RAILROADS. Up to this time progress had been more marked upon the water than upon the land. On the land travelers were still limited to human power and horse power. On the water, however, not only human power and wind were used, but also horse power and even steam power. The steamboat was thought to be the most rapid means of transit possible. No energy was known greater than that of steam; therefore no new source of power was expected. If steam could aid water navigation, could it not be used in land travel? This question was ever present in the minds of inventors, mechanics, and travelers on both sides of the ocean. Little by little an answer was obtained, and the field of steam was enlarged. Even before Fulton's trial trip, the first step in the direction of the railroad was taken, though steam had nothing to do with this first practical experiment. The city of Boston was built upon three hills, two of which have now been almost entirely moved away. Upon the third, called Beacon Hill, was built the State House. Early in this century the top of this hill was lowered by carrying away the gravel. For this purpose a tramway was built. This consisted of two sets of rails or tracks from the top to the bottom of the hill, upon which cars were used. The full car on one track ran down of its own weight, pulling up the empty car on the other track. This was the first use of rails in this country. The first permanent tramway was built in Pennsylvania. Thomas Leifer owned a stone quarry about three-quarters of a mile from the nearest wharf on the Delaware River. He desired to carry his stone to tide water more easily than by the ordinary methods. Accordingly he built a tramway from the quarry to the wharf, and placed upon the tracks an ordinary wagon. To this he attached horses and had what we should call a horse car. The rails made a smooth road over which his horses could draw five tons as easily as one ton over the common roads. This tram was used regularly for eighteen years. One-half of the steam railroad had now been invented. The tramway was the railroad—now steam must be applied. That was all. But that was not so easy as it would seem now. Year after year passed and no one attempted it. Doubtless many persons felt certain that the steam railroads were coming some time and that they would be of value, just as to-day many people expect that travel through the air is coming some time. At the same time there were many who did not believe that steam could be used for land travel at all; while others did not care to have it come for fear that travel would be made too speedy. One of the leading English magazines took occasion to express its opinion concerning a proposed railway: "What can be more absurd and ridiculous than the prospect held out of locomotives traveling twice as fast as stage coaches! We should as soon expect the people of Woolwich to suffer themselves to be fired off upon one of Congreve's rockets as trust themselves to the mercy of a machine going at such a rate. We trust that Parliament will, in all railways it may sanction, limit the speed to eight or nine miles an hour, which is as great as can be ventured on with safety." What would this writer Many of the inventions which have done the most for mankind have been made by Americans, but we owe the locomotive to an Englishman. George Stephenson from early boyhood devoted himself to the study of engines and machinery. When but thirteen years of age he assisted his father in the care of an engine at a coal mine near Newcastle. Working by day as an engineman, and studying by night in a night school, he prepared himself for his future work. He won the confidence of his employers, especially that of Lord Ravensworth, who supplied him with funds to build a "traveling engine" to run on the rails of the tramroad between the mines and the shipping port, nine miles distant. July 25th, 1814, Stephenson made a successful trip with his locomotive, "My Lord," which pulled the coal cars at the rate of four miles an hour. Stephenson felt that this locomotive was but a beginning. He told his friends that "there was no limit to the speed of such an engine, if the works could be made to stand." He was still pursuing his studies and experiments when he was appointed engineer of a proposed railroad between Stockton and Darlington. The directors of the road had planned to pull their cars by horses, but they were won over by Stephenson to agree to try an engine. Eleven years after the trial trip of his first engine, Stephenson was ready to exhibit a locomotive upon a railroad joining two towns for the purpose of transporting passengers and freight. A short time before the trial trip, Stephenson made a prediction concerning the future of his invention. "I venture to tell you," he said, "that I think that you will live to see the day when railways will supersede almost all other The Stockton and Darlington Railway was three years in process of construction, and the day of its opening, September 27th, 1825, was an important one in the history of travel. Imagine that first train load—the locomotive, guided by Stephenson himself, six freight cars, a car carrying "distinguished guests," twenty-one coal cars crammed with passengers, and six more freight cars all loaded. Ahead of the train, or procession, as it might be called, rode a man on horseback, carrying a flag bearing the motto, "The private risk is the public benefit." When the train started, crowds of people ran along by its side, for a time easily keeping up with it. Finally, however, Stephenson called to the horseman to get out of the way and, putting on steam, drove the engine at the rate of fifteen miles an hour. The future of the locomotive was assured. Americans were ready for new methods of traveling. Three years after the opening of the first passenger steam-railway in England, the Baltimore and Ohio Railroad began to construct a line from Baltimore westward, and in two years fourteen miles were opened to travel. For a year, however, horses were used as motive power; in 1831, the road advertised for locomotives. Meanwhile an engine, called the "Stombridge Lion," was brought over from England, in 1829, and used on a line built by the The locomotive and the railroad had come, such as they were. The locomotive had its boiler and its smokestack, its cylinders and driving wheels; but it had no cab for the engineer and the fireman, and no brake to stop the train. The tender was but a flat car, carrying fuel and water. The cars were merely stagecoaches made to run on rails, and in no way were the passengers protected from the smoke and cinders of the burning wood. Yet this poor, inconvenient railroad was a great advance in itself, and it foretold greater advances in the days to come. In 1835, five years after the opening of the first steam railroad in the United States, there were twenty-three roads and over a thousand miles of track. After 1835, an average of nearly four hundred miles was built yearly until 1848. From that time until the beginning of the Civil War, railroad construction proceeded with great rapidity, nearly two thousand miles of railroad being built each year. In 1849, a continuous line of railroad was completed between New York and Boston. Two years later two distinct lines were finished, connecting New York and Buffalo. At the end of another two years, through connection was had between New York and Chicago. At the same time railroads After peace was restored in 1865, came a great period of railroad building. During ten years the number of miles of railroad more than doubled, nearly four thousand miles being built each year. This was the period when the continuous lines, which had already reached the Missouri River, were continued across the continent. After five years of labor the Union Pacific Railroad, starting at Omaha, Nebraska, met at Ogden, Utah, the Central Pacific, which had been built from Sacramento, California. May 10th, 1869, the last spike was driven and the Pacific coast was bound to the Atlantic by bands of steel. Since the completion of the Union and Central Pacific railroads, four other through lines have been constructed across the Rocky Mountains, within the territory of the United States, and one in Canada. It is now possible to go from ocean to ocean in less than five days, and to have such a choice of routes that neither the cold of winter nor the heat of summer need be troublesome. At last the limit of rapid traveling seems to have been reached. Walking and horseback riding are indulged in only for pleasure and health; stagecoaches are used only for short lines where the railroad has not yet come; but all the long-distance traveling is now done behind the locomotive. Journeys of weeks have become trips of a few days, days have been lessened to hours, and the country has become knit together by rapid transit. Is there a chance for further improvement? |