The Angles of Reflexion and Refraction, lie in one and the same Plane with the Angle of Incidence. AX. II.The Angle of Reflexion is equal to the Angle of Incidence. AX. III.If the refracted Ray be returned directly back to the Point of Incidence, it shall be refracted into the Line before described by the incident Ray. AX. IV.Refraction out of the rarer Medium into the denser, is made towards the Perpendicular; that is, so that the Angle of Refraction be less than the Angle of Incidence. AX. V.The Sine of Incidence is either accurately or very nearly in a given Ratio to the Sine of Refraction. Whence if that Proportion be known in any one Inclination of the incident Ray, 'tis known in all the Inclinations, and thereby the Refraction in all cases Fig. 1 Suppose therefore, that RS [in Fig. 1.] represents the Surface of stagnating Water, and that C is the point of Incidence in which any Ray coming in the Air from A in the Line AC is reflected or refracted, and I would know whither this Ray shall go after Reflexion or Refraction: I erect upon the Surface of the Water from the point of Incidence the Perpendicular CP and produce it downwards to Q, and conclude by the first Axiom, that the Ray after Reflexion and In like manner, if there be a Prism of Glass (that is, a Glass bounded with two Equal and Parallel Triangular ends, and three plain and well polished Sides, which meet in three Parallel Lines running from the three Angles of one end to the three Angles of the other end) and if the Refraction of the Light in passing cross this Prism be desired: Let ACB [in Fig. 2.] represent a Plane cutting this Prism transversly to its three Parallel lines or edges there where Fig. 2. Much after the same manner, if ACBD [in Fig. 3.] represent a Glass spherically convex on both sides (usually called a Lens, such as is a Burning-glass, or Spectacle-glass, or an Object-glass of a Telescope) and it be required to know how Light falling upon it from any lucid point Q shall be refracted, let QM represent a Ray falling upon any point M of its first spherical Surface ACB, and by erecting a Perpendicular to the Glass at the point M, find the first refracted Ray MN by the Proportion of the Sines 17 to 11. Let that Ray in going out of the Glass be incident upon N, and then find the second refracted Ray Nq by the Proportion of the Sines 11 to 17. And after the same manner may the Refraction be found when the Lens is convex on one side and plane or concave on the other, or concave on both sides. Fig. 3. AX. VI.Homogeneal Rays which flow from several Points of any Object, and fall perpendicularly or almost perpendicularly on any reflecting or refracting Plane or spherical Surface, shall afterwards diverge from so many other Points, or be parallel to so many other Lines, or converge to so many other Points, either accurately or without any sensible Error. And the same thing will happen, if the Rays be reflected or refracted successively by two or three or more Plane or Spherical Surfaces. The Point from which Rays diverge or to which they converge may be called their Focus. And the Focus of the incident Rays being given, that of the reflected or refracted ones may be found by finding the Refraction of any two Rays, as above; or more readily thus. Cas. 1. Let ACB [in Fig. 4.] be a reflecting or refracting Plane, and Q the Focus of the incident Rays, and QqC a Perpendicular to that Plane. And if this Perpendicular be produced to q, so that qC be equal Fig. 4. Cas. 2. Let ACB [in Fig. 5.] be the reflecting Surface of any Sphere whose Centre is E. Bisect any Radius thereof, (suppose EC) in T, and if in that Radius on the same side the Point T you take the Points Q and q, so that TQ, TE, and Tq, be continual Proportionals, and the Point Q be the Focus of the incident Rays, the Point q shall be the Focus of the reflected ones. Fig. 5. Cas. 3. Let ACB [in Fig. 6.] be the refracting Surface of any Sphere whose Centre is E. In any Radius thereof EC produced both ways take ET and Ct Fig. 6. And by the same means the Focus of the Rays after two or more Reflexions or Refractions may be found. Fig. 7. Cas. 4. Let ACBD [in Fig. 7.] be any refracting Lens, spherically Convex or Concave or Plane on either side, and let CD be its Axis (that is, the Line which cuts both its Surfaces perpendicularly, and passes through the Centres of the Spheres,) and in this Axis produced let F and f be the Foci of the refracted And by the like Operations may the reflecting or refracting Surfaces be found when the two Foci are given, and thereby a Lens be formed, which shall make the Rays flow towards or from what Place you please. So then the Meaning of this Axiom is, that if Rays fall upon any Plane or Spherical Surface or Lens, and before their Incidence flow from or towards any Point Q, they shall after Reflexion or Refraction flow from or towards the Point q found by the foregoing Rules. And if the incident Rays flow from or towards several points Q, the reflected or refracted Rays shall flow from or towards so many other Points AX. VII.Wherever the Rays which come from all the Points of any Object meet again in so many Points after they have been made to converge by Reflection or Refraction, there they will make a Picture of the Object upon any white Body on which they fall. So if PR [in Fig. 3.] represent any Object without Doors, and AB be a Lens placed at a hole in the Window-shut of a dark Chamber, whereby the Rays that come from any Point Q of that Object are made to converge and meet again in the Point q; and if a Sheet of white Paper be held at q for the Light there to fall upon it, the Picture of that Object PR will appear upon the Paper in its proper shape and Colours. For as the Light which comes from the Point Q goes to the Point q, so the Light which comes from other Points P and R of the Object, will go to so many other correspondent Points p and r (as is manifest by the sixth Axiom;) so that every Point of the Object In like manner, when a Man views any Object PQR, [in Fig. 8.] the Light which comes from the several Points of the Object is so refracted by the transparent skins and humours of the Eye, (that is, by the outward coat EFG, called the Tunica Cornea, and by the crystalline humour AB which is beyond the Pupil mk) as to converge and meet again in so many Points in the bottom of the Eye, and there to paint the Picture of the Object upon that skin (called the Tunica Retina) with which the bottom of the Eye is covered. For Anatomists, when they have taken off from the bottom of the Eye that outward and most thick Coat called the Dura Mater, can then see through the thinner Coats, the Pictures of Objects lively painted thereon. And these Pictures, propagated by Motion along the Fibres of the Optick Nerves into the Brain, are the cause of Vision. For accordingly as these Pictures are perfect or imperfect, the Object is seen perfectly or imperfectly. If the Eye be tinged with any colour (as in the Disease of the Jaundice) so as to tinge the Pictures in the bottom of the Eye with that Colour, then all Objects appear tinged with the same Colour. If the Humours of the Eye by old Age decay, so as by shrinking to Fig. 8. AX. VIII.An Object seen by Reflexion or Refraction, appears in that place from whence the Rays after their last Reflexion or Refraction diverge in falling on the Spectator's Eye. Fig. 9. If the Object A [in Fig. 9.] be seen by Reflexion of a Looking-glass mn, it shall appear, not in its proper place A, but behind the Glass at a, from whence any Rays AB, AC, AD, which flow from one and the same Point of the Object, do after their Reflexion made in the Points B, C, D, diverge in going from the Glass to E, F, G, where they are incident on the Spectator's Eyes. For these Rays do make the same Picture in the bottom of the Eyes as if they had come from the Object really placed at a without the Interposition of the Looking-glass; and all Vision is made according to the place and shape of that Picture. In like manner the Object D [in Fig. 2.] seen through a Prism, appears not in its proper place D, but is thence translated to some other place d situated in the last refracted Ray FG drawn backward from F to d. Fig. 10. And so the Object Q [in Fig. 10.] seen through the Lens AB, appears at the place q from whence the Rays diverge in passing from the Lens to the Eye. Now it is to be noted, that the Image of the Object at q is so much bigger or lesser than the Object it self at Q, as the distance of the Image at q from the Lens AB is bigger or less than the distance of the Object at Q from the same Lens. And if the Object be seen through two or more such Convex or Concave-glasses, every Glass shall make a new Image, and the Object shall appear in the place of the bigness of the last Image. Which consideration unfolds the Theory of Microscopes and Telescopes. For that Theory consists in almost nothing else than the describing such Glasses as shall make the last Image of any Object as distinct and large and luminous as it can conveniently be made. I have now given in Axioms and their Explications the sum of what hath hitherto been treated of in FOOTNOTES: |