THE STEAM ENGINE. At the very summit of a mountain near Pasadena, California, stands a huge windmill, which may be seen for many miles in all directions. Here the wind blows almost constantly, and the great arms of the windmill are employed to lift water from a well in the valley below to irrigate the orange groves on the hillsides. Thus the wind has been harnessed by man to serve his purpose. Nature has not only furnished wind for a motive force, but it has also provided man with water power. The water wheel, with its accompanying dam across the stream, has been in general use from the time of the earliest settlements. The weight of the water turned a wheel, thus developing a force which was employed for sawing lumber or grinding grain. When cotton and woolen manufactories were first introduced, water power was almost universally used. After wind and water came steam. A very simple steam Less than one hundred and fifty years ago a young Scotchman named James Watt set himself to the task of improving the Newcomen engine and of making a steam engine that would furnish power for different purposes. He devoted his whole thought to his work, and after twenty years of study he succeeded. The Watt steam engine is the basis of all engines to-day. James Watt did not discover steam power, but he made the steam engine of real value. Many of the first engines used in this country for manufacturing purposes were made by Boulton and Watt in Birmingham. The first steam engines made in America were rough and crude, but the improvement in their construction was rapid. At the present time engines of the finest construction, with the latest improvements and adapted to all kinds of work, are made in many establishments all over our land. Engines are made for marine purposes—steamboats, yachts, and war-vessels,—stationary engines for all sorts of manufactures, and locomotives for the railroads. Perhaps the greatest improvements in the manufacture of steam engines have been the result of the talent and genius of George H. Corliss. In 1825, when George was only eight years of age, his father moved to Greenwich, New York, where the boy grew up to manhood. Here he went to school, was clerk in a country store, and was employed in the first cotton factory His father's house was situated near the bank of a small stream which was much swollen every springtime by the freshets from the melting snows above. A bridge which spanned this stream was carried away one year by the freshets. Young Corliss, then twenty-one years of age, proposed to build a cantilever bridge. Everybody said that the scheme was impossible; he could not do it, it would be a failure. Nevertheless he succeeded, and the bridge was built. It proved entirely successful. It withstood the freshets and was in service, scarcely needing repairs, for many years. He went to Providence when he was twenty-seven years of age, and before he was thirty he had established himself as the head of the firm of "Corliss, Nightingale and Company," for the manufacture of steam engines. He was but a little over thirty years old when he patented his great improvements, applied to the steam engine. These improvements were such as to produce uniformity of motion and to prevent the loss of steam. By connecting the valve with an ingenious cut-off, which he invented, he made the engine work with such uniformity that, if all but one of a hundred looms in a factory were suddenly stopped, that one would go on working at the same rate of speed as before. The improvements which Mr. Corliss effected at once revolutionized the construction of the steam engine. He immediately began the erection of immense buildings for his machine shops, where now are employed more than a thousand men. In 1856 the "Corliss Steam Engine Company" was incorporated, and Mr. Corliss, purchasing the interest of his partners, soon owned all the stock of this company and Perhaps the most conspicuous work which more than anything else carried his name to all the nations of the earth was the construction of the great engine which furnished the motive power for all the machinery in operation in Machinery Hall, at the Centennial Exhibition in Philadelphia in 1876. Of this engine M. Bartholdi, in his report to the French Government, said: "It belonged to the category of works of art by the general beauty of its effect and its perfect balance to the eye." Professor Radinger, of the Polytechnic School in Vienna, pronounced the engine one of the greatest works of the day. This engine stood in the center of Machinery Hall upon a platform 56 feet in diameter. The two working beams were 40 feet above the platform, and were seen from all parts of the building, being the most conspicuous objects in the hall. The fly-wheel was 30 feet in diameter with a face of 24 inches. This engine carried eight main lines of shafting, each line being 650 feet in length, and the larger part of this shafting was speeded to 120 revolutions a minute, while one line, used principally for wood-working machines, made 240 revolutions per minute. The engine weighed 7,000 tons, and its power was equivalent to 1,400 horse-power. The entire cost, about $200,000, was borne by Mr. Corliss. The engine is now in active service, furnishing the motive power for the entire works of the Pullman Car Company. During the later years of Mr. Corliss's life he devoted much time and thought to inventing improved pumps to be used in connection with city waterworks, "for forcing water to higher levels." He made for the city of Providence a rotary pump for high service which worked automatically, keeping the pipes in the upper sections of the city full at all times whether much or little water was used. This ingenious pump was visited by mechanics from all parts of the world. Only a few years before his death Mr. Corliss built another pump, an account of which was published some years ago. This account included the following incident: "I went down to Pettaconsett, the other day, to see the foundations of the building that Mr. Corliss is putting up there for the new pumping engine which he has engaged to put in for this city. I found that, in digging for the foundations, they came upon a deep bed of quicksand. Mr. Corliss, ever fertile in expedients to overcome obstacles, instead of driving down wooden piles, sunk in this quicksand great quantities of large cobblestones. These were driven down into the sand with tremendous force by a huge iron ball weighing four thousand pounds. I said: 'Mr. Corliss, why did not you drive wooden piles on which to build your foundation?' "'Don't you see,' said he, 'that the piles have no discretion, and that the cobblestones have?' "'I don't think I understand you, Mr. Corliss,' was my reply. "'If you drive a pile,' said he, 'it goes where you drive it, and nowhere else; but a cobblestone will seek the softest place and go where it is most needed. It therefore has discretion, and better answers the purpose.' "I went away musing that the wooden 'piles' and the 'cobblestones' represent two classes of boys. 'The piles,' said Mr. Corliss, 'have no discretion, and go only where they are driven.' I think I have seen boys who represented this quality. 'But the cobblestones go where they are the most needed.' When boys fit themselves to go where they are the most needed, they will be pretty likely to meet with tolerably good success in life." The great service Mr. Corliss has rendered to the world through his inventions is shown by the awards made to him from the highest scientific authorities. At the Paris Exposition (1867) he received the highest competitive prize in competition with more than a hundred engines. A great English engineer, one of the British commissioners at the Exposition, said: "The American engine of Mr. Corliss everywhere tells of wise forethought, judicious proportion, sound execution, and exquisite contrivance." The American Academy of Arts and Sciences in 1870 awarded to Mr. Corliss the Rumford Medal. This medal was presented by Dr. Asa Gray, who said: "No invention since Watt's time has so enhanced the efficiency of the steam engine as this." At the Vienna Exhibition in 1873 Mr. Corliss sent neither engine nor machinery, nor had he any one there to represent The steam engine to-day is of vastly greater importance than it has ever been before, especially in its use for furnishing the motive power for cotton and woolen factories, and for all kinds of manufacturing establishments. What should we do to-day without the steam engine? Long before the beginning of this century Erasmus Darwin sang as follows: "Soon shall thy arm, unconquered steam! afar Drag the slow barge, or drive the rapid car." All this has long been fulfilled. How long will it be before his next two lines will also prove a reality? Or on wide-waving wings expanded bear The flying chariot through the field of air." |