THE EARTH.

Previous

The Earth, considered as one of those spheres which circulate round the sun amidst the wide expanse of the firmanent, holds but an insignificant position among them, especially when compared with those great and magnificent orbs, Jupiter and Saturn; but, in another point of view, as the dwelling-place of all the animated beings, vegetables, and minerals, with which we have any practical knowledge, it holds to us a position in creation far above all the others.

It is upon the surface of this our earth that we behold in detail those wonders of the Great Creator's hands, which must fill all who contemplate and study them with enlarged ideas of His wisdom, goodness, and power. We see the millions of stars sparkling in the abyss of space, and our minds are so formed that we can measure and gauge their distances and rates of travelling, their orbits and their sizes, their weights, and the powers with which they attract and influence each other; but we only contemplate a star as one bright and beautiful object worthy to be one of the gems which the Almighty has set in His crown of glory, or a lamp to light the halls of His infinite habitation, but we still contemplate it as a single object; while on the surface of the earth our Maker has permitted us to roam and search out by what benevolent contrivances He has suited all things to the comfort and welfare of His creatures. How His mercy and goodness are extended amply to the most minute animalcule as well as to man, and how His powers of construction are to be found in the most minute objects which the microscope can display, as perfect as in the largest creature we behold. It is here upon our earth that we perceive how the structure and functions of all creatures are regulated and controlled by the unerring laws which He has created, over which laws the creatures have no control, and which if duly regarded and used according to the faculties each has been gifted with, will return the greatest joy and happiness their several natures are capable of, and secure all that perfection of operation which their mechanical frames are suited to perform; but before any description of the organised beings which dwell on the earth can be given, it will be proper to enter into a description of the earth itself, to see what sort of place God has provided for them, and how through succeeding cycles of time He has gradually perfected and prepared it for the reception of His last great work, Man.

It is only a few miles below the surface of the earth that man has been able to penetrate and examine, but reason comes to assist him where examination fails, and it would have been but a few hundred yards only that his labours could have extended had it not been that parts, which are generally situated miles below the surface, are occasionally found at or even raised above it, by some disturbing cause which operated in times far back; so that man is able to examine on the surface parts which he could scarcely dig down to.

The whole of the earth, its inhabitants, the air which surrounds it, the waters upon its surface, and its vegetable products, are composed of certain substances called elements, combined and united in certain numbers and proportions. The following is a list of all known:—

METALLIC ELEMENTS.
Aluminium 13.7 Nickel 29.6
Antimony 12.9 Niobium *
Arsenic 75 Norium *
Barium 68.5 Osmium 99.6
Bismuth 21.3 Palladium 53.3
Cadmium 56 Pelopium *
Calcium 20 Platinum 98.7
Cerium 47 Potassium 39.2
Chromium 26.7 Rhodium 52.2
Cobalt 29.5 Ruthenium 52.2
Copper 31.7 Silicon 21.3
Didymium * Silver 108.1
Donarium * Sodium 23
Erbium * Strontium 43.8
Glucinium * Tantalium 184
Gold 197 Tellurium 64.2
Ilmenium * Terbinum *
Iridium 99 Thorium 59.6
Iron 28 Tin 59
Lanthanium * Titanium 25
Lead 103.7 Tungsten 95
Lithium 6.5 Uranium 60
Magnesium 12.2 Vanadium 68.6
Manganese 27.6 Yttrium 32.2
Mercury 100 Zinc 32.6
Molybdenum 46 Zirconium 22.4
NON-METALLIC ELEMENTS.
Boron 10.9 Iodine 127.1
Bromine 80 Nitrogen 14
Carbon 6 Oxygen 8
Chlorine 35 Phosphorus 32
Fluorine 18.9 Sulphur 16
Hydrogen 1 Selenium 39.5

By this list it will be perceived that the greatest number of the elements are metals, but most of these are very rare and met with but in certain localities, making up but a very insignificant part of the earth's surface, while others (never found in nature, as metals) in combination with oxygen forming "earths" compose the greater part of its bulk. But of all the elements, oxygen (a gas) is the most widely diffused, and constitutes rather more than one half of the whole earth, thus it forms 1/5th of the air, 9/10ths of the water, of the various earths and rocks about 1/2, and in all organised beings about 3/4.

Of the metallic elements, those which form the greater bulk of the earth are—

Silicon.
Aluminium.
Calcium.
Magnesium.
Potassium.
Sodium.

These never exist in nature as metals, but combined with oxygen forming the following earths and alkalies:—

Silica }
Alumina } Earths.
Lime }
Magnesia }
Potassa } Alkalies.
Soda }

These four "earths" form about eighty-five per cent. of the whole bulk of this globe, the remainder being made up of water (composed of eight parts oxygen and one part hydrogen), of "salt," both as rock or crystal-salt, and dissolved in the water of the sea, of the ores of different metals (metals in union with oxygen, sulphur, &c.), and of the remains of former vegetation, existing as coal.

Silica is composed of 21.3 parts of silicon with 24 of oxygen, it is that earth which constitutes a great part of almost every soil, and forms sand, sandstone, and flint, it enters largely also into the formation of granite and the other primitive rocks; when pure it is called "quartz" or "rock-crystal" and is often found in large and beautiful masses. Silica, in different forms, contaminated and coloured by different metallic oxides, &c., forms that class of stones known as "agate," "Scotch pebble," "carnelian," &c., and in the form of flint is found nearly pure, forming "nodules" or rounded masses lying in layers in the chalk cliffs on our coasts, the origin of these nodules of flint is very obscure, but they are by many attributed to the petrifaction of sponges, &c., the general form of which they often retain as well as their internal structure, which may be seen when viewed in thin slices by means of the microscope. Pure silica is a white insoluble powder, and is much used by the makers of porcelain to mix with their other ingredients.

Alumina consists of 41.1 parts of aluminium in combination with 24 parts of oxygen, it is the earth which forms the basis of all clays, loams, and slates, it is in its pure state perfectly white but in most clays is coloured brown or blueish by oxide of iron, many of our most beautiful gems, as the ruby, sapphire, and emerald, consist chiefly of crystallised alumina coloured by oxide of iron, chromium, &c., this earth like silica enters largely into the composition of the primitive rocks.

Lime is another of the earths which form a great part of all soils; it consists of 20 parts calcium with 8 of oxygen. Unlike the two preceding earths, it exists only in union with some acid. When united to carbonic acid it forms limestone, chalk, marble, &c., and when in a crystallised state "Iceland spar." The various kinds of limestone are largely used as building-stones, and any of them when burnt yields lime or "quick-lime" as it is generally called, which is capable of uniting with a certain portion of water, giving out a considerable amount of heat during the combination. Lime is often found in union with sulphuric acid, forming gypsum or Plaster of Paris, in combination with phosphoric acid it forms the basis or earthy part of the bones of animals, and is found in some of the tissues of plants.

Potassa consists of 39.2 parts potassium in union with 8 oxygen, it constitutes about 12 per cent. of the granites and basalts (primitive rocks) in union with silica and alumina, it is also found in the fluids of many vegetables in union with carbonic, oxalic, and other acids.

Soda consists of twenty-three parts sodium with eight oxygen, it however does not exist in this form in nature, but in union with chlorine instead of oxygen, constituting chloride of sodium or common salt, this substance forms strata of considerable extent in some localities and being soluble has no doubt been washed out by the rains from many other places and has thus communicated saltness to the waters of the ocean. The other metallic elements exist chiefly in those forms of earth called "ores" being metals in union with oxygen, sulphur, &c., or are found in the metallic state, as gold, platinum, &c., it is from these ores that most of our useful metals are procured by the process called smelting, as in the case of iron, copper, lead, tin, &c. All the substances known result from the combinations of the elements, but these elements do not chemically combine in all proportions, but in certain definite quantities only; these quantities or proportions are signified by the numbers attached to each element in the list given,1 and the union of these substances must be in the proportion of these numbers (or multiples of them) only, all superfluity of the substances combined remaining in a state of mere mechanical mixture. For example, if six parts of carbon (charcoal) made red-hot be plunged into a jar containing twenty parts of oxygen, it will unite with sixteen parts only of the oxygen (a multiple of eight), and form twenty-two parts of carbonic acid, the extra four parts of oxygen still remaining as oxygen mixed with the carbonic acid; and if into this carbonic acid twenty parts of lime be put, it will unite with the twenty-two of carbonic acid, forming forty-two of carbonate of lime, still leaving the four parts of oxygen untouched. Had forty parts of lime been put into the mixture, instead of twenty, still only forty-two of carbonate of lime would have been formed, and the other twenty parts (like the four of oxygen) being superfluous, would still have remained as lime, mixed with the carbonate of lime. These combining quantities are called the "equivalents" of the substances.

1 See the list of the elements at page 45; those which are distinguished by an asterisk, are elements of which the "equivalents" are not known.

Upon examining various portions of the earth's surface, they will be found to differ in character from each other; in one place perhaps sandy soil will be found, in another, hard rock, in a third, clay, in a fourth, chalk, and so on. Now, if this examination were carried no further, it might well be presumed that each of these kinds of soil were continued downwards into the earth for an indefinite distance, but upon digging (as in sinking a shaft or well) it is found that the stratum of soil upon the surface is soon passed through, that others in succession present themselves and that this succession of strata is not a matter of chance, but (with certain restrictions) follows in invariable order. It is true some strata are occasionally not present, and that others replace them; but yet (taken altogether) there is the same order of succession everywhere found. The following diagram (fig. 1) gives the section of these strata from the earth's surface to the granite which is the lowest of all formations and through which no one has ever penetrated. The figures give an approximation to their average thickness in feet. These strata do not all run in a direction parallel to the surface of the earth, or else it would result that the surface would everywhere be made up of the highest, but they have been contorted and heaved up into mounds or depressed; and the granite has often been pushed upwards, carrying with it all the upper strata to a certain extent, at last thrusting quite through them all and presenting itself above the surface, forming in this way the tops of many very high mountains, Mont Blanc for instance. Such a mountain if cleft from the summit to the base would present a section similar to that shown in fig. 2, and thus it occurs (contrary to what would at first thought be supposed) that the highest ground is generally formed of the lowest strata, while the valleys are nearly always covered with the latest formations, which is partly owing to the elevating process before alluded to, and partly to the winds, rains, &c., tending to carry away and wash down every kind of soil from the upper ground and deposit it in the lower.

FIG. 1.—DIAGRAM SHOWING THE POSITIONS AND RELATIVE THICKNESSES OF THE STRATA.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

[Pg 50]
[Pg 51]

Fig. 3 represents strata in a state called by geologists "conformable," which name is applied when the strata follow their natural or regular succession, whether this retains its horizontal position, or, as in fig. 4, assumes a position more or less vertical, which frequently happens from the subsidence of one part or the elevation of another; but they are sometimes found in the state represented in fig. 5, and in which they are said to be "unconformable." Such strata after having been tilted out of the horizontal have had other strata deposited upon them, which again may be more or less contorted from the same causes. The regularity of strata is often interrupted by what are called "faults" or "dykes," which have arisen from some part of the earth sinking down or another part being raised up, producing a fracture through all the strata and causing those on either side of this fault or fracture to occupy a situation not corresponding to those on the opposite, as in fig. 6, but yet to be found at a higher or lower elevation, and it is nearly always found that these strata are raised on that side to which the line of fracture inclines, as in the figure. These faults are often sources of great annoyance to the miner, who finds a sudden termination to the seam of coal or ore that he is working. The cracks are generally filled with some primitive rock, as basalt, rising from beneath while in a liquid state and filling up the interstices; it will often happen that the faults thus filled will have veins of the same rock branching out and not only filling up cracks but forcing its way between the various strata, thus interposing a stratum of basalt quite out of its proper position and altering, by the effects of the heat communicated, the character of the strata in juxtaposition; this is shown in fig. 7.

FIG. 6.

Upon a close examination of the various strata which form the crust of the earth, it is found that each has its own peculiar character; some have resulted from the accumulation of matters deposited at the bottom of ancient seas, others in the beds of rivers or fresh-water lakes, or again others (as the coal formation) from the accumulation of vegetable matters; further, these strata do not only differ in structure and composition, but also in the remains of animals and plants found in them; for there is scarcely any kind of soil (above the primary rocks) in which abundant remains of these have not been found. It will now be proper to give a description of them in succession, beginning at the lowest or primary, granite.

FIG. 7.

This appears to be the result of the cooling and crystallisation of that molten mass which many circumstances (hereafter to be mentioned) point out as making up the great body of the earth. Granite differs, in various places, in colour and quality (the varieties are known as "sienite," "porphyry," "greenstone," &c.), but still retains its own distinctive characters; it is a hard, crystalline rock, consisting of "felspar," "mica," and "quartz," in separate crystals, but mechanically blended; its chemical composition as a whole is silica, alumina, and potassa, with small quantities of lime and oxide of iron. This granite is met with everywhere, if the outer crust of the earth be penetrated to a sufficient depth; it however frequently exists on the surface, having no strata below it, and in some places overlies other strata—this, and the fact that cracks and crevices of some of the lower strata are filled up with granite, which could only have taken place while it was in a liquid state, as in fig. 8, together with evidences of the effects of calcination, and other changes producible only by extreme heat, all around those parts and in the strata immediately overlaying the granite, point out that it was once in a state of fusion.

Above the granite formation, in many places, especially in Norway and Sweden, there is a stratum of rock called gneiss, which consists of the same ingredients as granite in a slightly altered form. Granite will often pass into gneiss gradually, and this again into those slaty formations which rest upon it and come next in the series. These consist of mica-slate, hornblend-slate, and chlorite-slate or schist, a name given to all those rocks of a slaty structure which have a cleavage or capability of being cleft into thin laminÆ or slices (hence their applicability to the purposes of building, forming excellent roofing materials, &c.).

FIG. 8.

All these rocks have received the name of "primary," they have no appearance of being stratified or deposited in layers, which appearance seems to be in all cases the result of having at some time been suspended in water and thence deposited gradually as mud, sand, &c., time, pressure, and heat having afterwards altered their consistence. All these consist of the earths described as composing granite, but combined in different proportions. Above these rocks there is a formation of a totally different composition, namely crystalline limestone, commonly known as marble; this consists wholly of carbonate of lime or lime in union with carbonic acid, and its crystalline state appears to have been produced by long-continued heat and pressure. This limestone is by many ranked amongst the primary rocks, although it differs so entirely in its composition which exactly resembles a formation presently to be described (the chalk); however, if this be classed with the primary rocks, then it may be fairly said that all above have resulted from their disintegration and reunion in different forms, by the action of water and vital forces of different kinds. The state of the earth at the close of this the "primary period" may now be considered.

The early history of our globe forms one of the great problems of geology, but there is evidence enough upon which to form conclusions and show that the earth had undergone some great and varied changes embracing immense periods of time, and if the sciences of astronomy, chemistry, mathematics, &c., be brought in to assist the inquiry, some plain facts become evident. Astronomy shows us orbs circulating round the sun (the planets), strictly analogous to our earth, and furnishes us with their densities; these are found to be various, ranging from about six times the density of water to half its density. The planets appear to be at different stages of condensation, and it is not unreasonable to suppose that our earth was once of no greater density than the lightest of them. The inner ring of Saturn is probably in a liquid state, for it is transparent. The substance of which comets are composed is a vapour, so rare and thin that it cannot be compared in density to our atmosphere even, and yet these comets preserve their identity, circulating through immense realms of space with prodigious rapidity. Thus astronomy presents analogies in favour of the supposition that the earth was once gaseous, or at all events of much less density than at present; but mathematical inquiries go much further, and furnish almost proof that the earth was once (if not now) in a liquid state, for the exact form which a liquid ball would assume upon rotating at the rate which the earth does, is exactly that which the globe is found by measurement to possess.

Chemistry has ascertained that the heat of the earth is far greater than any tract of the heavens through which it passes; that this heat could not have been communicated by the sun's rays, for had it been so the surface would be hotter than the interior, the very reverse of which is found to be the fact, and the deeper we go down the higher the temperature is. Chemistry shows further that this heat can be completely accounted for by the condensation and solidification of the earth itself; for the condensation of all gases into liquids, and of liquids into solids, causes a very large portion of latent caloric to become sensible, for example, any quantity of a gas at 60 deg. suddenly reduced to a smaller bulk, would have a temperature higher than 60 deg. A little contrivance has long been in use for obtaining fire by this process, consisting of a cylinder and piston, the rod of which if struck down sets fire to a piece of German-tinder. It is probable that all fire, and every alteration of temperature, are due to this one cause alone.

Now assuming it as a fact that the earth was once in a gaseous state, and that the atoms of this gas or vapour exerted (as they must have done) an attraction towards each other, the result would be that they would press immensely upon those parts towards the centre and cause them to solidify. This act of solidification would produce such an intense heat that the solid would be expanded and fused into a liquid, this continuing until all the more condensible matters had become liquid, the earth would assume its spheroidal form from its rotation, be surrounded by an atmosphere of the least easily condensible substance, nitrogen, together with all the oxygen not wanted to combine with the metallic vapour and form earth. This globe with its atmosphere continuing to roll through the cold regions of space, would gradually lose the heat from its outer part by radiation. A film of cooled and condensed earthy matter would begin to form on the surface by crystallisation, and then would commence all those grand phenomena which it is the province of the geologist to study and explain. This crust consisted of the first-formed granite which (from inequality of contraction in the bulk of the earth) was broken up into fragments and perhaps partly re-dissolved again and again in some places, as it chanced that these contractions were more or less irregular. The result of this crushing and crumbling-up is seen in the coarser parts of the gneiss, called "Grauwacke," which consist of angular fragments of granite more or less imbedded in a cement of the same substance. This could not have been produced by water, as the surface must have been too hot for it to have existed on the earth in any other form than the most highly rarefied steam combined with the atmosphere, and in all probability partly condensed in the upper regions, forming a continuous strata of clouds, or rather water, through which the sun could hardly be seen or its light penetrate, and such a state of things exists at this present time in the planet Jupiter. How beautifully does this coincide with the Mosaic account, "The earth was without form and void, and darkness was upon the face of the earth."

The surface of the earth at this time can be well understood by any one who will take the pains to evaporate any saline solution in a capsule till it is about to crystallise, and observe attentively the pellicle of salt as it forms on the surface; first a partial film will show itself in a few places, floating about and joining with others, then when nearly the whole surface is coated, it will break up in some places and sink into the liquid beneath, another pellicle will form and join with the remains of the first, and as this thickens it will push up ridges and inequalities of the surface from openings and fissures in which little jets of steam and fluid will escape; these little ridges are chains of mountains, the little jets of steam those volcanic eruptions which were at that period so frequent; the surface of the capsule is the surface of the earth, and the five minutes which the observer has contemplated it, a million years.

The next effect of the cooling of the earth would be the gradual condensation of the vapour of water with which it was surrounded; this falling upon the earth formed seas and oceans, leaving only the higher portions exposed above its level. The clearing-up of the dense dark clouds for the first time let in to the earth's surface the glorious and vivifying rays of the sun, and this great effect possibly accords with the earliest record in the Bible of the acts of creation—"And God said, let there be light, and there was light."

FIG. 9—STALAGMITE. FIG. 10.—TEREBRATULA.

The earth being chiefly covered with water, and the air partly freed from watery vapour, then commenced the great creation of organised beings. The air, although to a certain extent, free from vapour, must yet have contained an enormous amount of carbonic acid; this, being less easily condensed than any of the matters which had gone through that process, would still remain there as a gas, and the effect of this superabundance would be to saturate all the water covering the earth with it; this solution of carbonic acid, being capable of dissolving lime, would (as it percolated and rushed in currents through the rocks and inequalities of the surface) become converted into a solution of percarbonate of lime, taking up a large quantity of this earth from the broken-up granite, &c., then this carbonate of lime would be deposited at the bottom of the water in one of two ways—either from pressure, diminution of carbonic acid in the air, and heat of the surface, it crystallised at the bottom in the form of marble (that the water does thus become saturated with carbonic acid and take up lime, is constantly shown by the stalagmites which form on the floors of caverns, where the water thus loaded with percarbonate of lime, evaporating, deposits gradually the carbonate in all sorts of fantastic shapes, as in fig. 9), or the myriads of crinoidians and brachiopodous molluscs (fig. 10) which were about this time created, absorbed it into their systems and at their death deposited their shells, which are made of this earth, at the bottom of the sea; these shells, accumulating through ages into strata, became hardened and partly crystallised by heat, thus forming the limestones, which were the first containing carbonate of lime. That such a collection, from such causes, is quite possible, will be presently shown in describing the chalk formation.

Ages of comparative quiet now appear to have succeeded the first great contraction of the earth's crust, probably millions of years, during which time the tides and currents of the ocean had to wash and wear down all the thousands of projecting rocks or inequalities and dissolve (as before described) all the lime, depositing the sand and clay in those immense strata which form the "transition series;" this appears to have taken place over nearly the whole world at that time, and ages upon ages must have elapsed to form such deposits as the sandstone, claystone, and limestone, in alternation, forming the "Llandilo," "Caradoc," and "Wenlock" strata, more than a mile in thickness; these are by some geologists reckoned among the primary series (by some called the "transition rocks"), and in England form the "Cambrian" and "Silurian" systems.

FIG. 11—TRILOBITE.

In these strata the remains of organised beings are first found, consisting of zoophytes, crustacea (chiefly Trilobites, fig. 11), nautili, crinoidii (stone lilies), and a few ganoid (plate-covered) fishes; these lower forms of animal life in some parts abound in the most prodigious numbers. There must, of course, have been vegetables of some kind previously formed to constitute nourishment for these animals, but scarcely any remains of such exist, except in a few localities.

The Trilobites were amongst the first creatures inhabiting our globe, and it is a curious fact to contemplate, that their eyes (fig. 12) should have been preserved perfect; they present one of those wonderful objects which carry one's thoughts backwards to the early ages of the world, probably many millions of years, and yet it is found by the peculiar structure of the eyes of these Trilobites that they were placed at the bottom of the sea with perfect power to look upwards at the light of the sun through the transparent waters. The same hand and the same power had then Divine care and solicitude for the well-being of His creatures, as great as He has for those of later ages, and these first-formed beings exactly correspond with the account of the creation of animals given in the book of Genesis, "And God said, let the waters bring forth abundantly the moving creature that hath life."

FIG. 12.—EYE OF TRILOBITE.

At the end of the "transition period"—after ages of long-continued disintegration of the rough surface of the earth, and its deposition in strata—after thousands of generations of crustaceans, molluscs, and zoophytes had lived and died, depositing their shells at the bottom of the seas, so as to form strata of the carbonate of lime—a great and terrific convulsion of nature put a stop to all this quiet and systematic order of things; for through these long reaches of time, the physical laws of nature had continued to exert their influence, the bulk of the world had gone on radiating its heat into space, and, as a necessary result, had gradually contracted in size. Now, this radiation had doubtless been much retarded by the badly-conducting surface of solid matter which had everywhere covered it, but, although retarded, it could not be prevented, and although the crust of solid matter may already have been several miles in thickness, yet this in relation to the bulk of the earth would hold but the proportion of the paper on the surface of a twelve-inch globe. As the fluid mass of the earth continued to contract, there would of course be a great stress or crushing-power exerted on the crust, both by its own gravity and that of the air which surrounded it, and about this period it appears to have given way over the greatest portion of the globe, producing enormous rents and fractures, seen in every country in the faults and dislocations of these primitive and transition strata, some of which were driven up by the downward force of others, and left in a perpendicular position, some overlapping each other, &c.; but the greatest effect of this convulsion appears to have been produced by the rocking or rolling surface of the sub-existing fluid world, forming gigantic waves, which, by meeting in opposite directions and thrusting upwards the strata to a great height, formed the mighty mountain-chains of the now-existing earth, which raise their lofty pinnacles above the clouds. Now, these mountains may at first thought appear too ponderous and extensive to be thrown up in this way; but by inspecting the engraved section of a part of the globe (fig. 13), it will be seen how very insignificant a mountain is when compared with the whole world. This section is through Asia from the Persian Gulf to the Yellow Sea, and embraces the highest land on the whole face of the earth, and is drawn on a scale in which the earth is represented by a globe sixteen inches diameter. The rugged and peaked tops of these mountains would be formed by the great fractured masses of the broken strata being thrust upwards and there resting against each other; but who can describe the chasms and hollows which must have resulted when the great wave of melted earth had subsided to its level under one of these huge mountain masses? or the dreadful abyss into which at some future time it and the surrounding country may fall, if they have not already been filled up by the sinking of the surrounding strata. Some of these great waves, when thrust upwards, forced their way right through the point of the mountain and came pouring down in torrents of liquid earth (lava), deluging the surrounding country and filling up the beds of the adjacent seas, casting out cinders and ores of metals—as iron, which appears to have first made its appearance at that time, mingling with the deposits and tinging them of a red colour. These great volcanoes, upon the subsidence of the rock-waves, still (more or less) retained their communication with the interior fiery earth, and are now the greatest safeguards against such a general crushing-up of the strata, for they act as safety-valves against any unequal expansion of the interior (fig. 14). The greatest eruptions of volcanoes or the most terrific earthquakes of modern times, are as the most insignificant trifles compared with what must have taken place to form the inequalities of surface found to exist.

FIG. 13—SECTION OF 40 DEG. OF THE EARTH'S SURFACE, BEING THE SOUTHERN PART OF ASIA, AND INCLUDING THE HIGHEST LAND IN THE WORLD.

The outer uneven line represents the mountains and table-lands from the sea's level, and the lower line shows the depth to which the crust of the earth's surface has been examined—about five miles.

A to B.—Level of sea.
B to second C.—Hindustan.
C to D.—Thibet.
D to E.—Great Desert of Gobi.
F.—500 miles of Earth's radius.
C to C.—The Himalayas, in which occurs the highest mountain in the world, Dhawalagiri, which is 28,174 feet high.

FIG. 14.—BURNING MOUNTAIN.

But the contraction of the interior mass of the earth still continues, and the cavities left by the expulsion of volcanic matters, and the pushing-up of the mountains, may not all have been compensated for by the sinking-in of the strata, so it remains a matter of doubt whether the crust of the earth is sufficiently strong to bear the pressure of its own and the air's gravity, or whether at some future day another contraction will break it up and destroy the whole existing order of things. The shocks of earthquakes are strictly analogous to such catastrophes, but on an immensely inferior scale.

FIG. 15.—LIMESTONE MADE UP OF ENCRINITE.
FIG. 16.—LIMESTONE MADE UP OF CORALS (Favosites polymorpha).

The effects of the last great contraction having subsided the surface of the earth assumed a new arrangement of its matter, and the order of things which caused the deposition of the secondary strata commenced. Sedimentary sandstones were deposited from the washings of the surface by the waters which had not yet absorbed all the superfluous carbonic acid of the air, but continued to do so, and as fast as it became absorbed and saturated with the calcareous matter of the soil, swarms of coral-polypi, which were then formed, began to build their habitations in the warm waters of the ocean and rob them of the carbonate of lime which they contained, leaving them capable of absorbing more from the atmosphere. These little creatures formed immense masses of coral, and together with the "Encrinites" (having stony frameworks, figs. 15 and 16), were the chief artificers of that age, and well did they show what perseverance was able to accomplish, for through the thousands of years of quiet which now succeeded, they must have filled up nearly all the existing oceans with their structures, causing the water gradually to flow from its former beds into other situations, and thus from time to time was changed the position of both sea and land. The strata of mountain limestone which now exist are the remains of what these little polypi then produced, for there is scarcely a portion of this kind of rock, but shows evidences of having been, once, coral, madrapore, or some analogous structure (fig. 17). This mountain limestone sometimes occurs thousands of feet thick, and extends over vast districts both in Europe and America.

FIG. 17.—ENCRINITIC LIMESTONE.

During this period, although there were no great disturbances, capable of displacing the strata, yet there appears to have been frequent small eruptions of volcanic matter through the crevices of the lower strata, filling up all their cracks and vacuities, and in many cases rising to the surface, overflowing with basalt, toadstone, and other volcanic formations; in other cases rising in enormous quantities through openings at the bottom of the seas, partly filling these up, driving off the waters, and thus covering many of the coral formations with coatings of sand to a great thickness, raising up others into considerable elevations, and forming hills and fresh tracts of earth.

FIG. 18.—FOSSIL TREE FERNS.

During this long period of comparative quiet most of the irregularities on the surface of the earth became worn down, and extensive swamps were produced by partial evaporation of the inland lakes. These swamps were subject to occasional inroads of the sea, and at times formed shallow lakes or lagoons; in these grew the most luxuriant vegetation, gigantic pines, tree-ferns (fig. 18), equisetacÆ, &c. These plants, nurtured by a hot and moist climate, acquired a great luxuriance of growth, and must have formed forests of such great density, that there is nothing existing at the present time worthy to be compared with them, even in the hottest climates. Such fertility appears to have been dependent upon the conditions of the air and earth, the former containing more carbonic acid (the food of vegetables) and the latter a greater amount of warmth, than at present; these two circumstances, so favourable to the growth of plants, were equally unfavourable to the existence of air-breathing animals, to whom the carbonic acid would be fatal poison.

Thus, in the mighty hands of God, the air was undergoing a gradual purification, to fit it for the animals He intended to create; the polypi were extracting from the water all the carbonate of lime it was absorbing from the air and earth, and fixing it in the soil, to be of use in a hundred ways at some future time, while the vegetation growing in abundance extracted it from the air, and fixed its carbon in their leaves and substance generally; these vegetables, decaying and falling upon the surface of the earth, accumulated there for ages, and formed a carbonaceous matter which was afterwards changed by time and pressure into coal. The same thing (on a very much smaller scale) is taking place in the tropical forests of the present age; there the surface-soil is quite black, and consists of nothing but decayed leaves and wood for several feet in depth, but in the present time there are hosts of insects, every one of which feeds upon this vegetable matter, preventing to a great extent its accumulation, while in the former age there was nothing to destroy it when once deposited on the ground; so that the carbon of these forests of the secondary period, existing through perhaps tens of thousands of years, extracted from the air a sufficient quantity of vegetable carbonaceous matter to produce thick seams of coal, even when compressed by the superincumbent strata. These forests were subject from time to time to inroads of the sea produced by the before-mentioned causes, and thus it is found that the seams of coal are often buried by several hundred feet of sand, clay, shale, &c., above which the same growth recommenced to form a second strata of coal, and ages must have elapsed whilst each of the numerous seams which interstratify the "coal measures" were forming. This coal, preserved in the depths of the earth, now forms the greatest treasure of the mine, and ironstone (from which iron is procured) would be almost useless but for the occurrence of these two minerals together with limestone (used as a flux) in the same locality, and it is this fortunate circumstance which enables England to produce such vast quantities of iron at such a cheap rate. The quantity of coal consumed in the iron-smelting works and for fuel generally, is beyond what could have been imagined a generation or two back, being somewhere about 50,000,000 tons annually, the coal brought to London alone in 1856 being 1,271,800 tons, yet there is such a plentiful supply of this valuable fuel in Great Britain alone that, supposing the annual consumption to rise to 70,000,000, it would serve (according to computation) a thousand years. Who shall say from whence fuel will then be obtained? probably from some other source provided by the foreknowledge of God, as was shown in the formation of the coal itself; for who could have imagined, a thousand years ago, when England possessed such immense forests, and wood was the universal fuel, that this very wood would become too scarce and valuable to be used, and that a substitute would be dug out of the earth!

The coal-shales (thin layers of claystone found in the coal seams) furnish beautiful specimens of ferns and other plants turned into coal (fig. 19), or leaving their perfect impressions in the clay. The coal formation occurred during the latter part of one of those long eras of tranquillity which supervened upon the contraction and breaking-up of the older strata; but the laws of nature are immutable, and these days of comparative quiet again came to a close. The same phenomena before described again occurred, and there is hardly a square mile of these strata but shows evidences of the terrible convulsion which desolated the earth. Some of the strata were raised, others depressed, and some lost altogether, the cracks and flaws being filled with liquid lava or basalt, which in many cases rose upwards through them and overflowed the surface. Many of the cracks of this, the "carboniferous system," are filled with sulphuret of lead called "galena," the ore from which all the lead of commerce is obtained; it is not well known how the veins of this and similar substances got into these crevices, but it is probable they were injected in a fluid state by some unequal pressure on the liquid beneath, or deposited by electrical action.

The great world of vegetation was thus destroyed, giving place to new forms of animal and vegetable life. The temperature, all this while sinking, had reached a degree somewhat resembling the hottest regions of the earth at the present day. The waters had changed their localities, new mountains and new continents had made their appearance, and again did the ever-active waters begin to demolish and wear down the asperities of the surface and deposit the results upon the strata below in the form of the new red sandstone and magnesian limestone, the former containing iron in great abundance, and the latter magnesia (an earth not met with before), both of which substances were probably ejected as volcanic products and afterwards combined with the carbonic acid of the air.

FIG. 20.—LABYRINTHODON.
FIG. 21.—IMPRESSIONS OF FEET IN NEW RED SANDSTONE.

During the formation of these strata there appears to have been both birds and quadrupeds of many kinds, together with a reptile much resembling a frog, but of great size, being five or six feet long, called the "Labyrinthodon" (fig. 20). The oxide of iron, or some other agent appears to have prevented the fossilisation of the inhabitants of these strata, for but few of their organic remains have been preserved; but very curious evidences of their existence nevertheless remain, in the impressions of their feet upon the ground they trod (fig. 21), which appears to have been a moist clay or mud peculiarly adapted to receive impressions, and which having been in many places covered over with a stratum of fine sand, and then abandoned by the sea, the whole have hardened into stone, and being now separated, the one contains their footprints and the other perfect casts of them! Nor are these foot-marks all that these sandstones have to tell us of their day; for the ripples of the waves, and even the little pits made by drops of rain as they fell, are in this most marvellous manner preserved, forming objects of wonder and admiration for us mortals to contemplate, and themes whereon the devout mind may pour out its tribute of praise to their Great Author. How evident it is that the Creator designed beforehand that we should search for these hidden evidences of His handiwork, or for what purpose were they thus stored up and preserved? "Seek, and ye shall find, knock, and it shall be opened unto you," are the words of God, and they apply as fully to the material wonders of His works as to the mysteries of His revealed Word.

As the strata below the new sandstone formation was called the "Carboniferous" system, from its containing much carbon in the form both of coal and carbonic acid, so this has been called the "Saliferous" system, from the occurrence in many places of strata of "rock-salt" or crystallised chloride of sodium, and (where the rain finds its way down and dissolves it) of brine springs; these (in England) exist chiefly in Cheshire and Warwickshire, but in Poland and Hungary they exist on a much larger scale, the rock-salt being nearly a thousand feet thick. It has been said that these strata of salt were formed by the evaporation of salt lakes, but it is much more probable that salt is one of the natural materials of the earth, and that both salt lakes and oceans have become salt from dissolving out these strata wherever they have come into contact. The next sediment deposited over the new red sandstone is called the "Lias," a sort of limestone mixed with clay of a blueish-grey colour, and upon this lias is again deposited the various strata known as the "Oolite" (Roe-stone) system, from its appearance resembling the roe of a fish, it consists of small rounded particles of limestone set in a cement of the same substance worn down fine.

FIG. 22.—AMMONITE (Henlyi). FIG. 23.—PENTACRINITE.

These strata furnish a great many organic remains, especially the shells of the conchiferous mollusca and cephalopods, as Ammonites (fig. 22), Belemnites, Nautili, and Pentacrinites (fig. 23), of which a great many varieties are found, also the remains of gigantic reptiles, as the Ichthyosaurus (fig. 24), Plesiosaurus (fig. 25), and others. New forms of animal existence seem to have been created in this period in great abundance, and the waters of the earth once again became the theatre of deposition for the shells and polypidomes of zoophytes and molluscs, which swarmed them in myriads, and another great group of rocks began to be formed, namely, the chalk or "Cretaceous" system, which form the cliffs and downs of our south coasts, and strata of great extent in nearly every part of the world; it differs from limestone only in not being so hard, which is supposed to arise from its not having undergone the changes caused by heat and pressure.

FIG. 24.—ICHTHYOSAURUS.
FIG. 25.—PLESIOSAURUS.
FIG. 26.—NAUTILUS INEQUALIS.
FIG. 27.—ORGANISMS FROM CHALK.

The chalk is interstratifÌed with lines of sand, and the lower part is almost entirely sandy, forming the gault and greensand deposits; these each contain organic remains, and must have been the original sand of the sea-bottom before the chalk was deposited on it. These seas must have been the residence of a vast number of reptiles, for the gault contains an enormous number of nodules of what appears to be stone, but which upon closer examination, prove to be coprolites, or portions of the excrement of those creatures partly fossilised, but still retaining phosphate of lime enough to render them valuable manure, and these—like the coal—after being buried in the earth for thousands of years, are now being brought into use. In these coprolites may be constantly seen the teeth and bones of fishes, together with portions of echini and crustaceans, which had passed through the intestines of these saurian reptiles. Fig. 26 is the shell of a small nautilus (Nautilus inequalis) thus found.

FIG. 28.—AMMONITE FROM THE CHALK.

This chalk is of a white colour, very light and porous; under the higher powers of the microscope, it appears to be made up of organic forms, as "Foraminifera," and portions of various kinds of shells, crushed and broken into minute fragments (fig. 27). Dr. Carpenter, in his work on the microscope, says: "Many parts of it (the chalk) consist in a great measure of the minuter parts of the smaller kinds of Foraminifera, whose shells are imbedded in a mass of apparently amorphous particles, many of which nevertheless present indications of being the worn fragments of similar shells, or of larger calcareous organisms. In the chalk of some localities, Foraminifera constitute the principal part of the minute organisms which can be recognised with the microscope; in other instances the disintegrated prisms of PinnÆ, or other large shells of the like structure (as Inoceramus), constitute the great bulk." The fossil remains in the chalk are very numerous and are all of a marine character, the ammonites (fig. 28), belemnites, and other cephalopods, were very prevalent, as were the various Echinodermata, as the Hemicidarus intermedia (fig. 29), together with numerous univalve and bivalve mollusca, various crustacea, fish and reptiles. There was some considerable wonderment a few years ago expressed at the skeletons of men being found in the chalk at Guadaloupe; but it has been ascertained that this chalk is a modern formation, being produced by the sea washing and disintegrating the adjacent coral reefs, and depositing a fine white sediment of broken coral on the shore which can hardly be distinguished from ancient chalk; the same process is taking place at the Bermudas and other islands of the West Indies.

FIG. 29.—ECHINUS (Hemicidarus intermedia, Chalk).

In many places the chalk strata contain single lines of flints, running for miles parallel to the layers of chalk; these flints consist of almost pure silica, and it has been a matter of wonder how they got there, but on considering how slowly the deposition of chalk must have taken place, from the formation and death of millions of minute creatures, and that it was once the bottom of a deep sea, the disposition of the flints in lines would be accounted for, supposing them to have been formed on that sea-bottom, and the source from which they have been derived is doubtless the petrifaction of sponges, madrapores, &c., there formed. Dr. Carpenter (in the work before referred to) says: "It may be stated, as a fact beyond all question, that nodular flint and other analogous concretions (such as agates) may generally be considered as fossilised sponges or alcyonian zoophytes, since not only are their external forms and their superficial markings often highly characteristic of those organisms, but when sections of them are made sufficiently thin to be transparent, a spongy texture may be most distinctly recognised in their interior."

FIG. 30.—TERTIARY FORMATION.

During the deposition of these secondary strata in the hollows of the surface, but little alteration of the relative situations of sea and land could have taken place, as the deposits for the most part lie conformably to the same hollows or "basins" (fig. 30 will illustrate this); but after the deposition of these strata, there appears to have been a very great disturbance, many chains of mountains were cast up (as the Apennines), carrying upwards with them these deposits; some of the strata were so displaced that they were left in a perpendicular position, as may be seen in several places at the south side of the Isle of Wight. These disturbances, however, did not amount to so general a convulsion as those before described, nor is it known whether all the effects produced on these strata took place at or near the same period of time; they nevertheless appear to have produced an almost total change in the situation of the land and sea, for the "downs" of chalk (on the southern coast of England, for example) were, before these changes, the beds of seas. This is the last of the great convulsions which the earth has undergone, for the tertiary strata which afterwards began to be deposited rest in the hollows or basins (chiefly in the chalk) then left; the alterations in and since these deposits appear to consist chiefly of the upheaval of certain localities, the depression of others, the evaporation of inland lakes, and the wear and tear of the land from these causes, which are still in continuous action (as from the washing down of cliffs by the sea, and the formation of mud deposits at the mouths of rivers), or the volcanic agencies which in some places (as in Ireland) have cast up basalt over the chalk.

The tertiary strata contain remains of most of the classes of animals now in existence, but yet differing greatly in species, and as the strata approach the surface those species become more and more general; the plants also approach more nearly to those of the present time, but still most parts of Europe possessed a climate almost tropical. The tertiary strata consist chiefly of marine and fresh water deposits in the form of sands and clays, as the "London clay," which extends under London, resting upon a basin of chalk. The last deposits, forming the superficial layer of earth, and the formation last deposited before the creation of man, are called the Diluvium and Alluvium, and contain numerous remains of mammalia, birds, reptiles, and fishes. One of the most extraordinary animals of this period was the Dinotherium, a sort of walrus, which is supposed to have been the largest of quadrupeds, if indeed it was one (fig. 31). The quadrupeds of this, the "Pliocene" formation, are thus described by Professor Owen in his "History of British Fossil Mammals."

FIG. 31.—SKULL OF THE DINOTHERIUM.
FIG. 32.—MAMMOTH, TELEOSAURUS, AND GLYPTODON.

"At the period indicated by these superficial stratified and unstratified deposits the Mastodon had probably disappeared from England, but gigantic elephants (fig. 32), nearly twice the bulk of the largest individuals that now exist in Ceylon and Africa, roamed here in herds, if one may judge from the abundance of their remains. Two horned rhinoceros, of at least two species, forced their way through the ancient forests or wallowed in the swamps. The lakes and rivers were tenanted by hippopotami, as bulky and with as for midable tusks as those of Africa. Three kinds of wild oxen, two of which were of colossal size and strength, and one of them maned and villous like the bonassus, found subsistence on the plains. Deer as gigantic, in proportion to existing species, were the contemporaries of the old Uri and Bisontes, and may have disputed with them the pasturage of that ancient land. One of these extinct deer is well known as the Irish elk, by the enormous expanse of its broad-palmed antlers (fig. 33). Another herd proves more like those of the wapiti, but surpassed that great Canadian deer in bulk. A third extinct species more resembled the Indian Hippelaphus, and with these were associated the red-deer, the rein-deer, the roebuck, and the goat. A wild horse, a wild ass or quagga, and the wild boar, entered also into the series of British pliocene hoofed animals. The carnivora, organised to enjoy a life of rapine at the expense of the vegetable feeders, to restrain their undue increase and abridge the pangs of the maimed and sickly, were duly adjusted in size and ferocity to the fell task assigned them in the organic economy of the pre-adamite world. Besides a British tiger, of larger size and with proportionately longer paws than that of Bengal, there existed a stronger feline animal (Machairodus) of equal size, which from the great length and sharpness of its sabre-shaped canines, was probably the most ferocious and destructive of its peculiarly carnivorous family. Of the smaller felines, we recognise the remains of a leopard, a large lynx, and of a wild cat. Troops of hyenas, larger than the Crocuta of South Africa, which they most resembled, craunched the bones of the carcases relinquished by the nobler beasts of prey, and doubtless often themselves waged the war of destruction on the feebler quadrupeds.

FIG. 33.—IRISH ELK.
THE PALEOTHERIUM.

"A savage bear, surpassing the Ursus ferox of the Rocky Mountains, found its hiding-place, like the hyÆna, in many of the existing limestone caverns of England. With the Ursus spoelus was associated another bear, more like the common European species, but larger than the present individuals of the Ursus Arctas. Wolves and foxes, the badger, the otter, the foumart, and the stoat, complete the category of known pliocene carnivora of Britain."

In the time of these the last of the tertiary strata, there appear evidences of a degree of cold much greater than at present exists; this seems to be pretty well proved by the "boulder formation," or prevalence of erratic blocks of stone, the progress of which have been traced from their sources of origin to hundreds of miles distant, and there is no conceivable power which could have carried them but the floating fields of ice or glaciers; both of these sources are capable of this removal, for it is not uncommon to find large pieces of rock and layers of gravel floating on masses of ice. Glaciers are formed by the snow on the sides of mountains becoming hardened by being partially melted and again frozen, and at every melting the fluid tends to descend, when it again becomes frozen, always adding to the lower part and carrying away from the upper. In this way whole glaciers of many miles extent become unfixed, and as fresh snows are added to their upper parts, they descend slowly, entangling with them and tearing away the rocks in their vicinity. When they arrive at the sea and float forth, these rocks are borne with them.

But there are as yet no traces of man, not one small fragment of his skeleton, not one minute relic of his constructive powers, although the bones of man are as capable of preservation as those of any other animal, being the same in structure and composition; the remains of hundreds of fragile insects, seeds, leaves, and all sorts of organic structures, are found perfectly preserved (fig. 34). The only way, therefore, of accounting for the absence of any organic remains of man, is the assumption that he was not then created; and this is confirmed by the fact that in the very uppermost layers of the earth's surface his bones and the works of his hands are found in great abundance; it is therefore with good reason that we come to the conclusion, that he was the last creature formed by his Maker. That the creation of man was pre-intended by God, seems also almost proved by the numerous objects before created, capable of ministering to his use and happiness—capable of exercising his constructive and inquiring capabilities—suitable to his imagination and tastes, and his only, and which would serve no purpose of utility to the mere brutes. Of what use, to any creature but man, is coal—of what use the metals? Of what avail is it to any of the lower animals, that God has caused glass and other transparent substances to have the power of refracting the rays of light? but without which not one-half of our knowledge of His wondrous works would ever have been obtained, for it is upon this property alone that the powers of the telescope and microscope depend. Of what use to any but man are fire, artificial light, and galvanism? and yet all these were created long before man was.

FIG. 34.—FOSSIL LEAVES.
FIG. 35.—SCULPTURE FROM NINEVEH.

It has often been asked, What does man gain by the study of the sciences? Besides the enlarged views which they give him of his Creator's goodness and power, they at this time are fast reaching towards the demonstration of many obscure passages of His Holy Word as revealed to us in the Scriptures. The study of truth can moreover never lead one into error, and a habit of drawing correct conclusions from the facts presented is useful to every one. Geology has confirmed one great truth in Scripture, and overthrown the greatest groundwork of Deism, for it had been asserted by many that man (and indeed all other creatures) had risen to his present state by slow developments, and no proof to the contrary had ever been given. But geology has shown that at a certain era man was created, that (as is stated in Scripture) he was the last of God's works, and that neither before that time had he existed in an undeveloped form, nor since has he altered one jot from his original configuration; and the same may be said of all other creatures, whatever may be pretended to the contrary, for from the sculptures brought from the ruins of Nineveh (at least 3000 years old), there appears the same external form (fig. 35), both of man and what animals are there depicted, and his and their habits were described by the very earliest writers to be then as now. But with respect to the form of the earth's surface it is otherwise, there being a slow but continuous change. Those parts of the land exposed to the tides and action of the waves, are washed away, and the rivers are constantly bringing down soil to deposit it at their mouths, forming those tracts of land known as "deltas;" every wind that blows takes away some dust from the higher and deposits it on the lower parts of the earth's surface, so that, to use the words of the Prophet Isaiah, "every valley shall be exalted and every mountain and hill shall be made low." But this alteration is so slow that it takes hundreds of years to make but a small difference, yet a difference there undoubtedly is, and a time must come when the alteration will be such as has been shown to have taken place in far-back times and recorded in the strata in evident language, for though the changes are slow the result is inevitable. It has been ascertained that the northern part of Sweden has been steadily rising and the southern part sinking to a corresponding degree for many centuries past, and that the west coast of Italy has been elevated for ages past, at the rate of not quite an inch yearly. Volcanic actions are raising some lands and depressing others (in the earthquakes of 1822 and 1835, the whole of Chili from the Andes to the sea, and probably the bed of the sea to an unknown extent, was elevated considerably), rain and the rivers carry away land into the sea, the beds of many seas are being filled up by coral polypes and protophytes, so that the beds of these seas must ultimately be the land whilst the lower parts of the land will become sea.

After these various changes upon the surface of the earth, from a climate hot beyond anything now existing, from a surface rocky and full of fissures and inequalities, studded with islands and continents, abounding in marshes and swamps—from a state of atmosphere in which the higher animals could not live—to the present division and separation of land and water, of oceans and seas, of islands and continents, well supplied with rivers to drain off the superfluous fluid and supply highways easy to traverse in boat or canoe, the world remains, a fitting habitation for the creatures God has placed upon it on every hand. Forests to shelter the wild animals from the rains and heat of the sun; waters for those who dwell or delight in them; metals, stone, earth, and wood for man to exercise his ingenuity upon, and other innumerable things contributing to his comfort or luxury—all freely given by the hand of his Heavenly Father for his well-being and delight, that he may lack no excuse to worship and adore Him, and this delightful earth, as Milton says:—

Brought forth the tender grass, whose verdure clad
Her universal face with pleasant green,
Then herbs of every leaf, that sudden flower'd
Opening their various colours, and made gay
Her bosom smelling sweet: and these scarce blown,
Forth flourish'd thick the clustering vine, forth crept
The swelling gourd, up stood the corny reed
Embattled in her field, and the humble shrub,
And bush with frizzled hair implicit: last
Rose as in dance the stately trees, and spread
Their branches hung with copious fruit, or gemmed
Their blossoms; with high woods the hills were crowned.
With tufts the valleys, and each fountain side,
With borders, long the rivers: that earth now
Seem'd like to heaven, a seat where gods might dwell
Or wander with delight, and love to haunt
Her sacred shades.

After all these various elevations and depressions, the land remains at this present time in the form of large tracts occupying about a third of the superficial area of our globe. The largest tract is made up of Europe, Asia, and Africa, which constitute one continuous area, Africa being almost severed from the others, but still united by the Isthmus of Suez; the tract next in size to this is made up of North and South America, these again are nearly severed, but still united by the Isthmus of Panama or Darien; next come Australia and Greenland, but these, although very large, are yet not to be compared in size with the former two; there are numerous other large islands, as Borneo, New Guinea, New Zealand, Madagascar, Iceland, England, Ireland, &c., and scores of smaller ones.

The temperature of the earth (as a general rule) is greatest on the equator and diminishes gradually towards each pole, but this is by no means invariable, for two places of the same latitude may be very different in climate, and a system of lines passing round the earth from east to west, would each pass through regions of various temperatures, or what is the same thing, lines made to follow the same temperature would have to make various curves and contortions; such lines have been constructed and are called "isothermal" lines. The causes of this are to be found in the various currents of the ocean, the tides and winds, and in the proximity to the ocean of snow-clad mountains and arid plains. The variation of latitude in these lines sometimes reaches as much as seven degrees.

Europe contains about 3,900,000 square miles of surface, and is separated from Asia by the Caucasus, Caspian Sea, River Ural, and Uralian Mountains. It is about 3000 miles long and 2400 broad, about two-thirds being plain and table-land and one-third mountain land. The chief mountain ranges are those which run through Norway and Sweden in a north-westerly direction, and the mountain system along the south part from Portugal to Turkey. This last includes the Pyrenees, which runs from the Bay of Biscay to the Mediterranean, the highest peak of which is Mont Maladeta (11,500 feet); the Alps, the highest point of which is Mont Blanc (15,748 feet); the Apennines, the highest point of which is Mont Viso (12,586 feet); the Carpathian Mountains, extending from Presburg in Hungary towards the sources of the Waag and March, the highest point being Mont Lemnitz (7962 feet); and the Balkan range, which may be considered a continuation of the Alps eastward, runs as far as the Black Sea, together with many inferior ranges and branches.

The climate of Europe embraces a range from the temperate to extreme cold. It is bounded by the Arctic Ocean on the north, Asia eastward, the Mediterranean Sea southward, and the Atlantic Ocean to the westward; it contains two great inland seas, the Black Sea and the Caspian Sea. There are three great volcanoes in Europe, Hecla, Vesuvius, and Etna, but the plains of Auvergne contain many which are extinct.

Asia contains the highest mountains and the most extensive table-lands in the world. It is somewhat square, being bounded northwards by the Arctic Ocean, westward by Europe, southward by the Indian Ocean, and eastward by the North Pacific, and contains about 17,500,000 square miles; the greater part is made up of two extensive tracts of elevated land called table-lands, although these are often varied by valleys and mountain chains of great extent, yet as a whole, they are from 5000 to 10,000 feet above the level of the sea. The eastern table-land is that of Thibet and the Great Desert Gobi, and the western that of Persia.

Asia contains many great mountain chains, the chief of which are the Himalaya Mountains, which run along the centre of its southern part and contain some of the highest peaks in the world; the Dhawalagiri is 28,072 feet high, but there are some others supposed to be as high.

The Altai or Gold Mountains, forming a boundary to the lowlands of Siberia, the highest peak of which is called the Katunia Pillars, and is 11,000 feet high.

The Thain-schan or Celestial Mountains, the Kuen Lun, and the Hindoo Coosh, all of which run pretty nearly east and west, while the ranges called Uralian, Bolor, Khingan, and Chinese chains run nearly north and south.

Africa is somewhat triangular, with its base towards Asia and its apex pointing southward. It is bounded northwards by the Mediterranean Sea, and at its east side by the Red Sea and Indian Ocean, while the Atlantic flows on its south-west side. In Africa is the largest desert in the world, the Great Desert of Sahara; it occupies nearly all the northern part, the southern has but few mountains of great extent, but from their elevation and the amount of waters brought down by rivers, it is supposed that the centre has very high table lands. At the north-western part is an extensive mountain system (the Atlas) covering with its branches nearly 500,000 square miles, and sending its slopes to bound the great Desert northwards.

The great tract of land comprising North and South America extends in a longitudinal direction pretty nearly north and south through 130 degrees of latitude, or nearly 8000 miles. This great tract is divided by a narrow neck of land (the Isthmus of Panama) into two pretty equal portions; the northern part is peculiar, from containing a number of lakes of immense extent, deserving well the name of inland seas, and both northern and southern divisions for the great number and extent of their water-courses. The whole of this great tract of land is traversed from end to end by an extensive chain of mountains, the longest in the world; at its southern part it forms the Andes, from which a range is continued through the Isthmus, and onwards to form the Rocky Mountains. In the southern division this immense chain passes on the west side of the land close to the sea, is of great elevation in some parts, has some of the highest mountain peaks in the world, and volcanoes also, the highest being in the Andes (Popocatapetl is about 16,000 feet high); but from the western side of the continent the land descends gradually to the eastern. In South America are some of the highest table-lands known, great elevated tracts in connection with the mountain ranges.

Australia in its interior is but little known, but the whole aspect of the island appears to be flat, and to have but little elevation, while Greenland and the great tracts of the northern regions beyond, deserve more the name of glaciers, being almost entirely a mass of barren rocks and snow.

The water-courses of these various great tracts of land are all determined by the formation of the surface, but the amount of water which is carried into the oceans by the rivers of any district is always in proportion to the amount of vegetation in that district; thus in Europe, Asia, and America, the number and extent of these correspond with the great fertility of the soil, while the northern and western part of Africa—the Great Desert—give off scarcely any of adequate extent, the Nile appearing to receive its supply from the central parts further south. The reason of it is this: wherever there is vegetation, either in the form of grassy prairies or forests, there is also a great reduction of temperature from the radiation and evaporation, and the consequent formation of rain, dew, or snow, which falling on the ground produces streams, &c.

Excepting the great tracts of land named, and islands too numerous to be mentioned, the whole surface of the earth is covered with water, the great divisions of which (called Oceans) are, the Arctic Ocean, to the north of Europe, the Atlantic, between America, Europe, and Africa, the Pacific between Asia and America, and the Indian Ocean between Africa and Australia.

The foregoing is a very bare outline of the land and water covering the surface; it may suffice, however, to call to mind the main features of the earth as it is now disposed. There can be little doubt that the great variety of climate, whether hot or cold, moist or dry, is one of the greatest sources of happiness that can be well imagined; it stimulates to research, travel, and inquiry into the works of God; every change experienced tends to make man search for further change, every new scene makes him compare it with others; and the acquirement of a knowledge of places, and a general idea of the whole world, expands his mind, enables him to appreciate the good gifts he has received, and affords a source of satisfaction beyond almost any other kind of enjoyment.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page