LETTER XIX. LONGITUDE. TIDES.

Previous

The ancients studied astronomy chiefly as subsidiary to astrology, with the vain hope of thus penetrating the veil of futurity, and reading their destinies among the stars. The moderns, on the other hand, have in view, as the great practical object of this study, the perfecting of the art of navigation. When we reflect on the vast interests embarked on the ocean, both of property and life, and upon the immense benefits that accrue to society from a safe and speedy intercourse between the different nations of the earth, we cannot but see that whatever tends to enable the mariner to find his way on the pathless ocean, and to secure him against its multiplied dangers, must confer a signal benefit on society.

In ancient times, to venture out of sight of land was deemed an act of extreme audacity; and Horace, the Roman poet, pronounces him who first ventured to trust his frail bark to the stormy ocean, endued with a heart of oak, and girt with triple folds of brass. But now, the navigator who fully avails himself of all the resources of science, and especially of astronomy, may launch fearlessly on the deep, and almost bid defiance to rocks and tempests. By enabling the navigator to find his place on the ocean with almost absolute precision, however he may have been driven about by the winds, and however long he may have been out of sight of land, astronomers must be held as great benefactors to all who commit either their lives or their fortunes to the sea. Nor have they secured to the art of navigation such benefits without incredible study and toil, in watching the motions of the heavenly bodies, in investigating the laws by which their movements are governed, and in reducing all their discoveries to a form easily available to the navigator, so that, by some simple observation on one or two of the heavenly bodies, with instruments which the astronomer has invented, and prepared for his use, and by looking out a few numbers in tables which have been compiled for him, with immense labor, he may ascertain the exact place he occupies on the surface of the globe, thousands of miles from land.

The situation of any place is known by its latitude and longitude. As charts of every ocean and sea are furnished to the sailor, in which are laid down the latitudes and longitudes of every point of land, whether on the shores of islands or the main, he has, therefore, only to ascertain his latitude and longitude at any particular place on the ocean, in order to find where he is, with respect to the nearest point of land, although this may be, and may always have been, entirely out of sight to him.

To determine the latitude of a place is comparatively an easy matter, whenever we can see either the sun or the stars. The distance of the sun from the zenith, when on the meridian, on a given day of the year, (which distance we may easily take with the sextant,) enables us, with the aid of the tables, to find the latitude of the place; or, by taking the altitude of the north star, we at once obtain the latitude.

The longitude of a place may be found by any method, by which we may ascertain how much its time of day differs from that of Greenwich at the same moment. A place that lies eastward of another comes to the meridian an hour earlier for every fifteen degrees of longitude, and of course has the hour of the day so much in advance of the other, so that it counts one o'clock when the other place counts twelve. On the other hand, a place lying westward of another comes to the meridian later by one hour for every fifteen degrees, so that it counts only eleven o'clock when the other place counts twelve. Keeping these principles in view, it is easy to see that a comparison of the difference of time between two places at the same moment, allowing fifteen degrees for an hour, sixty minutes for every four minutes of time, and sixty seconds for every four seconds of time, affords us an accurate mode of finding the difference of longitude between the two places. This comparison may be made by means of a chronometer, or from solar or lunar eclipses, or by what is called the lunar method of finding the longitude.

Chronometers are distinguished from clocks, by being regulated by means of a balance-wheel instead of a pendulum. A watch, therefore, comes under the general definition of a chronometer; but the name is more commonly applied to larger timepieces, too large to be carried about the person, and constructed with the greatest possible accuracy, with special reference to finding the longitude. Suppose, then, we are furnished with a chronometer set to Greenwich time. We arrive at New York, for example, and compare it with the time there. We find it is five hours in advance of the New-York time, indicating five o'clock, P.M., when it is noon at New York. Hence we find that the longitude of New York is 5×15=75 degrees.[11] The time at New York, or any individual place, can be known by observations with the transit-instrument, which gives us the precise moment when the sun is on the meridian.

It would not be necessary to resort to Greenwich, for the purpose of setting our chronometer to Greenwich time, as it might be set at any place whose longitude is known, having been previously determined. Thus, if we know that the longitude of a certain place is exactly sixty degrees east of Greenwich, we have only to set our chronometer four hours behind the time at that place, and it will be regulated to Greenwich time. Hence it is a matter of the greatest importance to navigation, that the longitude of numerous ports, in different parts of the earth, should be accurately determined, so that when a ship arrives at any such port, it may have the means of setting or verifying its chronometer.

This method of taking the longitude seems so easy, that you will perhaps ask, why it is not sufficient for all purposes, and accordingly, why it does not supersede the move complicated and laborious methods? why every sailor does not provide himself with a chronometer, instead of finding his longitude at sea by tedious and oft-repeated calculations, as he is in the habit of doing? I answer, it is only in a few extraordinary cases that chronometers have been constructed of such accuracy as to afford results as exact as those obtained by the other methods, to be described shortly; and instruments of such perfection are too expensive for general use among sailors. Indeed, the more common chronometers cost too much to come within the means of a great majority of sea-faring men. Moreover, by being transported from place to place, chronometers are liable to change their rate. By the rate of any timepiece is meant its deviation from perfect accuracy. Thus, if a clock should gain one second per day, one day with another, and we should find it impossible to bring it nearer to the truth, we may reckon this as its rate, and allow for it in our estimate of the time of any particular observation. If the error was not uniform, but sometimes greater and sometimes less than one second per day, then the amount of such deviation is called its "variation from its mean rate." I introduce these minute statements, (which are more precise than I usually deem necessary,) to show you to what an astonishing degree of accuracy chronometers have in some instances been brought. They have been carried from London to Baffin's Bay, and brought back, after a three years' voyage, and found to have varied from their mean rate, during the whole time, only a second or two, while the extreme variation of several chronometers, tried at the Royal Observatory at Greenwich, never exceeded a second and a half. Could chronometers always be depended on to such a degree of accuracy as this, we should hardly desire any thing better for determining the longitude of different places on the earth. A recent determination of the longitude of the City Hall in New York, by means of three chronometers, sent out from London expressly for that purpose, did not differ from the longitude as found by a solar eclipse (which is one of the best methods) but a second and a quarter.

Eclipses of the sun and moon furnish the means of ascertaining the longitude of a place, because the entrance of the moon into the earth's shadow in a lunar eclipse, and the entrance of the moon upon the disk of the sun in a solar eclipse, are severally examples of one of those instantaneous occurrences in the heavens, which afford the means of comparing the times of different places, and of thus determining their differences of longitude. Thus, if the commencement of a lunar eclipse was seen at one place an hour sooner than at another, the two places would be fifteen degrees apart, in longitude; and if the longitude of one of the places was known, that of the other would become known also. The exact instant of the moon's entering into the shadow of the earth, however, cannot be determined with very great precision, since the moon, in passing through the earth's penumbra, loses its light gradually, so that the moment when it leaves the penumbra and enters into the shadow cannot be very accurately defined. The first contact of the moon with the sun's disk, in a solar eclipse, or the moment of leaving it,—that is, the beginning and end of the eclipse,—are instants that can be determined with much precision, and accordingly they are much relied on for an accurate determination of the longitude. But, on account of the complicated and laborious nature of the calculation of the longitude from an eclipse of the sun, (since the beginning and end are not seen at different places, at the same moment,) this method of finding the longitude is not adapted to common use, nor available at sea. It is useful, however, for determining the longitude of fixed observatories. The lunar method of finding the longitude is the most refined and accurate of all the modes practised at sea. The motion of the moon through the heavens is so rapid, that she perceptibly alters her distance from any star every minute; consequently, the moment when that distance is a certain number of degrees and minutes is one of those instantaneous events, which may be taken advantage of for comparing the times of different places, and thus determining their difference of longitude. Now, in a work called the 'Nautical Almanac,' printed in London, annually, for the use of navigators, the distance of the moon from the sun by day, or from known fixed stars by night, for every day and night in the year, is calculated beforehand. If, therefore, a sailor wishes to ascertain his longitude, he may take with his sextant the distance of the moon from one of these stars at any time,—suppose nine o'clock, at night,—and then turn to the 'Nautical Almanac,' and see what time it was at Greenwich when the distance between the moon and that star was the same. Let it be twelve o'clock, or three hours in advance of his time: his longitude, of course, is forty-five degrees west.

This method requires more skill and accuracy than are possessed by the majority of seafaring men; but, when practised with the requisite degree of skill, its results are very satisfactory. Captain Basil Hall, one of the most scientific commanders in the British navy, relates the following incident, to show the excellence of this method. He sailed from San Blas, on the west coast of Mexico, and, after a voyage of eight thousand miles, occupying eighty-nine days, arrived off Rio de Janeiro, having, in this interval, passed through the Pacific Ocean, rounded Cape Horn, and crossed the South Atlantic, without making any land, or even seeing a single sail, with the exception of an American whaler off Cape Horn. When within a week's sail of Rio, he set seriously about determining, by lunar observations, the precise line of the ship's course, and its situation at a determinate moment; and having ascertained this within from five to ten miles, ran the rest of the way by those more ready and compendious methods, known to navigators, which can be safely employed for short trips between one known point and another, but which cannot be trusted in long voyages, where the moon is the only sure guide. They steered towards Rio Janeiro for some days after taking the lunars, and, having arrived within fifteen or twenty miles of the coast, they hove to, at four in the morning, till the day should break, and then bore up, proceeding cautiously, on account of a thick fog which enveloped them. As this cleared away, they had the satisfaction of seeing the great Sugar-Loaf Rock, which stands on one side of the harbor's mouth, so nearly right ahead, that they had not to alter their course above a point, in order to hit the entrance of the harbor. This was the first land they had seen for three months, after crossing so many seas, and being set backwards and forwards by innumerable currents and foul winds. The effect on all on board was electric; and the admiration of the sailors was unbounded. Indeed, what could be more admirable than that a man on the deck of a vessel, by measuring the distance between the moon and a star, with a little instrument which he held in his hand, could determine his exact place on the earth's surface in the midst of a vast ocean, after having traversed it in all directions, for three months, crossing his track many times, and all the while out of sight of land?

The lunar method of finding the longitude could never have been susceptible of sufficient accuracy, had not the motions of the moon, with all their irregularities, been studied and investigated by the most laborious and profound researches. Hence Newton, while wrapt in those meditations which, to superficial minds, would perhaps have appeared rather curious than useful, inasmuch as they respected distant bodies of the universe which seemed to have little connexion with the affairs of this world, was laboring night and day for the benefit of the sailor and the merchant. He was guiding the vessel of the one, and securing the merchandise of the other; and thus he contributed a large share to promote the happiness of his fellow-men, not only in exalting the powers of the human intellect, but also in preserving the lives and fortunes of those engaged in navigation and commerce. Principles in science are rules in art; and the philosopher who is engaged in the investigation of these principles, although his pursuits may be thought less practically useful than those of the artisan who carries out those principles into real life, yet, without the knowledge of the principles, the rules would have never been known. Studies, therefore, the most abstruse, are, when viewed as furnishing rules to act, often productive of the highest practical utility.

Since the tides are occasioned by the influence of the sun and moon, I will conclude this Letter with a few remarks on this curious phenomenon. By the tides are meant the alternate rising and falling of the waters of the ocean. Its greatest and least elevations are called high and low water; its rising and falling are called flood and ebb; and the extraordinary high and low tides that occur twice every month are called spring and neap tides. It is high or low tide on opposite sides of the globe at the same time. If, for example, we have high water at noon, it is also high water to those who live on the meridian below us, where it is midnight. In like manner, low water occurs simultaneously on opposite sides of the meridian. The average amount of the tides for the whole globe is about two and a half feet; but their actual height at different places is very various, sometimes being scarcely perceptible, and sometimes rising to sixty or seventy feet. At the same place, also, the phenomena of the tides are very different at different times. In the Bay of Fundy, where the tide rises seventy feet, it comes in a mighty wave, seen thirty miles off, and roaring with a loud noise. At the mouth of the Severn, in England, the flood comes up in one head about ten feet high, bringing certain destruction to any small craft that has been unfortunately left by the ebbing waters on the flats and as it passes the mouth of the Avon, it sends up that small river a vast body of water, rising, at Bristol, forty or fifty feet.

Tides are caused by the unequal attractions of the sun and moon upon different parts of the earth. Suppose the projectile force by which the earth is carried forward in her orbit to be suspended, and the earth to fall towards one of these bodies,—the moon, for example,—in consequence of their mutual attraction. Then, if all parts of the earth fell equally towards the moon, no derangement of its different parts would result, any more than of the particles of a drop of water, in its descent to the ground. But if one part fell faster than another, the different portions would evidently be separated from each other. Now, this is precisely what takes place with respect to the earth, in its fall towards the moon. The portions of the earth in the hemisphere next to the moon, on account of being nearer to the centre of attraction, fall faster than those in the opposite hemisphere, and consequently leave them behind. The solid earth, on account of its cohesion, cannot obey this impulse, since all its different portions constitute one mass, which is acted on in the same manner as though it were all collected in the centre; but the waters on the surface, moving freely under this impulse, endeavor to desert the solid mass and fall towards the moon. For a similar reason, the waters in the opposite hemisphere, falling less towards the moon than the solid earth does, are left behind, or appear to rise.

Fig. 46. Fig. 46.

But if the moon draws the waters of the earth into an oval form towards herself, raising them simultaneously on the opposite sides of the earth, they must obviously be drawn away from the intermediate parts of the earth, where it must at the same time be low water. Thus, in Fig. 46, the moon, M, raises the waters beneath itself at Z and N, at which places it is high water, but at the same time depresses the waters at H and R, at which places it is low water. Hence, the interval between the high and low tide, on successive days, is about fifty minutes, corresponding to the progress of the moon in her orbit from west to east, which causes her to come to the meridian about fifty minutes later every day. There occurs, however, an intermediate tide, when the moon is on the lower meridian, so that the interval between two high tides is about twelve hours, and twenty-five minutes.

Were it not for the impediments which prevent the force from producing its full effects, we might expect to see the great tide-wave, as the elevated crest is called, always directly beneath the moon, attending it regularly around the globe. But the inertia of the waters prevents their instantly obeying the moon's attraction, and the friction of the waters on the bottom of the ocean still further retards its progress. It is not, therefore, until several hours (differing at different places) after the moon has passed the meridian of a place, that it is high tide at that place.

The sun has an action similar to that of the moon, but only one third as great. On account of the great mass of the sun, compared with that of the moon, we might suppose that his action in raising the tides would be greater than the moon's; but the nearness of the moon to the earth more than compensates for the sun's greater quantity of matter. As, however, wrong views are frequently entertained on this subject, let us endeavor to form a correct idea of the advantage which the moon derives from her proximity. It is not that her actual amount of attraction is thus rendered greater than that of the sun; but it is that her attraction for the different parts of the earth is very unequal, while that of the sun is nearly uniform. It is the inequality of this action, and not the absolute force, that produces the tides. The sun being ninety-five millions of miles from the earth, while the diameter of the earth is only one twelve thousandth part of this distance, the effects of the sun's attraction will be nearly the same on all parts of the earth, and therefore will not, as was explained of the moon, tend to separate the waters from the earth on the nearest side, or the earth from the waters on the remotest side, but in a degree proportionally smaller. But the diameter of the earth is one thirtieth the distance of the moon, and therefore the moon acts with considerably greater power on one part of the earth than on another.

As the sun and moon both contribute to produce the tides, and as they sometimes act together and sometimes in opposition to each other, so corresponding variations occur in the height of the tide. The spring tides, or those which rise to an unusual height twice a month, are produced by the sun and moon's acting together; and the neap tides, or those which are unusually low twice a month, are produced by the sun and moon's acting in opposition to each other. The spring tides occur at the syzygies: the neap tides at the quadratures. At the time of new moon, the sun and moon both being on the same side of the earth, and acting upon it in the same line, their actions conspire, and the sun may be considered as adding so much to the force of the moon. We have already seen how the moon contributes to raise a tide on the opposite side of the earth. But the sun, as well as the moon, raises its own tide-wave, which at new moon coincides with the lunar tide-wave. This will be plain on inspecting the diagram, Fig. 47, on page 220, where S represents the sun, C, the moon in conjunction, O, the moon in opposition, and Z, N, the tide-wave. Since the sun and moon severally raise a tide-wave, and the two here coincide, it is evident that a peculiarly high tide must occur when the two bodies are in conjunction, or at new moon. At full moon, also, the two luminaries conspire in the same way to raise the tide; for we must recollect that each body contributes to raise a tide on the opposite side. Thus, when the sun is at S and the moon at O, the sun draws the waters on the side next to it away from the earth, and the moon draws the earth away from the waters on that side; their united actions, therefore, conspire, and an unusually high tide is the result. On the side next to O, the two forces likewise conspire: for while the moon draws the waters away from the earth, the sun draws the earth away from the waters. In both cases an unusually low tide is produced; for the more the water is elevated at Z and N, the more it will be depressed at H and R, the places of low tide.

Fig. 47. Fig. 47.

Twice a month, also, namely, at the quadratures of the moon, the tides neither rise so high nor fall so low as at other times, because then the sun and moon act against each other. Thus, in Fig. 48, while F tends to raise the water at Z, S tends to depress it, and consequently the high tide is less than usual. Again, while F tends to depress the water at R, S tends to elevate it, and therefore the low tide is less than usual. Hence the difference between high and low water is only half as great at neap as at spring tide. In the diagrams, the elevation and depression of the waters is represented, for the sake of illustration, as far greater than it really is; for you must recollect that the average height of the tides for the whole globe is only about two and a half feet, a quantity so small, in comparison with the diameter of the earth, that were the due proportions preserved in the figures, the effect would be wholly insensible.

Fig. 48. Fig. 48.

The variations of distance in the sun are not great enough to influence the tides very materially, but the variations in the moon's distances have a striking effect. The tides which happen, when the moon is in perigee, are considerably greater than when she is in apogee; and if she happens to be in perigee at the time of the syzygies, the spring tides are unusually high.

The motion of the tide-wave is not a progressive motion, but a mere undulation, and is to be carefully distinguished from the currents to which it gives rise. If the ocean completely covered the earth, the sun and moon being in the equator, the tide-wave would travel at the same rate as the earth revolves on its axis. Indeed, the correct way of conceiving of the tide-wave, is to consider the moon at rest, and the earth, in its rotation from west to east, as bringing successive portions of water under the moon, which portions being elevated successively, at the same rate as the earth revolves on its axis, have a relative motion westward, at the same rate.

The tides of rivers, narrow bays, and shores far from the main body of the ocean, are not produced in those places by the direct action of the sun and moon, but are subordinate waves propagated from the great tide-wave, and are called derivative tides, while those raised directly by the sun and moon are called primitive tides.

Fig. 49. Fig. 49.

The velocity with which the tide moves will depend on various circumstances, but principally on the depth, and probably on the regularity, of the channel. If the depth is nearly uniform the tides will be regular; but if some parts of the channel are deep while others are shallow, the waters will be detained by the greater friction of the shallow places, and the tides will be irregular. The direction, also, of the derivative tide may be totally different from that of the primitive. Thus, in Fig. 49, if the great tide-wave, moving from east to west, is represented by the lines 1, 2, 3, 4, the derivative tide, which is propagated up a river or bay, will be represented by the lines 3, 4, 5, 6, 7. Advancing faster in the channel than next the bank, the tides will lag behind towards the shores, and the tide-wave will take the form of curves, as represented in the diagram.

On account of the retarding influence of shoals, and an uneven, indented coast, the tide-wave travels more slowly along the shores of an island than in the neighboring sea, assuming convex figures at a little distance from the island, and on opposite sides of it. These convex lines sometimes meet, and become blended in such a way, as to create singular anomalies in a sea much broken by islands, as well as on coasts indented with numerous bays and rivers. Peculiar phenomena are also produced, when the tide flows in at opposite extremities of a reef or island, as into the two opposite ends of Long-Island Sound. In certain cases, a tide-wave is forced into a narrow arm of the sea, and produces very remarkable tides. The tides of the Bay of Fundy (the highest in the world) are ascribed to this cause. The tides on the coast of North America are derived from the great tide-wave of the South Atlantic, which runs steadily northward along the coast to the mouth of the Bay of Fundy, where it meets the northern tide-wave flowing in the opposite direction. This accumulated wave being forced into the narrow space occupied by the Bay, produces the remarkable tide of that place.

The largest lakes and inland seas have no perceptible tides. This is asserted by all writers respecting the Caspian and Euxine; and the same is found to be true of the largest of the North-American lakes, Lake Superior. Although these several tracts of water appear large, when taken by themselves, yet they occupy but small portions of the surface of the globe, as will appear evident from the delineation of them on the artificial globe. Now, we must recollect that the primitive tides are produced by the unequal action of the sun and moon upon the different parts of the earth; and that it is only at points whose distance from each other bears a considerable ratio to the whole distance of the sun or moon, that the inequality of action becomes manifest. The space required to make the effect sensible is larger than either of these tracts of water. It is obvious, also, that they have no opportunity to be subject to a derivative tide.

Although all must admit that the tides have some connexion with the sun and the moon, yet there are so many seeming anomalies, which at first appear irreconcilable with the theory of gravitation, that some are unwilling to admit the explanation given by this theory. Thus, the height of the tide is so various, that at some places on the earth there is scarcely any tide at all, while at other places it rises to seventy feet. The time of occurrence is also at many places wholly unconformable to the motions of the moon, as is required by the theory, being low water where it should be high water; or, instead of appearing just beneath the moon, as the theory would lead us to expect, following it at the distance of six, ten, or even fifteen, hours; and finally, the moon sometimes appears to have no part at all in producing the tide, but it happens uniformly at noon and midnight, (as is said to be the case at the Society Islands,) and therefore seems wholly dependent on the sun.

Notwithstanding these seeming inconsistencies with the law of universal gravitation, to which the explanation of the tides is referred, the correspondence of the tides to the motions of the sun and moon, in obedience to the law of attraction, is in general such as to warrant the application of that law to them, while in a great majority of the cases which appear to be exceptions to the operation of that law, local causes and impediments have been discovered, which modified or overruled the uniform operation of the law of gravitation. Thus it does not disprove the reality of the existence of a force which carries bodies near the surface of the earth towards its centre, that we see them sometimes compelled, by the operation of local causes, to move in the opposite direction. A ball shot from a cannon is still subject to the law of gravitation, although, for a certain time, in obedience to the impulse given it, it may proceed in a line contrary to that in which gravity alone would carry it. The fact that water may be made to run up hill does not disprove the fact that it usually runs down hill by the force of gravity, or that it is still subject to this force, although, from the action of modifying or superior forces, it may be proceeding in a direction contrary to that given by gravity. Indeed, those who have studied the doctrine of the tides most profoundly consider them as affording a striking and palpable exhibition of the truth of the doctrine of universal gravitation.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page