LETTER III. ASTRONOMICAL INSTRUMENTS. TELESCOPE. "Here

Previous
LETTER III. ASTRONOMICAL INSTRUMENTS.----TELESCOPE. "Here truths sublime, and sacred science charm, Creative arts new faculties supply, Mechanic powers give more than giant's arm, And piercing optics more than eagle's eye; Eyes that explore creation's wondrous laws, And teach us to adore the great Designing Cause."-- Beattie .

If, as I trust, you have gained a clear and familiar knowledge of the circles and divisions of the sphere, and of the mode of estimating the position of a heavenly body by its azimuth and altitude, or by its right ascension and declination, or by its longitude and latitude, you will now enter with advantage upon an account of those instruments, by means of which our knowledge of astronomy has been greatly promoted and perfected.

The most ancient astronomers employed no instruments of observation, but acquired their knowledge of the heavenly bodies by long-continued and most attentive inspection with the naked eye. Instruments for measuring angles were first used in the Alexandrian school, about three hundred years before the Christian era.

Wherever we are situated on the earth, we appear to be in the centre of a vast sphere, on the concave surface of which all celestial objects are inscribed. If we take any two points on the surface of the sphere, as two stars, for example, and imagine straight lines to be drawn to them from the eye, the angle included between these lines will be measured by the arc of the sky contained between the two points. Thus, if D B H, Fig. 3, page 30, represents the concave surface of the sphere, A, B, two points on it, as two stars, and C A, C B, straight lines drawn from the spectator to those points, then the angular distance between them is measured by the arc A B, or the angle A C B. But this angle may be measured on a much smaller circle, having the same centre, as G F K, since the arc E F will have the same number of degrees as the arc A B. The simplest mode of taking an angle between two stars is by means of an arm opening at a joint like the blade of a penknife, the end of the arm moving like C E upon the graduated circle K F G. In fact, an instrument constructed on this principle, resembling a carpenter's rule with a folding joint, with a semicircle attached, constituted the first rude apparatus for measuring the angular distance between two points on the celestial sphere. Thus the sun's elevation above the horizon might be ascertained, by placing one arm of the rule on a level with the horizon, and bringing the edge of the other into a line with the sun's centre.

Fig. 3. Fig. 3.

The common surveyor's compass affords a simple example of angular measurement. Here, the needle lies in a north and south line, while the circular rim of the compass, when the instrument is level, corresponds to the horizon. Hence the compass shows the azimuth of an object, or how many degrees it lies east or west of the meridian.

It is obvious, that the larger the graduated circle is, the more minutely its limb may be divided. If the circle is one foot in diameter, each degree will occupy one tenth of an inch. If the circle is twenty feet in diameter, a degree will occupy the space of two inches, and could be easily divided into minutes, since each minute would cover a space one thirtieth of an inch. Refined astronomical circles are now divided with very great skill and accuracy, the spaces between the divisions being, when read off, magnified by a microscope; but in former times, astronomers had no mode of measuring small angles but by employing very large circles. But the telescope and microscope enable us at present to measure celestial arcs much more accurately than was done by the older astronomers. In the best instruments, the measurements extend to a single second of space, or one thirty-six hundredth part of a degree,—a space, on a circle twelve feet in diameter, no greater than one fifty-seven hundredth part of an inch. To divide, or graduate, astronomical instruments, to such a degree of nicety, requires the highest efforts of mechanical skill. Indeed, the whole art of instrument-making is regarded as the most difficult and refined of all the mechanical arts; and a few eminent artists, who have produced instruments of peculiar power and accuracy, take rank with astronomers of the highest celebrity.

I will endeavor to make you acquainted with several of the principal instruments employed in astronomical observations, but especially with the telescope, which is the most important and interesting of them all. I think I shall consult your wishes, as well as your improvement, by giving you a clear insight into the principles of this prince of instruments, and by reciting a few particulars, at least, respecting its invention and subsequent history.

The Telescope, as its name implies, is an instrument employed for viewing distant objects.[2] It aids the eye in two ways; first, by enlarging the visual angle under which objects are seen, and, secondly, by collecting and conveying to the eye a much larger amount of the light that emanates from the object, than would enter the naked pupil. A complete knowledge of the telescope cannot be acquired, without an acquaintance with the science of optics; but one unacquainted with that science may obtain some idea of the leading principles of this noble instrument. Its main principle is as follows: By means of the telescope, we first form an image of a distant object,—as the moon, for example,—and then magnify that image by a microscope.

Fig. 4. Fig. 4.

Let us first see how the image is formed. This may be done either by a convex lens, or by a concave mirror. A convex lens is a flat piece of glass, having its two faces convex, or spherical, as is seen in a common sun-glass, or a pair of spectacles. Every one who has seen a sun-glass, knows, that, when held towards the sun, it collects the solar rays into a small bright circle in the focus. This is in fact a small image of the sun. In the same manner, the image of any distant object, as a star, may be formed, as is represented in the following diagram. Let A B C D, Fig. 4, represent the tube of the telescope. At the front end, or at the end which is directed towards the object, (which we will suppose to be the moon,) is inserted a convex lens, L, which receives the rays of light from the moon, and collects them into the focus at a, forming an image of the moon. This image is viewed by a magnifier attached to the end B C. The lens, L, is called the object-glass, and the microscope in B C, the eyeglass. We apply a microscope to this image just as we would to any object; and, by greatly enlarging its dimensions, we may render its various parts far more distinct than they would otherwise be; while, at the same time, the lens collects and conveys to the eye a much greater quantity of light than would proceed directly from the body under examination. A very few rays of light only, from a distant object, as a star, can enter the eye directly; but a lens one foot in diameter will collect a beam of light of the same dimensions, and convey it to the eye. By these means, many obscure celestial objects become distinctly visible, which would otherwise be either too minute, or not sufficiently luminous, to be seen by us.

But the image may also be formed by means of a concave mirror, which, as well as the concave lens, has the property of collecting the rays of light which proceed from any luminous body, and of forming an image of that body. The image formed by a concave mirror is magnified by a microscope, in the same manner as when formed by the concave lens. When the lens is used to form an image, the instrument is called a refracting telescope; when a concave mirror is used, it is called a reflecting telescope.

The office of the object-glass is simply to collect the light, and to form an image of the object, but not to magnify it: the magnifying power is wholly in the eyeglass. Hence the principle of the telescope is as follows: By means of the object-glass, (in the refracting telescope,) or by the concave mirror, (in the reflecting telescope,) we form an image of the object, and magnify that image by a microscope.

The invention of this noble instrument is generally ascribed to the great philosopher of Florence, Galileo. He had heard that a spectacle maker of Holland had accidentally hit upon a discovery, by which distant objects might be brought apparently nearer; and, without further information, he pursued the inquiry, in order to ascertain what forms and combinations of glasses would produce such a result. By a very philosophical process of reasoning, he was led to the discovery of that peculiar form of the telescope which bears his name.

Although the telescopes made by Galileo were no larger than a common spyglass of the kind now used on board of ships, yet, as they gave new views of the heavenly bodies, revealing the mountains and valleys of the moon, the satellites of Jupiter, and multitudes of stars which are invisible to the naked eye, it was regarded with infinite delight and astonishment.

Reflecting telescopes were first constructed by Sir Isaac Newton, although the use of a concave reflector, instead of an object-glass, to form the image, had been previously suggested by Gregory, an eminent Scotch astronomer. The first telescope made by Newton was only six inches long. Its reflector, too, was only a little more than an inch. Notwithstanding its small dimensions, it performed so well, as to encourage further efforts; and this illustrious philosopher afterwards constructed much larger instruments, one of which, made with his own hands, was presented to the Royal Society of London, and is now carefully preserved in their library.

Newton was induced to undertake the construction of reflecting telescopes, from the belief that refracting telescopes were necessarily limited to a very small size, with only moderate illuminating powers, whereas the dimensions and powers of the former admitted of being indefinitely increased. Considerable magnifying powers might, indeed, be obtained from refractors, by making them very long; but the brightness with which telescopic objects are seen, depends greatly on the dimensions of the beam of light which is collected by the object-glass, or by the mirror, and conveyed to the eye; and therefore, small object-glasses cannot have a very high illuminating power. Now, the experiments of Newton on colors led him to believe, that it would be impossible to employ large lenses in the construction of telescopes, since such glasses would give to the images, they formed, the colors of the rainbow. But later opticians have found means of correcting these imperfections, so that we are now able to use object-glasses a foot or more in diameter, which give very clear and bright images. Such instruments are called achromatic telescopes,—a name implying the absence of prismatic or rainbow colors in the image. It is, however, far more difficult to construct large achromatic than large reflecting telescopes. Very large pieces of glass can seldom be found, that are sufficiently pure for the purpose; since every inequality in the glass, such as waves, tears, threads, and the like, spoils it for optical purposes, as it distorts the light, and produces nothing but confused images.

The achromatic telescope (that is, the refracting telescope, having such an object-glass as to give a colorless image) was invented by Dollond, a distinguished English artist, about the year 1757. He had in his possession a quantity of glass of a remarkably fine quality, which enabled him to carry his invention at once to a high degree of perfection. It has ever since been, with the manufacturers of telescopes, a matter of the greatest difficulty to find pieces of glass, of a suitable quality for object-glasses, more than two or three inches in diameter. Hence, large achromatic telescopes are very expensive, being valued in proportion to the cubes of their diameters; that is, if a telescope whose aperture (as the breadth of the object-glass is technically called) is two inches, cost one hundred dollars, one whose aperture is eight inches would cost six thousand four hundred dollars.

Since it is so much easier to make large reflecting than large refracting telescopes, you may ask, why the latter are ever attempted, and why reflectors are not exclusively employed? I answer, that the achromatic telescope, when large and well constructed, is a more perfect and more durable instrument than the reflecting telescope. Much more of the light that falls on the mirror is absorbed than is lost in passing through the object-glass of a refractor; and hence the larger achromatic telescopes afford a stronger light than the reflecting, unless the latter are made of an enormous and unwieldy size. Moreover, the mirror is very liable to tarnish, and will never retain its full lustre for many years together; and it is no easy matter to restore the lustre, when once impaired.

In my next Letter, I will give you an account of some of the most celebrated telescopes that have ever been constructed, and point out the method of using this excellent instrument, so as to obtain with it the finest views of the heavenly bodies.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page