IV. ALEXANDER BAIN.

Previous

Alexander Bain was born of humble parents in the little town of Thurso, at the extreme north of Scotland, in the year 1811. At the age of twelve he went to hear a penny lecture on science which, according to his own account, set him thinking and influenced his whole future. Learning the art of clockmaking, he went to Edinburgh, and subsequently removed to London, where he obtained work in Clerkenwell, then famed for its clocks and watches. His first patent is dated January 11th, 1841, and is in the name of John Barwise, chronometer maker, and Alexander Bain, mechanist, Wigmore Street. It describes his electric clock in which there is an electro-magnetic pendulum, and the electric current is employed to keep it going instead of springs or weights. He improved on this idea in following patents, and also proposed to derive the motive electricity from an 'earth battery,' by burying plates of zinc and copper in the ground. Gauss and Steinheil had priority in this device which, owing to 'polarisation' of the plates and to drought, is not reliable. Long afterwards Mr. Jones of Chester succeeded in regulating timepieces from a standard astronomical clock by an improvement on the method of Bain. On December 21, 1841, Bain, in conjunction with Lieut. Thomas Wright, R.N., of Percival Street, Clerkenwell, patented means of applying electricity to control railway engines by turning off the steam, marking time, giving signals, and printing intelligence at different places. He also proposed to utilise 'natural bodies of water' for a return wire, but the earlier experimenters had done so, particularly Steinheil in 1838. The most important idea in the patent is, perhaps, his plan for inverting the needle telegraph of Ampere, Wheatstone and others, and instead of making the signals by the movements of a pivoted magnetic needle under the influence of an electrified coil, obtaining them by suspending a movable coil traversed by the current, between the poles of a fixed magnet, as in the later siphon recorder of Sir William Thomson. Bain also proposed to make the coil record the message by printing it in type; and he developed the idea in a subsequent patent.

Next year, on December 31st, 1844, he projected a mode of measuring the speed of ships by vanes revolving in the water and indicating their speed on deck by means of the current. In the same specification he described a way of sounding the sea by an electric circuit of wires, and of giving an alarm when the temperature of a ship's hold reached a certain degree. The last device is the well-known fire-alarm in which the mercury of a thermometer completes an electric circuit, when it rises to a particular point of the tube, and thus actuates an electric bell or other alarm.

On December 12, 1846, Bain, who was staying in Edinburgh at that time, patented his greatest invention, the chemical telegraph, which bears his name. He recognised that the Morse and other telegraph instruments in use were comparatively slow in speed, owing to the mechanical inertia of the parts; and he saw that if the signal currents were made to pass through a band of travelling paper soaked in a solution which would decompose under their action, and leave a legible mark, a very high speed could be obtained. The chemical he employed to saturate the paper was a solution of nitrate of ammonia and prussiate of potash, which left a blue stain on being decomposed by the current from an iron contact or stylus. The signals were the short and long, or 'dots' and 'dashes' of the Morse code. The speed of marking was so great that hand signalling could not keep up with it, and Bain devised a plan of automatic signalling by means of a running band of paper on which the signals of the message were represented by holes punched through it. Obviously if this tape were passed between the contact of a signalling key the current would merely flow when the perforations allowed the contacts of the key to touch. This principle was afterwards applied by Wheatstone in the construction of his automatic sender.

The chemical telegraph was tried between Paris and Lille before a committee of the Institute and the Legislative Assembly. The speed of signalling attained was 282 words in fifty-two seconds, a marvellous advance on the Morse electro-magnetic instrument, which only gave about forty words a minute. In the hands of Edison the neglected method of Bain was seen by Sir William Thomson in the Centennial Exhibition, Philadelphia, recording at the rate of 1057 words in fifty-seven seconds. In England the telegraph of Bain was used on the lines of the old Electric Telegraph Company to a limited extent, and in America about the year 1850 it was taken up by the energetic Mr. Henry O'Reilly, and widely introduced. But it incurred the hostility of Morse, who obtained an injunction against it on the slender ground that the running paper and alphabet used were covered by his patent. By 1859, as Mr. Shaffner tells us, there was only one line in America on which the Bain system was in use, namely, that from Boston to Montreal. Since those days of rivalry the apparatus has never become general, and it is not easy to understand why, considering its very high speed, the chemical telegraph has not become a greater favourite.

In 1847 Bain devised an automatic method of playing on wind instruments by moving a band of perforated paper which controlled the supply of air to the pipes; and likewise proposed to play a number of keyed instruments at a distance by means of the electric current. Both of these plans are still in operation.

These and other inventions in the space of six years are a striking testimony to the fertility of Bain's imagination at this period. But after this extraordinary outburst he seems to have relapsed into sloth and the dissipation of his powers. We have been told, and indeed it is plain that he received a considerable sum for one or other of his inventions, probably the chemical telegraph. But while he could rise from the ranks, and brave adversity by dint of ingenuity and labour, it would seem that his sanguine temperament was ill-fitted for prosperity. He went to America, and what with litigation, unfortunate investment, and perhaps extravagance, the fortune he had made was rapidly diminished.

Whether his inventive genius was exhausted, or he became disheartened, it would be difficult to say, but he never flourished again. The rise in his condition may be inferred from the preamble to his patent for electric telegraphs and clocks, dated May 29, 1852, wherein he describes himself as 'Gentleman,' and living at Beevor Lodge, Hammersmith. After an ephemeral appearance in this character he sank once more into poverty, if not even wretchedness. Moved by his unhappy circumstances, Sir William Thomson, the late Sir William Siemens, Mr. Latimer Clark and others, obtained from Mr. Gladstone, in the early part of 1873, a pension for him under the Civil List of L80 a year; but the beneficiary lived in such obscurity that it was a considerable time before his lodging could be discovered, and his better fortune take effect. The Royal Society had previously made him a gift of L150.

In his latter years, while he resided in Glasgow, his health failed, and he was struck with paralysis in the legs. The massive forehead once pregnant with the fire of genius, grew dull and slow of thought, while the sturdy frame of iron hardihood became a tottering wreck. He was removed to the Home for Incurables at Broomhill, Kirkintilloch, where he died on January 2, 1877, and was interred in the Old Aisle Cemetery. He was a widower, and had two children, but they were said to be abroad at the time, the son in America and the daughter on the Continent.

Several of Bain's earlier patents are taken out in two names, but this was perhaps owing to his poverty compelling him to take a partner. If these and other inventions were substantially his own, and we have no reason to suppose that he received more help from others than is usual with inventors, we must allow that Bain was a mechanical genius of the first order—a born inventor. Considering the early date of his achievements, and his lack of education or pecuniary resource, we cannot but wonder at the strength, fecundity, and prescience of his creative faculty. It has been said that he came before his time; but had he been more fortunate in other respects, there is little doubt that he would have worked out and introduced all or nearly all his inventions, and probably some others. His misfortunes and sorrows are so typical of the 'disappointed inventor' that we would fain learn more about his life; but beyond a few facts in a little pamphlet (published by himself, we believe), there is little to be gathered; a veil of silence has fallen alike upon his triumphs, his errors and his miseries.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page