LETTER XIV. SIR ISAAC NEWTON. UNIVERSAL GRAVITATION. FIGURE

Previous
LETTER XIV. SIR ISAAC NEWTON.--UNIVERSAL GRAVITATION.--FIGURE OF THE EARTH'S ORBIT.--PRECESSION OF THE EQUINOXES. "The heavens are all his own; from the wild rule Of whirling vortices, and circling spheres, To their first great simplicity restored. The schools astonished stood; but found it vain To combat long with demonstration clear, And, unawakened, dream beneath the blaze Of truth. At once their pleasing visions fled, With the light shadows of the morning mixed, When Newton rose, our philosophic sun."-- Thomson's Elegy.

Sir Isaac Newton was born in Lincolnshire, England, in 1642, just one year after the death of Galileo. His father died before he was born, and he was a helpless infant, of a diminutive size, and so feeble a frame, that his attendants hardly expected his life for a single hour. The family dwelling was of humble architecture, situated in a retired but beautiful valley, and was surrounded by a small farm, which afforded but a scanty living to the widowed mother and her precious charge. The cut on page 144, Fig 30, represents the modest mansion, and the emblems of rustic life that first met the eyes of this pride of the British nation, and ornament of human nature. It will probably be found, that genius has oftener emanated from the cottage than from the palace.

Fig. 30. Fig. 30.

The boyhood of Newton was distinguished chiefly for his ingenious mechanical contrivances. Among other pieces of mechanism, he constructed a windmill so curious and complete in its workmanship, as to excite universal admiration. After carrying it a while by the force of the wind, he resolved to substitute animal power, and for this purpose he inclosed in it a mouse, which he called the miller, and which kept the mill a-going by acting on a tread-wheel. The power of the mouse was brought into action by unavailing attempts to reach a portion of corn placed above the wheel. A water-clock, a four-wheeled carriage propelled by the rider himself, and kites of superior workmanship, were among the productions of the mechanical genius of this gifted boy. At a little later period, he began to turn his attention to the motions of the heavenly bodies, and constructed several sun-dials on the walls of the house where he lived. All this was before he had reached his fifteenth year. At this age, he was sent by his mother, in company with an old family servant, to a neighboring market-town, to dispose of products of their farm, and to buy articles of merchandise for their family use; but the young philosopher left all these negotiations to his worthy partner, occupying himself, mean-while, with a collection of old books, which he had found in a garret. At other times, he stopped on the road, and took shelter with his book under a hedge, until the servant returned. They endeavored to educate him as a farmer; but the perusal of a book, the construction of a water-mill, or some other mechanical or scientific amusement, absorbed all his thoughts, when the sheep were going astray, and the cattle were devouring or treading down the corn. One of his uncles having found him one day under a hedge, with a book in his hand, and entirely absorbed in meditation, took it from him, and found that it was a mathematical problem which so engrossed his attention. His friends, therefore, wisely resolved to favor the bent of his genius, and removed him from the farm to the school, to prepare for the university. In the eighteenth year of his age, Newton was admitted into Trinity College, Cambridge. He made rapid and extraordinary advances in the mathematics, and soon afforded unequivocal presages of that greatness which afterwards placed him at the head of the human intellect. In 1669, at the age of twenty-seven, he became professor of mathematics at Cambridge, a post which he occupied for many years afterwards. During the four or five years previous to this he had, in fact, made most of those great discoveries which have immortalized his name. We are at present chiefly interested in one of these, namely, that of universal gravitation; and let us see by what steps he was conducted to this greatest of scientific discoveries.

In the year 1666, when Newton was about twenty-four years of age, the plague was prevailing at Cambridge, and he retired into the country. One day, while he sat in a garden, musing on the phenomena of Nature around him, an apple chanced to fall to the ground. Reflecting on the mysterious power that makes all bodies near the earth fall towards its centre, and considering that this power remains unimpaired at considerable heights above the earth, as on the tops of trees and mountains, he asked himself,—"May not the same force extend its influence to a great distance from the earth, even as far as the moon? Indeed, may not this be the very reason, why the moon is drawn away continually from the straight line in which every body tends to move, and is thus made to circulate around the earth?" You will recollect that it was mentioned, in my Letter which contained an account of the first law of motion, that if a body is put in motion by any force, it will always move forward in a straight line, unless some other force compels it to turn aside from such a direction; and that, when we see a body moving in a curve, as a circular orbit, we are authorized to conclude that there is some force existing within the circle, which continually draws the body away from the direction in which it tends to move. Accordingly, it was a very natural suggestion, to one so well acquainted with the laws of motion as Newton, that the moon should constantly bend towards the earth, from a tendency to fall towards it, as any other heavy body would do, if carried to such a distance from the earth. Newton had already proved, that if such a power as gravity extends from the earth to distant bodies, it must decrease, as the square of the distance from the centre of the earth increases; that is, at double the distance, it would be four times less; at ten times the distance, one hundred times less; and so on. Now, it was known that the moon is about sixty times as far from the centre of the earth as the surface of the earth is from the centre, and consequently, the force of attraction at the moon must be the square of sixty, or thirty-six hundred times less than it is at the earth; so that a body at the distance of the moon would fall towards the earth very slowly, only one thirty-six hundredth part as far in a given time, as at the earth. Does the moon actually fall towards the earth at this rate; or, what is the same thing, does she depart at this rate continually from the straight line in which she tends to move, and in which she would move, if no external force diverted her from it? On making the calculation, such was found to be the fact. Hence gravity, and no other force than gravity, acts upon the moon, and compels her to revolve around the earth. By reasonings equally conclusive, it was afterwards proved, that a similar force compels all the planets to circulate around the sun; and now, we may ascend from the contemplation of this force, as we have seen it exemplified in falling bodies, to that of a universal power whose influence extends to all the material creation. It is in this sense that we recognise the principle of universal gravitation, the law of which may be thus enunciated; all bodies in the universe, whether great or small, attract each other, with forces proportioned to their respective quantities of matter, and inversely as the squares of their distances from each other.

This law asserts, first, that attraction reigns throughout the material world, affecting alike the smallest particle of matter and the greatest body; secondly, that it acts upon every mass of matter, precisely in proportion to its quantity; and, thirdly, that its intensity is diminished as the square of the distance is increased.

Observation has fully confirmed the prevalence of this law throughout the solar system; and recent discoveries among the fixed stars, to be more fully detailed hereafter, indicate that the same law prevails there. The law of universal gravitation is therefore held to be the grand principle which governs all the celestial motions. Not only is it consistent with all the observed motions of the heavenly bodies, even the most irregular of those motions, but, when followed out into all its consequences, it would be competent to assert that such irregularities must take place, even if they had never been observed.

Newton first published the doctrine of universal gravitation in the 'Principia,' in 1687. The name implies that the work contains the fundamental principles of natural philosophy and astronomy. Being founded upon the immutable basis of mathematics, its conclusions must of course be true and unalterable, and thenceforth we may regard the great laws of the universe as traced to their remotest principle. The greatest astronomers and mathematicians have since occupied themselves in following out the plan which Newton began, by applying the principles of universal gravitation to all the subordinate as well as to the grand movements of the spheres. This great labor has been especially achieved by La Place, a French mathematician of the highest eminence, in his profound work, the 'Mecanique Celeste.' Of this work, our distinguished countryman, Dr. Bowditch, has given a magnificent translation, and accompanied it with a commentary, which both illustrates the original, and adds a great amount of matter hardly less profound than that.

Fig. 31. Fig. 31.

We have thus far taken the earth's orbit around the sun as a great circle, such being its projection on the sphere constituting the celestial ecliptic. The real path of the earth around the sun is learned, as I before explained to you, by the apparent path of the sun around the earth once a year. Now, when a body revolves about the earth at a great distance from us, as is the case with the sun and moon, we cannot certainly infer that it moves in a circle because it appears to describe a circle on the face of the sky, for such might be the appearance of its orbit, were it ever so irregular a curve. Thus, if E, Fig. 31, represents the earth, and ACB, the irregular path of a body revolving about it, since we should refer the body continually to some place on the celestial sphere, XYZ, determined by lines drawn from the eye to the concave sphere through the body, the body, while moving from A to B through C, would appear to move from X to Z, through Y. Hence, we must determine from other circumstances than the actual appearance, what is the true figure of the orbit.

Fig. 32. Fig. 32.

Were the earth's path a circle, having the sun in the centre, the sun would always appear to be at the same distance from us; that is, the radius of the orbit, or radius vector, (the name given to a line drawn from the centre of the sun to the orbit of any planet,) would always be of the same length. But the earth's distance from the sun is constantly varying, which shows that its orbit is not a circle. We learn the true figure of the orbit, by ascertaining the relative distances of the earth from the sun, at various periods of the year. These distances all being laid down in a diagram, according to their respective lengths, the extremities, on being connected, give us our first idea of the shape of the orbit, which appears of an oval form, and at least resembles an ellipse; and, on further trial, we find that it has the properties of an ellipse. Thus, let E, Fig. 32, be the place of the earth, and a, b, c, &c., successive positions of the sun; the relative lengths of the lines E a, E b, &c., being known, on connecting the points a, b, c, &c., the resulting figure indicates the true figure of the earth's orbit.

These relative distances are found in two different ways; first, by changes in the sun's apparent diameter, and, secondly, by variations in his angular velocity. The same object appears to us smaller in proportion as it is more distant; and if we see a heavenly body varying in size, at different times, we infer that it is at different distances from us; that when largest, it is nearest to us, and when smallest, furthest off. Now, when the sun's diameter is accurately measured by instruments, it is found to vary from day to day; being, when greatest, more than thirty-two minutes and a half, and when smallest, only thirty-one minutes and a half,—differing, in all, about seventy-five seconds. When the diameter is greatest, which happens in January, we know that the sun is nearest to us; and when the diameter is least, which occurs in July, we infer that the sun is at the greatest distance from us. The point where the earth, or any planet, in its revolution, is nearest the sun, is called its perihelion; the point where it is furthest from the sun, its aphelion. Suppose, then, that, about the first of January, when the diameter of the sun is greatest, we draw a line, E a, Fig. 32, to represent it, and afterwards, every ten days, draw other lines, E b, E c, &c.; increasing in the same ratio as the apparent diameters of the sun decrease. These lines must be drawn at such a distance from each other, that the triangles, E a b, E b c, &c., shall be all equal to each other, for a reason that will be explained hereafter. On connecting the extremities of these lines, we shall obtain the figure of the earth's orbit.

Similar conclusions may be drawn from observations on the sun's angular velocity. A body appears to move most rapidly when nearest to us. Indeed, the apparent velocity increases rapidly, as it approaches us, and as rapidly diminishes, when it recedes from us. If it comes twice as near as before, it appears to move not merely twice as swiftly, but four times as swiftly; if it comes ten times nearer, its apparent velocity is one hundred times as great as before. We say, therefore, that the velocity varies inversely as the square of the distance; for, as the distance is diminished ten times, the velocity is increased the square of ten; that is, one hundred times. Now, by noting the time it takes the sun, from day to day, to cross the central wire of the transit-instrument, we learn the comparative velocities with which it moves at different times; and from these we derive the comparative distances of the sun at the corresponding times; and laying down these relative distances in a diagram, as before, we get our first notions of the actual figure of the earth's orbit, or the path which it describes in its annual revolution around the sun.

Having now learned the fact, that the earth moves around the sun, not in a circular but in an elliptical orbit, you will desire to know by what forces it is impelled, to make it describe this figure, with such uniformity and constancy, from age to age. It is commonly said, that gravity causes the earth and the planets to circulate around the sun; and it is true that it is gravity which turns them aside from the straight line in which, by the first law of motion, they tend to move, and thus causes them to revolve around the sun. But what force is that which gave to them this original impulse, and impressed upon them such a tendency to move forward in a straight line? The name projectile force is given to it, because it is the same as though the earth were originally projected into space, when first created; and therefore its motion is the result of two forces, the projectile force, which would cause it to move forward in a straight line which is a tangent to its orbit, and gravitation, which bends it towards the sun. But before you can clearly understand the nature of this motion, and the action of the two forces that produce it, I must explain to you a few elementary principles upon which this and all the other planetary motions depend.

You have already learned, that when a body is acted on by two forces, in different directions, it moves in the direction of neither, but in some direction between them. If I throw a stone horizontally, the attraction of the earth will continually draw it downward, out of the line of direction in which it was thrown, and make it descend to the earth in a curve. The particular form of the curve will depend on the velocity with which it is thrown. It will always begin to move in the line of direction in which it is projected; but it will soon be turned from that line towards the earth. It will, however, continue nearer to the line of projection in proportion as the velocity of projection is greater. Thus, let A C, Fig. 33, be perpendicular to the horizon, and A B parallel to it, and let a stone be thrown from A, in the direction of A B. It will, in every case, commence its motion in the line A B, which will therefore be a tangent to the curve it describes; but, if it is thrown with a small velocity, it will soon depart from the tangent, describing the line A D; with a greater velocity, it will describe a curve nearer the tangent, as A E; and with a still greater velocity, it will describe the curve A F.

Fig. 33. Fig. 33.

As an example of a body revolving in an orbit under the influence of two forces, suppose a body placed at any point, P, Fig. 34, above the surface of the earth, and let P A be the direction of the earth's centre; that is, a line perpendicular to the horizon. If the body were allowed to move, without receiving any impulse, it would descend to the earth in the direction P A with an accelerated motion. But suppose that, at the moment of its departure from P, it receives a blow in the direction P B, which would carry it to B in the time the body would fall from P to A; then, under the influence of both forces, it would descend along the curve P D. If a stronger blow were given to it in the direction P B, it would describe a larger curve, P E; or, finally, if the impulse were sufficiently strong, it would circulate quite around the earth, and return again to P, describing the circle P F G. With a velocity of projection still greater, it would describe an ellipse, P I K; and if the velocity be increased to a certain degree, the figure becomes a parabola, L P M,—a curve which never returns into itself.

Fig. 34. Fig. 34.

In Fig. 35, page 154, suppose the planet to have passed the point C, at the aphelion, with so small a velocity, that the attraction of the sun bends its path very much, and causes it immediately to begin to approach towards the sun. The sun's attraction will increase its velocity, as it moves through D, E, and F, for the sun's attractive force on the planet, when at D, is acting in the direction D S; and, on account of the small angle made between D E and D S, the force acting in the line D S helps the planet forward in the path D E, and thus increases its velocity. In like manner, the velocity of the planet will be continually increasing as it passes through D, E, and F; and though the attractive force, on account of the planet's nearness, is so much increased, and tends, therefore, to make the orbit more curved, yet the velocity is also so much increased, that the orbit is not more curved than before; for the same increase of velocity, occasioned by the planet's approach to the sun, produces a greater increase of centrifugal force, which carries it off again. We may see, also, the reason why, when the planet has reached the most distant parts of its orbit, it does not entirely fly off, and never return to the sun; for, when the planet passes along H, K, A, the sun's attraction retards the planet, just as gravity retards a ball rolled up hill; and when it has reached C, its velocity is very small, and the attraction to the centre of force causes a great deflection from the tangent, sufficient to give its orbit a great curvature, and the planet wheels about, returns to the sun, and goes over the same orbit again. As the planet recedes from the sun, its centrifugal force diminishes faster than the force of gravity, so that the latter finally preponderates.

Fig. 35. Fig. 35.

I shall conclude what I have to say at present, respecting the motion of the earth around the sun, by adding a few words respecting the precession of the equinoxes.

The precession of the equinoxes is a slow but continual shifting of the equinoctial points, from east to west. Suppose that we mark the exact place in the heavens where, during the present year, the sun crosses the equator, and that this point is close to a certain star; next year, the sun will cross the equator a little way westward of that star, and so every year, a little further westward, until, in a long course of ages, the place of the equinox will occupy successively every part of the ecliptic, until we come round to the same star again. As, therefore, the sun revolving from west to east, in his apparent orbit, comes round to the point where it left the equinox, it meets the equinox before it reaches that point. The appearance is as though the equinox goes forward to meet the sun, and hence the phenomenon is called the precession of the equinoxes; and the fact is expressed by saying, that the equinoxes retrograde on the ecliptic, until the line of the equinoxes (a straight line drawn from one equinox to the other) makes a complete revolution, from east to west. This is of course a retrograde motion, since it is contrary to the order of the signs. The equator is conceived as sliding westward on the ecliptic, always preserving the same inclination to it, as a ring, placed at a small angle with another of nearly the same size which remains fixed, may be slid quite around it, giving a corresponding motion to the two points of intersection. It must be observed, however, that this mode of conceiving of the precession of the equinoxes is purely imaginary, and is employed merely for the convenience of representation.

The amount of precession annually is fifty seconds and one tenth; whence, since there are thirty-six hundred seconds in a degree, and three hundred and sixty degrees in the whole circumference of the ecliptic, and consequently one million two hundred and ninety-six thousand seconds, this sum, divided by fifty seconds and one tenth, gives twenty-five thousand eight hundred and sixty-eight years for the period of a complete revolution of the equinoxes.

Suppose we now fix to the centre of each of the two rings, before mentioned, a wire representing its axis, one corresponding to the axis of the ecliptic, the other to that of the equator, the extremity of each being the pole of its circle. As the ring denoting the equator turns round on the ecliptic, which, with its axis, remains fixed, it is easy to conceive that the axis of the equator revolves around that of the ecliptic, and the pole of the equator around the pole of the ecliptic, and constantly at a distance equal to the inclination of the two circles. To transfer our conceptions to the celestial sphere, we may easily see that the axis of the diurnal sphere (that of the earth produced) would not have its pole constantly in the same place among the stars, but that this pole would perform a slow revolution around the pole of the ecliptic, from east to west, completing the circuit in about twenty-six thousand years. Hence the star which we now call the pole-star has not always enjoyed that distinction, nor will it always enjoy it, hereafter. When the earliest catalogues of the stars were made, this star was twelve degrees from the pole. It is now one degree twenty-four minutes, and will approach still nearer; or, to speak more accurately, the pole will come still nearer to this star, after which it will leave it, and successively pass by others. In about thirteen thousand years, the bright star Lyra (which lies near the circle in which the pole of the equator revolves about the pole of the ecliptic, on the side opposite to the present pole-star) will be within five degrees of the pole, and will constitute the pole-star. As Lyra now passes near our zenith, you might suppose that the change of position of the pole among the stars would be attended with a change of altitude of the north pole above the horizon. This mistaken idea is one of the many misapprehensions which result from the habit of considering the horizon as a fixed circle in space. However the pole might shift its position in space, we should still be at the same distance from it, and our horizon would always reach the same distance beyond it.

The time occupied by the sun, in passing from the equinoctial point round to the same point again, is called the tropical year. As the sun does not perform a complete revolution in this interval, but falls short of it fifty seconds and one tenth, the tropical year is shorter than the sidereal by twenty minutes and twenty seconds, in mean solar time, this being the time of describing an arc of fifty seconds and one tenth, in the annual revolution.

The changes produced by the precession of the equinoxes, in the apparent places of the circumpolar stars, have led to some interesting results in chronology. In consequence of the retrograde motion of the equinoctial points, the signs of the ecliptic do not correspond, at present, to the constellations which bear the same names, but lie about one sign, or thirty degrees, westward of them. Thus, that division of the ecliptic which is called the sign Taurus lies in the constellation Aries, and the sign Gemini, in the constellation Taurus. Undoubtedly, however, when the ecliptic was thus first divided, and the divisions named, the several constellations lay in the respective divisions which bear their names.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page