, and she is said to be in her first quarter. The terminator, or line which separates the illuminated from the dark part of the moon, is convex towards the sun from the new to the first quarter, and the moon is said to be horned. The extremities of the crescent are called cusps. At the first quarter, the terminator becomes a straight line, coinciding with the diameter of the disk; but after passing this point, the terminator becomes concave towards the sun, bounding that side of the moon by an elliptical curve, when the moon is said to be gibbous. When the moon arrives at the distance of one hundred and eighty degrees from the sun, the entire circle is illuminated, and the moon is full. She is then in opposition to the sun, rising about the time the sun sets. For a week after the full, the moon appears gibbous again, until, having arrived within ninety degrees of the sun, she resumes the same form as at the first quarter, being then at her third quarter. From this time until new moon, she exhibits again the form of a crescent before the rising sun, until, approaching her conjunction with the sun, her narrow thread of light is lost in the solar blaze; and finally, at the moment of passing the sun, the dark side is wholly turned towards us, and for some time we lose sight of the moon. By inspecting Fig. 38, (where T represents the earth, Fig. 38. You have doubtless observed, that the moon appears much further in the south at one time than at another, when of the same age. This is owing to the fact that the ecliptic, and of course the moon's path, which is always very near it, is differently situated with respect to the horizon, at a given time of night, at different seasons of the year. This you will see at once, by turning to an artificial globe, and observing how the ecliptic stands with respect to the horizon, at different peri It is a natural consequence of this arrangement, to render the moon's light the most beneficial to us, by giving it to us in greatest abundance, when we have least of the sun's light, and giving it to us most sparingly, when the sun's light is greatest. Thus, during the long nights of Winter, the full moon runs high, and continues a very long time above the horizon; while in mid-summer, the full moon runs low, and is above the horizon for a much shorter period. This ar About the time of the Autumnal equinox, the moon, when near her full, rises about sunset a number of nights in succession. This occasions a remarkable number of brilliant moonlight evenings; and as this is, in England, the period of harvest, the phenomenon is called the harvest moon. Its return is celebrated, particularly among the peasantry, by festive dances, and kept as a festival, called the harvest home,—an occasion often alluded to by the British poets. Thus Henry Kirke White: "Moon of harvest, herald mild Of plenty, rustic labor's child, Hail, O hail! I greet thy beam, As soft it trembles o'er the stream, And gilds the straw-thatch'd hamlet wide, Where innocence and peace reside; Tis thou that glad'st with joy the rustic throng, Promptest the tripping dance, th' exhilarating song." To understand the reason of the harvest moon, we will, as before, consider the moon's orbit as coinciding with the ecliptic, because we may then take the ecliptic, as it is drawn on the artificial globe, to represent that orbit. We will also bear in mind, (what has been fully illustrated under the last head,) that, since the ecliptic cuts the meridian obliquely, while all the circles of diurnal revolution cut it perpendicularly, different portions of the ecliptic will cut the horizon at dif The moon turns on her axis in the same time in which she revolves around the earth. This is known by the moon's always keeping nearly the same face towards us, as is indicated by the telescope, which could not happen unless her revolution on her axis kept pace with her motion in her orbit. Take an apple, to represent the moon; stick a knittingneedle through it, in the direction of the stem, to represent the axis, in which case the two eyes of the apple will aptly represent the poles. Through the poles cut a line around the apple, dividing it into two hemispheres, and mark them, so as to be readily distinguished from each other. Now place a candle on the table, to represent the earth, and holding the apple by the knittingneedle, carry it round the candle, and you will see that, unless you make the apple turn round on the axis as you carry it about the candle, it will present different sides towards the candle; and that, in order to make it always present the same side, it will be necessary to make it revolve ex Since, however, the motion of the moon on its axis is uniform, while the motion in its orbit is unequal, the moon does in fact reveal to us a little sometimes of one side and sometimes of the other. Thus if, while carrying the apple round the candle, you carry it forward a little faster than the rate at which it turns on its axis, a portion of the hemisphere usually out of sight is brought into view on one side; or if the apple is moved forward slower than it is turned on its axis, a portion of the same hemisphere comes into view on the other side. These appearances are called the moon's librations in longitude. The moon has also a libration in latitude;—so called, because in one part of her revolution more of the region around one of the poles comes into view, and, in another part of the revolution, more of the region around the other pole, which gives the appearance of a tilting motion to the moon's axis. This is owing to the fact, that the moon's axis is inclined to the plane of her orbit. If, in the experiment with the apple, you hold the knittingneedle parallel to the candle, (in which case the axis will be perpendicular to the plane of revolution,) the candle will shine upon both poles during the whole circuit, and an eye situated where the candle is would constantly see both poles; but now incline the needle towards the plane of revolution, and carry it round, always keeping it parallel to itself, and you will observe that the two poles will be alternately in and out of sight. The moon exhibits another appearance of this kind, called her diurnal libration, depending on the daily rotation of the spectator. She turns the same face towards the centre of the earth only, whereas we view her from the surface. When she is on the meridian, we view her disk nearly as though we viewed it from the centre of the earth, and hence, in this situation, it is subject to little change; but when she is near the horizon, our circle of vision takes in more of the upper limb than would be presented to a spectator at the centre of the earth. Hence, from this cause, we see a portion of one limb while the moon is rising, which is gradually lost sight of, and we see a portion of the opposite limb, as the moon declines to the west. You will remark that neither of the foregoing changes implies any actual motion in the moon, but that each arises from a change of position in the spectator. Since the succession of day and night depends on the revolution of a planet on its own axis, and it takes the moon twenty-nine and a half days to perform this revolution, so that the sun shall go from the meridian of any place and return to the same meridian again, of course the lunar day occupies this long period. So protracted an exposure to the sun's rays, especially in the equatorial regions of the moon, must occasion an excessive accumulation of heat; and so long an absence of the sun must occasion a corresponding degree of cold. A spectator on the side of the moon which is opposite to us would never see the earth, but one on the side next to us would see the earth constantly in his firmament, undergoing a gradual succession of changes, corresponding to those which the moon exhibits to the earth, but in the reverse order. Thus, when it is full moon to us, the earth, as seen from the moon, is then in conjunction with the sun, and of course presents her dark side to the moon. Soon after this, an inhabitant of the moon would see a crescent, resembling our new moon, which would in like manner increase and go through all the changes, |